留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能

相泽辉 周杰 牛建刚 许文明

相泽辉, 周杰, 牛建刚, 等. 混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能[J]. 复合材料学报, 2021, 39(0): 1-15
引用本文: 相泽辉, 周杰, 牛建刚, 等. 混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能[J]. 复合材料学报, 2021, 39(0): 1-15
Zehui XIANG, Jie ZHOU, Jiangang NIU, Wenming XU. Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression[J]. Acta Materiae Compositae Sinica.
Citation: Zehui XIANG, Jie ZHOU, Jiangang NIU, Wenming XU. Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression[J]. Acta Materiae Compositae Sinica.

混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能

基金项目: 国家自然科学基金 (51968058);内蒙古自治区青年英才支持计划(NJYT-18-A06);内蒙古自治区自然科学基金项目(2021MS05012);内蒙古科技大学建筑科学研究所开放基金项目(JYSJJ-2021M16)
详细信息
    通讯作者:

    牛建刚,博士,教授,研究方向为建筑结构可靠度与混凝土结构耐久性  E-mail: niujiangang@imust.edu.cn

  • 中图分类号: TU375.4

Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression

  • 摘要: 通过混凝土帆布(CC)与碳纤维增强树脂复合材料(CFRP)条带联合加固混凝土方柱轴压试验,研究了纤维条带约束率、CFRP宽度与间距、层数对混凝土方柱轴压力学性能的影响,分析加固后混凝土方柱的破坏形态、承载力、耗能能力以及变形能力。研究结果表明:CC的加入可以缓解角部应力集中,明显提高试件的变形能力,改善柱的破坏形态;条带宽度与间距对试件承载力和耗能能力的影响归结于纤维条带约束率,随着纤维条带约束率与CFRP层数的增加,试件的承载能力与耗能能力不断提高;当纤维条带约束率为0.5、宽度与间距为50 mm时承载力与耗能能力最大。在试验研究的基础上,对有效约束面积变化进行理论分析,得出CC在联合加固中起到的作用,并建立联合加固混凝土方柱轴心受压承载力模型,通过误差分析可知,该模型具有较高的预测精度。

     

  • 图  1  混凝土帆布与碳纤维增强树脂复合材料(CC-CFRP)联合加固混凝土方柱试件加固类型及试件截面

    Figure  1.  Reinforcement patterns and sections of concrete square columns strengthened by concrete canvas and carbon fiber reinforced polymer (CC-CFRP)

    图  2  CC硬化前后效果

    Figure  2.  Effect of CC before and after hardening

    图  3  试验加载及测点布置示意图

    Figure  3.  Schematic diagram of test loading and layout of measuring points

    图  4  混凝土方柱整体包裹试件破坏形态

    Figure  4.  Failure modes of whole wrapped concrete square column specimens

    图  5  条带宽度50mm不同条带间距CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  5.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip spacing of 50 mm strip width

    图  6  条带间距50mm不同条带宽度CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  6.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip width of 50 mm strip spacing

    图  7  相同纤维约束率不同条带宽度与间距CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  7.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip width and spacing and the same fiber restraint rate

    图  8  不同条带层数CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  8.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip layers

    图  9  CC-CFRP联合加固混凝土方柱轴向荷载-位移曲线

    Figure  9.  Curves of axial load versus displacement of concrete square column strengthened by CC-CFRP

    图  10  纤维条带层数对CC-CFRP联合加固混凝土方柱承载力与极限应变的影响

    Figure  10.  Iinfluence of the number of fiber strips on the bearing capacity and deformation capacity of concrete square column strengthened by CC-CFRP

    图  11  文献[27]与欧洲规范模型计算CC-CFRP联合加固混凝土方柱轴心受压承载力模型误差分析

    Figure  11.  Error analysis of model in reference [27] and European standard for bearing capacity calculation of concrete square column strengthened by CC-CFRP under axial compression

    图  12  不同加固方式混凝土方柱纵向有效约束区

    Figure  12.  Longitudinal effective area of concrete square column with different reinforcement methods

    图  13  不同加固方式混凝土方柱横向有效约束区

    Figure  13.  lateral effective area of concrete square column with different reinforcement methods

    图  14  CFRP受力简图

    Figure  14.  Force diagram of CFRP

    图  15  CC-CFRP条带联合加固混凝土方柱有效约束区强度比与约束比的关系

    Figure  15.  Relationship between the strength ratio of the effective restraint zone and the constraint ratio of concrete square column strengthened by CC-CFRP

    图  16  CC-CFRP条带联合加固混凝土方柱承载力计算公式误差分析

    Figure  16.  Error analysis of calculation formula of bearing capacity of concrete square column strengthened by CC-CFRP

    表  1  试件主要参数

    Table  1.   Main parameters of specimens

    NumberStrip widthStrip spacingRestraint rate of the fiber stripsNumber of CFRP layers
    SC0000
    CFRP(N3-W450-S0)-SC45001.003
    CC-CFRP(N3-W450-S0)-SC45001.003
    CC-CFRP(N3-W50-S100)-SC501000.333
    CC-CFRP(N3-W50-S75)-SC50750.403
    CC-CFRP(N3-W50-S50)-SC50500.503
    CC-CFRP(N3-W75-S50)-SC75500.603
    CC-CFRP(N3-W50-S30)-SC50300.6253
    CC-CFRP(N3-W100-S50)-SC100500.673
    CC-CFRP(N3-W150-S50)-SC150500.753
    CC-CFRP(N3-W30-S30)-SC30300.503
    CC-CFRP(N3-W75-S75)-SC75750.503
    CC-CFRP(N3-W90-S90)-SC90900.503
    CC-CFRP(N1-W100-S50)-SC100500.671
    CC-CFRP(N2-W100-S50)-SC100500.672
    CC-CFRP(N1-W150-S50)-SC150500.751
    CC-CFRP(N2-W150-S50)-SC150500.752
    Notes:In the test piece number, SC represents square column. CFRP-SC represents reinforced column with only CFRP.CC-CFRP-SC represents reinforced column with CFRP and CC. The first letter and number in parentheses represent the number of CFRP layers. The second letter and number represent the width of CFRP. The third letter and number represent the spacing of CFRP. For example, CC-CFRP(N3-W50-S100)-SC indicates the strip width of concrete square columns strengthened by CC and CFRP is 50mm, the spacing is 100mm, and the number of CFRP is 3.
    下载: 导出CSV

    表  2  CFRP布力学性能参数

    Table  2.   Mechanical properties of CFRP

    Modelt/mmfu/MPaE/MPaεcu/%
    CFS-I-3000.16735482.33×1051.62
    Notes:t is the thickness of CFRP; fu is the tensile strength of CFRP; E is the elastic modulus of CFRP; εcu is the tensile elongation of CFRP at break.
    下载: 导出CSV

    表  3  CC力学性能参数

    Table  3.   Mechanical properties of CC

    Type of CCfc/MPaft/MPaρ/(kg·m−3)
    Sulphoaluminate concrete canvas30.102.771250
    Notes:fc is the compressive strength of CC; ft is the tensile strength of CC; ρ is the bulk density of CC.
    下载: 导出CSV

    表  4  各组混凝土方柱试件实验结果

    Table  4.   Test results of concrete square column specimens

    NumberkfNu/kNNu,m/kN$ f{'_{{\text{cc}}}} $/
    MPa
    $ f{'_{{\text{cc,m}}}} $
    /
    MPa
    $ \dfrac{{f{'_{{\text{cc,m}}}}}}{{f{'_{{\text{co,m}}}}}} $$ {\varepsilon _{{\text{cc}}}} $/10−3$ {\varepsilon _{{\text{cc,m}}}} $/
    10−3
    $ \dfrac{{{\varepsilon _{{\text{cc,m}}}}}}{{{\varepsilon _{{\text{co,m}}}}}} $EP/(kN·mm)EP,m/
    (kN·mm)
    SC10.00546.51588.4824.2926.151.002.242.271.00751.39837.12
    SC2630.4528.022.30922.85
    CFRP(N3-W450-S0)-SC11.001236.461250.0054.9555.562.1212.0811.675.1427742.5525913.95
    CFRP(N3-W450-S0)-SC21263.5456.1611.2624085.35
    CC-CFRP(N3-W450-S0)-SC11.001761.011766.9778.2778.533.0025.6326.3611.6154182.7557328.26
    CC-CFRP(N3-W450-S0)-SC21772.9378.8027.0960473.76
    CC-CFRP(N3-W50-S100)-SC10.33751.26768.5433.3934.161.3116.6916.877.4319748.5221124.90
    CC-CFRP(N3-W50-S100)-SC2785.8234.9317.0522501.28
    CC-CFRP(N3-W50-S75)-SC10.40824.21849.9236.6337.771.4412.9412.875.6621949.5921900.44
    CC-CFRP(N3-W50-S75)-SC2875.6338.9212.8021851.29
    CC-CFRP(N3-W50-S50)-SC10.50900.07935.0540.0041.741.6012.0812.165.3521639.5023133.31
    CC-CFRP(N3-W50-S50)-SC2970.0343.1112.2424627.11
    CC-CFRP(N3-W75-S50)-SC10.60991.581013.5844.0745.051.7212.4912.455.4824302.4124293.83
    CC-CFRP(N3-W75-S50)-SC21035.5846.0312.4124285.25
    CC-CFRP(N3-W50-S30)-SC10.62988.091028.6043.9245.721.7515.6815.326.7428081.9027915.97
    CC-CFRP(N3-W50-S30)-SC21069.1147.5214.9627750.04
    CC-CFRP(N3-W100-S50)-SC10.671132.301164.2750.3251.751.9813.9914.316.3028452.5429344.17
    CC-CFRP(N3-W100-S50)-SC21196.2453.1714.6130235.79
    CC-CFRP(N3-W150-S50)-SC10.751273.821303.7856.6157.952.2213.7213.816.0830020.5530327.93
    CC-CFRP(N3-W150-S50)-SC21333.7459.2813.9030635.30
    CC-CFRP(N3-W30-S30)-SC10.50835.77853.9937.1537.961.4513.0212.505.5119276.9718605.32
    CC-CFRP(N3-W30-S30)-SC2872.2138.7611.9817933.67
    CC-CFRP(N3-W75-S75)-SC10.50871.83876.7438.7538.971.4913.5613.706.0421794.2722218.48
    CC-CFRP(N3-W75-S75)-SC2881.6539.1813.8422642.69
    CC-CFRP(N3-W90-S90)-SC10.50787.42808.8335.0035.951.3712.6712.595.5517377.0517003.90
    CC-CFRP(N3-W90-S90)-SC2830.2436.9012.5116630.75
    CC-CFRP(N1-W100-S50)-SC10.67880.34902.3039.1340.101.5310.429.884.3517467.4715920.07
    CC-CFRP(N1-W100-S50)-SC2924.2641.089.3414372.67
    CC-CFRP(N2-W100-S50)-SC10.67948.76964.8742.1742.881.6411.6511.014.8520375.1417920.45
    CC-CFRP(N2-W100-S50)-SC2980.9843.6010.3715465.76
    CC-CFRP(N1-W150-S50)-SC10.75865.43872.5538.4638.781.4815.1214.596.5324092.0823705.29
    CC-CFRP(N1-W150-S50)-SC2879.6739.1014.0623318.50
    CC-CFRP(N2-W150-S50)-SC10.751037.971059.6746.1347.101.8013.7913.495.9427598.9427131.26
    CC-CFRP(N2-W150-S50)-SC21081.3748.0613.1926663.58
    Notes:kf is the fiber strip restraint rate; Nu is the peak load of each group of specimens; Nu,m is the average peak load of each group of specimens; f 'cc is the peak stress of each group of specimens; f 'cc,m is the average peak stress of each group of specimens; f 'co is the peak stress corresponding to the S group of specimens; f 'co,m is the average peak stress corresponding to the S group of specimens; εcc is the strain corresponding to f 'cc of each group of specimens; εcc,m is the average strain corresponding to f 'cc of each group of specimens; εco is the strain corresponding to f 'co of S group of specimens; εco,m is the average strain corresponding to f 'co of S group specimens; EP is the energy dissipation capacity; EP,m is the average energy dissipation capacity.
    下载: 导出CSV
  • [1] 张鑫, 李安起, 赵考重. 建筑结构鉴定与加固改造技术的进展[J]. 工程力学, 2011, 28(1):1-11+25.

    ZHANG X, LI A Q, ZHAO K Z. Advances in assessment and retrofitting of building structures[J]. Engineering Mechanics,2011,28(1):1-11+25(in Chinese).
    [2] 龚建伍. 建筑物变形监测及安全评价方法研究[D]. 武汉大学, 2004.

    GONG J W. Study on building deformation monitoring and safety evaluation method [D]. Wuhan University, 2004(in Chinese).
    [3] 牛建刚, 刘威亨. 酸雨侵蚀混凝土研究进展[J]. 灾害学, 2020, 35(4):147-150+168. doi: 10.3969/j.issn.1000-811X.2020.04.027

    NIU J G, LIU W H. Research progress on acid rain erosion of concrete[J]. Journal of catastrophology,2020,35(4):147-150+168(in Chinese). doi: 10.3969/j.issn.1000-811X.2020.04.027
    [4] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE L P, FENG P. Application and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [5] 薛伟辰, 李杰. 碳纤维材料在加固工程中的应用研究[J]. 四川建筑科学研究, 2001(4):28-30. doi: 10.3969/j.issn.1008-1933.2001.04.009

    XUE W C, LI J. Studies on applications of CFRP in strengthening structures[J]. Sichuan Building science,2001(4):28-30(in Chinese). doi: 10.3969/j.issn.1008-1933.2001.04.009
    [6] 李趁趁, 于爱民, 高丹盈, 张普. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.

    LI C C, YU A M, GAO D Y, ZHANG P. Experimental study on axial compression of corroded reinforced concrete columns strengthened with FRP strips under erosion environment[J]. Acta Materiae compositae sinica,2020,37(8):2015-2028(in Chinese).
    [7] TENG J G, Lam L. Behavior and Modeling of Fiber Reinforced Polymer-Confined Concrete[J]. Journal of Structural Engineering,2004,130(11):1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)
    [8] 刘涛. 碳纤维(CFRP)布加固混凝土矩形柱的性能研究[D]. 上海大学, 2006.

    LIU T. Research on the behavior of rectangular concrete columns strengthened with CFRP sheets [D]. Shanghai University, 2006(in Chinese).
    [9] 岳清瑞, 杨勇新. 纤维增强复合材料加固结构耐久性研究综述[J]. 建筑结构学报, 2009, 30(6):8-15.

    YUE Q R, YANG Y X. Introduction to durability of concrete strengthened with fiber reinforced polymers[J]. Journal of Building Structures,2009,30(6):8-15(in Chinese).
    [10] KAFODYA I, XIAN G, HUI L. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties[J]. Composites Part B Engineering,2015,70(mar.):138-148.
    [11] 张磊. 带角部增强的CFRP约束混凝土方柱抗压性能试验研究[D]. 湖南大学, 2015.

    ZHANG L. Compressive performance study of square concrete columns confined by CFRP with corner reinforced [D]. Hunan University, 2015(in Chinese).
    [12] 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2021, 0(0):1-10.

    YANG J L, WANG J Z, LU S W, ZHANG L H, WANG Z R. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae compositae sinica,2021,0(0):1-10(in Chinese).
    [13] 胡忠君, 宋雪娇. CFRP布条带约束混凝土圆柱承载力计算方法研究[J]. 混凝土, 2016(11):46-48. doi: 10.3969/j.issn.1002-3550.2016.11.013

    HU Z J, SONG X J. Study on the calculation method of circle concrete column wrapped with CFRP cloth straps[J]. Concrete,2016(11):46-48(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.013
    [14] HAN F Y, CHEN H S, LI X Y, et al. Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement.[J]. Journal of Composite Materials,2016,50(14):1937-1950. doi: 10.1177/0021998315597743
    [15] LI H, CHEN H S, LI X Y, et al. Design and construction application of concrete canvas for slope protection [J]. Powder Technology, 2019.
    [16] 胡伟勋. 工业SO2环境混凝土帆布力学性能及耐久性能试验研究[D]. 内蒙古科技大学, 2016.

    Hu W X. Experimental study on mechanical properties and durability of concrete canvas in the environment with industrial sulfur dioxide [D]. Inner Mongolia University of science and technology, 2016(in Chinese).
    [17] 曹鹏. 混凝土帆布的力学性能及其复合管研究[D]. 苏州科技大学, 2016.

    CAO P. Study on mechanical properties and composite tube of concrete canvas [D]. Suzhou University of science and technology, 2016(in Chinese).
    [18] 张方圆. 混凝土帆布配合比优化、FRP增强及抗侵彻性能研究[D]. 东南大学, 2016.

    ZHANG F Y. Mixture proportion optimization, FRP reinforcement and ballistic performance of concrete canvas [D]. Southeast University, 2016(in Chinese).
    [19] NIU J G, XU W M, LI J J et al. Influence of cross-sectional shape on the mechanical properties of concrete canvas and CFRP-reinforced columns.[J]. Advance in Materials Science and Engineering,2021,2021(30):1-14.
    [20] 相泽辉, 牛建刚, 王梦雨, 栾瑞林. 混凝土帆布和碳纤维布联合约束圆形截面混凝土短柱轴压性能研究[J]. 建筑结构学报, 2020, 41(S1):154-161.

    XIANG Z H, NIU J G, WANG M Y, LUAN R L. Experience study on axial behavior of RC circular columns confined with CC and CFRP[J]. Journal of Building Structures,2020,41(S1):154-161(in Chinese).
    [21] 牛建刚, 栾瑞林, 刘晓. 混凝土帆布与CFRP加固钢筋混凝土方柱受力性能试验研究[J]. 建筑结构学报, 2018, 39(S2):169-175.

    NIU J G, LUAN R L, LIU X. Experimental study on mechanical properties of reinforced concrete square columns strengthened with CFRP[J]. Journal of Building Structures,2018,39(S2):169-175(in Chinese).
    [22] ACI 440. 2R-08, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, Michigan: American Concrete Institute, 2008.
    [23] 建筑砂浆基本性能试验方法标准: JGJ/T 70-2009 [S]. 北京: 中国建筑工业出版社, 2009.

    Standard for test method of performance on building mortar: JGJ/T 70-2009 [S]. Beijing: China Architecture & Building Press, 2009( in Chinese).
    [24] ZHANG F Y, CHEN H S, LI X Y, et al. Experimental study of the mechanical behavior of FRP-reinforced concrete canvas panels[J]. Composite Structures,2017,176(sep.):608-616.
    [25] 混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Standard for test method of concrete structures: GB/T 50152—2012 [S]. Beijing: China Architecture & Building Press, 2012( in Chinese).
    [26] NISTICO N, PALLINI F, ROUSAKIS T, et al. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections[J]. Composites Part B,2014,67(dec.):543-554.
    [27] 彭亚萍, 刘增夕, 马明. 条带式FRP约束混凝土方柱的轴 压承载力分析[J]. 武汉理工大学学报, 2010, 32(3):24-28.

    PENG Y P, LIU Z X, MA M. Analysis of axial compressive bearing capacity of square concrete column confined with striped FRP[J]. Journal of Wuhan University of technology,2010,32(3):24-28(in Chinese).
    [28] TRIANTAFILLOU T, MATTHYS S, AUDENAERT K, et al. Externally bonded FRP reinforcement for RC structures[M]. International Federation for Structural Concrete (fib), 2001.
    [29] 卢亦焱, 史健勇, 赵国藩. 碳纤维布约束轴心受压混凝土方形柱承载力计算研究[J]. 工程力学, 2004(4):22-27. doi: 10.3969/j.issn.1000-4750.2004.04.005

    LU Y Y, SHI J Y, ZHAO G F. Experimental research on concrete columns strengthened with the combination of CFRP and angle steel[J]. Engineering Mechanics,2004(4):22-27(in Chinese). doi: 10.3969/j.issn.1000-4750.2004.04.005
    [30] 李伟政. 二轴拉压应力全组合下混凝土强度及变形试验研究[D]. 清华大学, 1989.

    LI W Z. Experimental research on concrete strength and deformation under full combination of biaxial tension and compression stress [D]. Tsinghua University, 1989(in Chinese).
    [31] TENG J G, HU Y M, YU T. Stress-strain model for concrete in FRP-confined steel tubular columns[J]. Engineering Structure,2013,49(2):156-167.
    [32] HUANG L, GAO C, YAN L, et al. Reliability assessment of confinement models of carbon fiber reinforced polymer-confined concrete[J]. Journal of Reinforced Plastics & Composites,2016,35(12):996-1026.
    [33] TOUTANJI H A. Stress-Strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets[J]. ACI structural Journal,1999,96(3):397-404.
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 录用日期:  2021-11-06
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-26

目录

    /

    返回文章
    返回