留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工业CT和激光剪切散斑干涉的复合材料气瓶分层缺陷检测研究

刘昶辰 王守龙 应凯迪 马利

刘昶辰, 王守龙, 应凯迪, 等. 基于工业CT和激光剪切散斑干涉的复合材料气瓶分层缺陷检测研究[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 刘昶辰, 王守龙, 应凯迪, 等. 基于工业CT和激光剪切散斑干涉的复合材料气瓶分层缺陷检测研究[J]. 复合材料学报, 2024, 42(0): 1-9.
LIU Changchen, WANG Shoulong, YING Kaidi, et al. Detection study of delamination defects in composite cylinders based on CT scanning and Digital Shear Speckle Interferometry[J]. Acta Materiae Compositae Sinica.
Citation: LIU Changchen, WANG Shoulong, YING Kaidi, et al. Detection study of delamination defects in composite cylinders based on CT scanning and Digital Shear Speckle Interferometry[J]. Acta Materiae Compositae Sinica.

基于工业CT和激光剪切散斑干涉的复合材料气瓶分层缺陷检测研究

基金项目: 国家重点研发计划项目(2021YFB4000903)
详细信息
    通讯作者:

    马利,博士,副教授,博士生导师,研究方向为复合材料力学、光学无损检测、冲击动力学和极端承压设备等 E-mail: malizjut@zjut.edu.cn

  • 中图分类号: TB332;TH49

Detection study of delamination defects in composite cylinders based on CT scanning and Digital Shear Speckle Interferometry

Funds: National Key Research and Development Program of China (2021YFB4000903)
  • 摘要: 碳纤维增强复合材料储氢气瓶是氢能汽车燃料电池的核心组件,然而针对气瓶制造成型过程中产生的缺陷仍缺少高效可靠的检测评价方法。本文针对碳纤维增强复合材料储氢气瓶开展了工业CT断层扫描和激光剪切散斑干涉测量实验研究。实验结果表明,分层缺陷是气瓶纤维缠绕层中最主要的制造缺陷类型,通过分析气瓶内部分层缺陷引起的局部力学响应特征,揭示了不同严重程度分层缺陷引起的剪切条纹以及离面位移的变化规律。激光剪切散斑干涉捕捉到的“蝴蝶斑”条纹区域与CT扫描发现的纤维缠绕层内部的分层缺陷在位置尺寸和影响范围上具有高度的重叠一致性。激光剪切散斑干涉技术与气瓶水压试验相结合,能够为气瓶的服役性能和安全性评估提供有力支持,对储氢装备的发展具有重要意义。

     

  • 图  1  储氢气瓶CT检测

    Figure  1.  CT testing of the hydrogen storage cylinder.

    图  2  (a) 气瓶轴向断面图; (b) 气瓶轴向视图

    Figure  2.  (a) Axial cross-section of cylinder; (b) Axial view of the cylinder.

    图  3  气瓶封头段的分层缺陷: (a-b) 上封头以及对应的轴向截面; (c-d) 下封头以及对应的轴向截面

    Figure  3.  Delamination defects in dome: (a-b) Forward dome and its axial section; (c-d) Afterward dome and its axial section.

    图  4  气瓶直筒段的分层缺陷

    Figure  4.  Delamination defects in cylindrical part.

    图  5  直筒段分层缺陷的尺寸分布

    Figure  5.  Distributions of delamination defect size in cylindrical part.

    图  6  基于迈克尔逊干涉原理的激光剪切散斑干涉仪

    Figure  6.  Digital shearography based on the Michelson interferometer.

    图  7  物体表面位移与光程差的关系

    Figure  7.  Relationship between the surface displacement and the optical path difference.

    图  8  剪切条纹演化情况(Δp1p4): (a-d) 加载过程 (Δy=5 mm); (e-h) 卸载过程 (Δx=5 mm)

    Figure  8.  Interferometric fringe evolution (Δp1p4): (a-d) loading process (Δy=5 mm); (e-h) unloading process (Δx=5 mm).

    图  9  分层缺陷诱导的离面位移梯度和离面位移

    Figure  9.  Out-of-plane displacement derivative and displacement induced by delamination defect.

    图  10  气瓶D面的测量结果:(a-d) 剪切条纹的演化过程; (e-g) 沿A-A、B-B、C-C参考线下的离面位移梯度和离面位移变化曲线

    Figure  10.  Measurement results of the cylinder D-surface: (a-d) Interferometric fringe evolution; (e-g) Variations of out-of-plane displacement derivative and displacement along reference lines A-A, B-B, C-C.

    图  11  气瓶D面离面位移梯度和离面位移与压差的关系

    Figure  11.  Relationship between out-of-plane displacement derivative and displacement of the D-surface with pressure difference.

    图  12  气瓶A面测量结果与CT扫描结果对比

    Figure  12.  Comparison of the measurement results and CT scans of the cylinder A-surface.

    图  13  气瓶D面测量结果与CT扫描结果对比

    Figure  13.  Comparison of the measurement results and CT scans of the cylinder D-surface.

  • [1] 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J/OL]. 化工进展, 2015, 34(9): 3248-3255.

    ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255(in Chinese).
    [2] ISLAM A, ISLAM T, MAHMUD H, et al. Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions[J/OL]. International Journal of Hydrogen Energy, 2024, 67: 458-486. doi: 10.1016/j.ijhydene.2024.04.142
    [3] 陈学东, 范志超, 崔军, 等. 我国压力容器高性能制造技术进展[J]. 压力容器, 2021, 38(10): 1-15. doi: 10.3969/j.issn.1001-4837.2021.10.001

    CHEN Xuedong, FAN Zhichao, CUI Jun, et al. Progress in high-performance manufacturing technology for pressure vessels in China[J]. Editorial Office of Pressure Vessel Technology, 2021, 38(10): 1-15(in Chinese). doi: 10.3969/j.issn.1001-4837.2021.10.001
    [4] KUMAR N, LEE S Y, PARK S J. Advancements in hydrogen storage technologies: A comprehensive review of materials, methods, and economic policy[J/OL]. Nano Today, 2024, 56: 102302. doi: 10.1016/j.nantod.2024.102302
    [5] AIR A, SHAMSUDDOHA M, GANGADHARA PRUSTY B. A review of Type V composite pressure vessels and automated fibre placement based manufacturing[J/OL]. Composites Part B: Engineering, 2023, 253: 110573. doi: 10.1016/j.compositesb.2023.110573
    [6] 李泳良. 常见缺陷对碳纤维增强复合材料力学性能影响的模拟研究[D/OL]. 烟台大学, 2024.

    LI Yongliang. Simulation Study on the Effect of Common Defects on the Mechanical Properties of Carbon Fiber Reinforced Polymer Composites[D/OL]. Yantai University, 2024(in Chinese).
    [7] FU Y, YAO X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites[J/OL]. Composites Part C: Open Access, 2022, 8: 100276. doi: 10.1016/j.jcomc.2022.100276
    [8] SHI Y, TANG P, MIAO C, et al. Research on Defect Detection of Fully-Wrapped Carbon Fiber Reinforced Hydrogen Storage Cylinder With an Aluminum Liner by Industrial Computed Tomography[C/OL]//Volume 5: Operations, Applications, and Components; Seismic Engineering; ASME Nondestructive Evaluation, Diagnosis and Prognosis (NDPD) Division. Las Vegas, Nevada, USA: American Society of Mechanical Engineers, 2022: V005T09A003[2024-04-16].
    [9] SHI L, YANG H, WU Z, et al. Effect of fiber layout on low-velocity impact response of intralaminar hybrid carbon/glass fiber braided composite pipes under internal pressure[J/OL]. Thin-Walled Structures, 2024, 198: 111711. doi: 10.1016/j.tws.2024.111711
    [10] HUA F, YOU Q, HUANG Q, et al. Exploring guided wave propagation in composite cylindrical shells with an embedded delamination through refined spectral element method[J/OL]. Thin-Walled Structures, 2024, 194: 111326. doi: 10.1016/j.tws.2023.111326
    [11] LIONETTO F, DELL’ANNA R, MONTAGNA F, et al. Modeling of continuous ultrasonic impregnation and consolidation of thermoplastic matrix composites[J/OL]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 119-129. doi: 10.1016/j.compositesa.2015.12.004
    [12] 孟凌霄, 石文泽, 卢超, 等. 碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制[J/OL]. 复合材料学报, 2024, 41(4): 1820-1829.

    MENG Lingxiao, SHI Wenze, LU Chao, et al. Electromagnetic ultrasonic on-line monitoring method and failure mechanism of carbon fiber reinforced resin matrix composite material gas cylinder[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1820-1829(in Chinese).
    [13] DAHMENE F, YAACOUBI S, EL MOUNTASSIR M, et al. On the modal acoustic emission testing of composite structure[J/OL]. Composite Structures, 2016, 140: 446-452. doi: 10.1016/j.compstruct.2016.01.003
    [14] BURKS B, HAMSTAD M A. The impact of solid–fluid interaction on transient stress wave propagation due to Acoustic Emissions in multi-layer plate structures[J/OL]. Composite Structures, 2014, 117: 411-422. doi: 10.1016/j.compstruct.2014.07.010
    [15] DAHMENE F, YAACOUBI S, EL MOUNTASSIR M, et al. Towards efficient acoustic emission testing of COPV, without Felicity ratio criterion, during hydrogen-filling[J/OL]. International Journal of Hydrogen Energy, 2016, 41(2): 1359-1368. doi: 10.1016/j.ijhydene.2015.11.065
    [16] WU Z, ZHANG P, QIN S, et al. Transition from folding to splaying failure of braided composite tubes subjected to axial compression hybridized by bi-axial and tri-axial laminate[J/OL]. Composite Structures, 2024, 329: 117810. doi: 10.1016/j.compstruct.2023.117810
    [17] SU Y fan, LI X guang, WANG J, et al. Transverse indentation response and residual axial compressive characteristics of metal-composites hybrid tubes by deep learning-based acoustic emission and micro-CT[J/OL]. Thin-Walled Structures, 2023, 185: 110651. doi: 10.1016/j.tws.2023.110651
    [18] ZHANG P fei, ZHOU W, YIN H fei, et al. Progressive damage analysis of three-dimensional braided composites under flexural load by micro-CT and acoustic emission[J/OL]. Composite Structures, 2019, 226: 111196. doi: 10.1016/j.compstruct.2019.111196
    [19] 王永红, 姚彦峰, 李骏睿, 等. 剪切散斑干涉关键技术研究及应用进展[J]. 激光与光电子学进展, 2022, 59(14): 53-61.

    WANG Yonghong, YAO Yanfeng, LI Junrui, et al. Progresses of Shearography: Key Technologies and Applications[J]. Laser & Optoelectronics, 2022, 59(14): 53-61(in Chinese).
    [20] STEINCHEN W, YANG L, KUPFER G, et al. Non-destructive testing of aerospace composite materials using digital shearography[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1998, 212(1): 21-30. doi: 10.1243/0954410981532108
    [21] WU R, LI Y, LU Y. Single-frame temporal phase-shifting shearography for real-time nondestructive testing[J/OL]. Optics & Laser Technology, 2024, 176: 110972.
    [22] HU W, XIONG C, FU Y, et al. Direct strain measurement method based on the correlation of defocused laser speckle pattern[J/OL]. Optics and Lasers in Engineering, 2024, 176: 108051. doi: 10.1016/j.optlaseng.2024.108051
    [23] HUANG Y H, NG S P, LIU L, et al. NDT&E using shearography with impulsive thermal stressing and clustering phase extraction[J/OL]. Optics and Lasers in Engineering, 2009, 47(7-8): 774-781. doi: 10.1016/j.optlaseng.2009.02.011
    [24] LIU Z, GAO J, XIE H, et al. NDT capability of digital shearography for different materials[J/OL]. Optics and Lasers in Engineering, 2011, 49(12): 1462-1469. doi: 10.1016/j.optlaseng.2011.04.006
    [25] TAO N, ANISIMOV A G, GROVES R M. Shearography non-destructive testing of thick GFRP laminates: Numerical and experimental study on defect detection with thermal loading[J/OL]. Composite Structures, 2022, 282: 115008. doi: 10.1016/j.compstruct.2021.115008
    [26] TAO N, ANISIMOV A G, GROVES R M. FEM-assisted shearography with spatially modulated heating for non-destructive testing of thick composites with deep defects[J/OL]. Composite Structures, 2022, 297: 115980. doi: 10.1016/j.compstruct.2022.115980
    [27] FARSHI S S, AKBARI D. Integration of digital shearography and FEM for non-destructive evaluation of internal cracks in GRE pipes[J/OL]. Journal of Reinforced Plastics and Composites, 2023: 07316844231219302.
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-08-12
  • 录用日期:  2024-08-30
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回