留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻-融循环老化对竹纤维/聚丙烯复合材料性能的影响

李振宇 李新功

李振宇, 李新功. 冻-融循环老化对竹纤维/聚丙烯复合材料性能的影响[J]. 复合材料学报, 2024, 41(11): 6006-6013.
引用本文: 李振宇, 李新功. 冻-融循环老化对竹纤维/聚丙烯复合材料性能的影响[J]. 复合材料学报, 2024, 41(11): 6006-6013.
LI Zhenyu, LI Xingong. Effect of freeze-thaw cycle aging on properties of bamboo fiber/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6006-6013.
Citation: LI Zhenyu, LI Xingong. Effect of freeze-thaw cycle aging on properties of bamboo fiber/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6006-6013.

冻-融循环老化对竹纤维/聚丙烯复合材料性能的影响

基金项目: 湖南省科技创新计划项目资助 (2021RC4062)
详细信息
    通讯作者:

    李新功,博士研究生,二级教授,博士生导师,研究方向为植物基复合材料 E-mail: lxgwood@163.com

  • 中图分类号: TB332

Effect of freeze-thaw cycle aging on properties of bamboo fiber/polypropylene composites

Funds: Hunan Science and Technology Innovation Plan Project Funding (No. 2021RC4062)
  • 摘要: 竹纤维/聚丙烯(BF/PP)复合材料常应用于户外市政工程领域。在高纬度地区时冷热湿冻的交变作用会使材料性能严重劣化。为探究BF/PP复合材料在高纬度地区的耐老化性能,采用相容剂和偶联剂协同改性的方法制备了BF/PP复合材料,研究了该材料在冻-融循环老化处理后的物理力学性能及表观性能的变化规律。采用5400 s短期蠕变试验方法研究了材料的蠕变行为,并利用扫描电子显微镜和傅里叶红外光谱分析了材料的微观形貌与化学组成。结果显示:720 h冻-融循环老化后,BF/PP复合材料的抗拉强度、抗弯强度、弯曲弹性模量、无缺口冲击强度的保留率为分别为76.90%、86.89%、82.81%、71.83%;材料产生了较深的交叉裂纹、孔洞和断层,表面疏水性下降,并出现了明显的色泽改变。进一步采用伯格斯(Burgers)模型对BF/PP复合材料的5400 s短期蠕变行为进行了拟合,探明了冻-融循环老化对BF/PP复合材料抗蠕变性能的影响机制。

     

  • 图  1  冻-融循环老化后竹纤维/聚丙烯(BF/PP)复合材料的力学性能:(a)抗拉强度;(b)弯曲强度和弯曲模量;(c)无缺口冲击强度

    Figure  1.  Mechanical properties of bamboo fiber/polypropylene (BF/PP) composites after freeze-thaw cycle aging: (a) tensile strength; (b) bending strength and modulus; and (c) non-notched impact strength

    图  2  冻-融循环老化前后BF/PP复合材料表面微观形貌

    Figure  2.  The surface micro-morphology of BF/PP composites before and after freeze-thaw cycle aging

    图  3  冻-融循环老化前后BF/PP复合材料表面水接触角

    Figure  3.  Water contact angle of BF/PP composites before and after freeze-thaw cycle aging

    图  4  冻-融循环老化前后BF/PP复合材料表面材色变化:(a)红绿、黄蓝轴色品指数;(b)亮度值和色差

    Figure  4.  The surface of BF/PP composites before and after freeze-thaw cycle aging: (a) Redmess and yellowness; (b) Lightness and discoloration

    图  5  冻融循环老化前后BF/PP复合材料的傅里叶红外光谱图

    Figure  5.  Fourier transform infrared spectroscopy of BF/PP composites before and after freeze-thaw cycle aging

    图  6  BF/PP 复合材料冻-融循环老化机理示意图:(a)纤维润湿;(b)低温冷冻;(c)室温解冻;(d)界面脱粘

    Figure  6.  Schematic diagram of freeze-thaw cycle aging mechanism of BF/PP composites: (a) Fiber wetting; (b) Low temperature freezing; (c) Room temperature thawing; (d) Interface debonding

    图  7  BF/PP复合材料在5400 s短期蠕变中挠度变化散点图及拟合曲线

    Figure  7.  Scatter plot and fitting curve of deflection change of BF/PP composites in 5400 s short-term creep

    图  8  冻-融循环老化前后的BF/PP复合材料在三种不同应力水平下的5400 s短期蠕变试验产生的挠度

    Figure  8.  Deflection of BF/PP composites before and after freeze-thaw cycle aging under three different stress levels for 5400 s short-term creep test

  • [1] 董婕. 竹粉/聚丙烯复合材料的制备及性能研究[D]. 大庆: 东北石油大学, 2017.

    DONG Jie. Study on preparation and properties of bamboo flour/polypropylene composites [D]. Daqing: Northeast Petroleum University, 2018 (in Chinese)
    [2] QIU Z Y, FAN H L. Nonlinear modeling of bamboo fiber reinforced composite materials[J]. Composite Structures. 2020, 111976-111976.
    [3] PRZEMYSŁAW M, JERZY M, MAGDALENA Z. The Effect of Thermo-Mechanical Treatment of Moso Bamboo (Phyllostachys Pubescens) on Its Sorption and Physicomechanical Properties[J]. Drvna industrija:Scientific journal of wood technology, 2019, 70(3): 256-272.
    [4] 向娥琳. 毛竹生长过程中细胞壁结构与性能的变化研究[D]. 成都: 四川农业大学, 2018.

    XIANG Elin. Study on the cell wall structure and propery during the growth of Moso bamboo [D]. Chengdu: Sichuan Agriculture university, 2018 (in Chinese)
    [5] ZHOU X, HUANG S, YU Y, et al. Outdoor natural weathering of bamboo flour/polypropylene foamed composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(19): 1835-1846. doi: 10.1177/0731684414548611
    [6] 邓浩, 刘彤, 张吉润. PP、PCL、PAL/BF 复合材料现状及发展[J]. 塑料, 2020, 49(3): 119-122.

    DENG Hao, LIU Tong, ZHANG Jirun. Present Situation and Development of PP, PCL and PAL/BF Composite[J]. Plastics, 2020, 49(3): 119-122(in Chinese).
    [7] LONG H, WU Z, DONG Q, et al. Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing[J]. Polymer Engineering & Science, 2019, 59(s2): E247-E260.
    [8] 陈家鑫, 徐子然, 宋经纬, 等. 我国木材资源供应与用材林培育建设分析[J]. 林业科技通讯, 2021, (11): 18-21.

    CHEN Jiaxin, XU Ziran, SONG Jingwei, et al. Analysis of China 's timber resources supply and timber forest cultivation and construction[J]. Forest Science and Technology, 2021, (11): 18-21(in Chinese).
    [9] KIM J K, PAL K. Recent Advances in the Processing of Wood-Plastic Composites[M]. Springer, Berlin, Heidelberg.
    [10] 张笑梅, 郭万涛. 纤维增强树脂基复合材料环境加速老化性能研究[J]. 材料开发与应用, 2017, 32(2): 41-46.

    ZHANG Xiaomei, GUO Wantao. Research on accelerated environmental aging properties of the fiber reinforced polymer composites[J]. Development and Application of Materials, 2017, 32(2): 41-46(in Chinese).
    [11] JEANETTE M, MATUANA L. ∙Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling[J]. Journal of Vinyl& Additive Technology, 2005, 53(1): 1-8.
    [12] HAMED K Y. Maleated nanolignin as a new coupling agent for wood-plastic composites[J]. Journal of Composite Materials, 2023, 57(30): 4649-4658. doi: 10.1177/00219983231215422
    [13] CUI Y H, LEE S, NORUZIAAN B, et al. Fabrication and interfacial modification of wood/recycled composite materials[J]. Composites, 2008, 39(1): 655-661.
    [14] 牟堂峰. 聚丙烯/木粉复合材料的研究[D]. 上海: 上海交通大学, 2008.

    MU Tangfeng. A Study on polypropylene/wood flour composites[D]. Shanghai: Shanghai Jiaotong University, 2008 (in Chinese)
    [15] 刘晓玲. 竹粉/聚丙烯复合材料性能及其界面特征[D]. 福州: 福建农林大学, 2009.

    LIU Xiaoling. The performance and interface characterization of bamboo flour/PP composites. [D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
    [16] American Society of Testing. ASTM D 6662-22 Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards[S]. Toronto, America: ASTM international, 2017.
    [17] 中国国家标准化管理委员会(标准制定单位). 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] 中国国家标准化管理委员会(标准制定单位). 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [19] 中国国家标准化管理委员会(标准制定单位). 塑料简支梁冲击性能的测定: GB/T 1043.2—2018[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of charpy impact properties: GB/T 1043.2—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [20] 陈涵. 竹纤维/聚丙烯复合材料的耐老化性能[J]. 福建林业科技, 2012, 390(2): 52-54+78.

    CHEN Han. Aging Properties of Bamboo Particles Reinforced Polypropylene Composites[J]. Jour of Fujian Forestry Sci and Tech, 2012, 390(2): 52-54+78(in Chinese).
    [21] 周吓星, 陈礼辉, 黄舒晟等. 竹粉/聚丙烯发泡复合材料加速老化性能的研究[J]. 农业工程学报, 2014, 30(7): 287-292.

    Zhou Xiaxing, Chen Lihui, Huang Shusheng, et al. Performance of bamboo flour/polypropylene foamed composite under accelerated weathering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 287-292(in Chinese).
    [22] BUTYLINA S H M K T. Weathering of wood-polypropylene composites containing pigments[J]. European Journal of Wood and Wood Products, 2012, 70(3): 719-726.
    [23] 周吓星, 黄舒晟, 苏国基, 等. 冻融循环老化降低竹粉/聚丙烯发泡复合材料性能[J]. 农业工程学报, 2014, 30(10): 285-292.

    ZHOU Xiaxing, HUANG Shusheng, SU Guoji, et al. Freeze-thaw cycles weathering degrading properties of bamboo flour-polypropylene foamed composites[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 285-292(in Chinese).
    [24] SHUGUANG L, SU L, LIQIANG Y, et al. Mechanical strength model of engineered cementitious composites with freeze–thaw damage based on pore structure evolution[J]. Cement and Concrete Composites. 2022, 134.
    [25] 龚新怀, 戴忠豪, 王兆礼, 等. 冻融循环老化对 PLA/TW 生物质复合材料性能的影响[J]. 工程塑料应用, 2018, 46(10): 39-43.

    GONG Xinhuai, DAI Zhonghao, WANG Zhaoli, et al. Effects of Freeze-Thaw Cycling Accelerated Weathering on Properties of Poly(lactic acid)/Tea Waste Biomass Composites[J]. Engineering Plastics Application, 2018, 46(10): 39-43(in Chinese).
    [26] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 226-236.

    ZHANG Xian, CAI Ming, SUN Baozhong. Research progress of hygrothermal aging of plant fiber reinforced composites[J]. Materials Reports, 2022, 36(5): 226-236.
    [27] 熊小艺. 竹纤维增强聚丙烯复合材料的研究[D]. 杭州: 浙江工业大学, 2017.

    XIONG Xiaoyi. The Research on Bamboo Fiber Reinforced Polypropylene Composite[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
    [28] 陈冬梅, 姜良朋, 刘丁宁, 等. 四种壳类纤维/聚氯乙烯木塑复合材料的蠕变及磨损性能[J]. 复合材料学报, 2018, 35(6): 1464-1471.

    CHEN Dongmei, JIANG Liangpeng, LIU Dingning, et al. Creep and wear properties of four different types of husk fibers/polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1464-1471(in Chinese).
    [29] 肖伟. 加速老化对木塑复合材料性能的影响——冻融、氙灯加速老化[D]. 南京: 南京林业大学, 2010.

    XIAO Wei. The influence of accelerated aging on the properties of wood-plastic composite materials freeze-thaw, xenon accelerated aging[D]. Nanjing: Nanjing Forestry University , 2010. (in Chinese)
    [30] 段洁利, 蒋恩臣, 胡圣荣. 松木粉/PVC 复合材料蠕变性能研究[J]. 农机化研究. 2013, 35(02): 142-145.

    DUAN Jieli , JIANG Enchen , HU Shengrong. Study of the Creep Behavior of Pine Powder/Polyviny Chloride Composites[J]. Journal of Agricultural Mechanization Research, 2013, 35(02): 142-145. (in Chinese)
    [31] 周冬艳. 聚乙烯木塑复合材料胶接接头设计与耐久失效行为[D]. 哈尔滨: 东北林业大学, 2019.

    ZHOU Dongyan. Design and durable failure behavior of bonding joint for polyethylene wood plastic composites[D]. Harbin: Northeast Forestry University, 2019. (in Chinese)
    [32] REGAZZI A, CORN S, IENNY P, et al. Coupled hydro-mechanical aging of short flax fiber reinforced composites[J]. Polymer Degradation and Stability. 2016, 130300-306.
  • 加载中
图(8)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  91
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-02-06
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回