留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面改性重组竹筋与竹炭砂浆界面粘结性能

郑皓月 刘问

郑皓月, 刘问. 表面改性重组竹筋与竹炭砂浆界面粘结性能[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 郑皓月, 刘问. 表面改性重组竹筋与竹炭砂浆界面粘结性能[J]. 复合材料学报, 2023, 41(0): 1-12
Haoyue ZHENG, Wen LIU. Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar[J]. Acta Materiae Compositae Sinica.
Citation: Haoyue ZHENG, Wen LIU. Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar[J]. Acta Materiae Compositae Sinica.

表面改性重组竹筋与竹炭砂浆界面粘结性能

基金项目: 中央高校基本科研业务费专项资金资助 (2021ZY53)
详细信息
    通讯作者:

    刘问,博士,副教授,硕士生导师,研究方向为竹木结构、低碳混凝土 E-mail: liuwen@bjfu.edu.cn

  • 中图分类号: TB332

Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar

Funds: The Fundamental Research Funds for the Central Universities (2021ZY53)
  • 摘要: 我国竹资源丰富,竹材作为天然的绿色建材,被誉为“植物钢筋”,原竹竹筋增强混凝土结构已有百余年的研究应用历史。重组竹是基于原竹的竹纤维增强复合材料,与原竹相比具有结构致密均匀、性能稳定、耐久性强等优点,将其改性处理后用于增强水泥基材料预期可改善原竹竹筋节点复杂、吸水易膨胀、表面锚固能力弱等问题;对于钢筋而言,重组竹的强重比低、生产耗能低,是可再生的绿色材料,具有良好的减排作用。此外,竹炭砂浆由竹炭替代部分水泥作为胶凝材料应用于砂浆中制备而成,相较于普通砂浆,其在保证力学性能的前提下可以减少水泥用量,降低碳排放,且在物理力学性能和耐久性等方面有诸多优势。考虑将重组竹和竹炭砂浆组合使用,既保证了结构的力学性能,又降低了钢筋混凝土结构的碳排放,解决了原竹竹筋混凝土结构不稳定、承载能力较差等问题。将重组竹筋作为增强筋应用于实际工程中,其与水泥基材料良好的界面粘结性能是基础。本文旨在研究表面改性的重组竹筋与竹炭砂浆的界面粘结性能,重点探究竹筋表面改性方法、等效直径、砂浆抗压强度、粘结长度等因素对界面粘结性能的影响。结果表明:在不同初始条件下,试件存在三种破坏形态,分别为砂浆劈裂破坏、竹筋拉断破坏、竹筋拔出破坏,其中砂浆劈裂破坏最为常见,破坏过程分为微滑移段、滑移段、下降段和残余段。对竹筋表面改性处理能显著提高界面粘结性能,粘结性能随竹筋粘结长度和等效直径的增大而降低,而砂浆强度对粘结性能的影响效果不显著。根据试验得到的粘结-滑移曲线,得到了表面经粘砂处理的重组竹筋-竹炭砂浆界面粘结-滑移本构模型,可准确预测重组竹筋与砂浆间的粘结行为。

     

  • 图  1  重组竹抗拉试样(单位:mm)

    Figure  1.  Bamboo scrimber tensile specimen (Unit:mm)

    图  2  竹筋不同改性方法

    Figure  2.  Different surface modification methods of bamboo scrimber bar

    图  3  拉拔试件示意图(单位:mm)

    Figure  3.  Sketch of pullout sample (Unit:mm)

    图  4  加载装置

    Figure  4.  Loading installation

    图  5  重组竹筋-竹炭砂浆拉拔试件三种破坏形态

    Figure  5.  Three types failure modes of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    图  6  不同初始条件下重组竹筋-竹炭砂浆试件的平均粘结强度

    Figure  6.  Average bond strength of bamboo scrimber bar-bamboo biochar mortar specimens under different initial conditions

    图  7  重组竹筋-竹炭砂浆拉拔试件粘结-滑移曲线

    Figure  7.  Bond-slip curves of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    图  8  重组竹筋-竹炭砂浆拉拔试件粘结-滑移曲线简化模型

    Figure  8.  Bond-slip curve simplified model of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    图  9  重组竹筋-竹炭砂浆试件应变和应力分布规律

    Figure  9.  Strain and bonding strss distribution of bamboo scrimber bar-bamboo biochar mortar specimen

    图  10  重组竹筋-竹炭砂浆本构模型验证

    Figure  10.  Constitutive model verification of bamboo scrimber-bamboo biochar mortar

    表  1  竹炭砂浆配合比

    Table  1.   Mix proportion of bamboo biochar mortar

    Water cement ratioCement/(kg·m−3)Bamboo
    biochar/(kg·m−3)
    Water/(kg·m−3)Sand/(kg·m−3)fcu/MPa
    0.45549.455.55250150050
    0.5564.305.70285150045
    0.58500.945.06300150040
    下载: 导出CSV

    表  2  拉拔试件明细

    Table  2.   Details of pull-out specimens

    Specimen
    number
    fcu/MPaL/mma/mmb/mmd/mmSurface treatment methodFailure patternAverage value of bond strength/MPa
    A-0.5-50-3604550201824.19Stick sandP7.67
    A-0.5-70-3604570201824.19Stick sandP、S6.02
    A-0.5-100-36045100201824.19Stick sandS4.36
    A-0.5-140-36045140201824.19Stick sandS3.47
    A-0.5-180-36045180201824.19Stick sandS2.80
    A-0.58-100-36040100201824.19Stick sandS4.24
    A-0.45-100-36050100201824.19Stick sandS4.31
    A-0.5-100-21645100181219.10Stick sandF4.21
    A-0.5-100-27045100181521.01Stick sandF4.73
    A-0.5-100-50045100202528.65Stick sandS3.82
    B-0.5-100-360(20)45100201824.19NickP1.73
    B-0.5-100-360(40)45100201824.19NickF2.53
    B-0.5-100-360(60)45100201824.19NickF3.51
    C-0.5-100-360(1)45100201824.19Coat epoxy mortarS3.84
    C-0.5-100-360(2)45100201824.19Coat epoxy mortarS4.66
    O-0.5-100-36045100201824.19UntreatedP0.13
    O-0.5-180-36045180201824.19UntreatedP0.15
    Notes: A, B, C, O represent the method of sticking sand, nicking, coating epoxy mortar and untreated bamboo scrimber surface modification methods; fcu is the mortar pressure resistance intensity; L is the bonding length; a is the original thickness of bamboo scrimber bar; b is the original width of bamboo scrimber bar; d is the equivalent diameter of bamboo scrimber bar; "S" represents the spliting failure; "P" represents the pulling-out failure; "F" represents the tensile failure.
    下载: 导出CSV

    表  3  竹筋膨胀率

    Table  3.   Expansion rate of bamboo scrimber bar

    Specimen numbera/mma1/mmWa/%b/mmb1/mmWb/%
    A-0.5-50-36020.0120.331.6018.0218.321.66
    A-0.5-100-36020.0320.321.4518.0618.331.50
    A-0.5-180-36019.9620.140.9018.1018.250.83
    A-0.58-100-36020.0020.361.8018.0318.452.33
    A-0.45-100-36020.0620.210.7518.0318.231.11
    A-0.5-100-50020.0520.351.5024.9825.421.76
    B-0.5-100-360(20)20.0320.934.4917.9718.784.51
    C-0.5-100-360(1)19.9920.170.9018.0018.221.22
    O-0.5-100-36020.0020.764.3018.0118.723.94
    Notes: a is the original thickness of bamboo scrimber bar; a1 is the thickness of bamboo scrimber bar after 28 days of maintenance; Wa is the expansion rate of the thickness direction of the bamboo scrimber bar; b is the original width of bamboo scrimber bar; b1 is the width of bamboo scrimber bar after 28 days of maintenance; Wb is the expansion rate of the width direction of the bamboo scrimber bar.
    下载: 导出CSV

    表  4  重组竹筋-竹炭砂浆试件粘结-滑移曲线拟合结果

    Table  4.   Bond-slip curves fitting results of bamboo scrimber bar-bamboo biochar mortar specimens

    Specimen numberRising stageDescending stage
    αR2nR2
    A-0.5-70-3600.3660.8802.2060.991
    A-0.5-100-3600.3320.9541.9690.994
    A-0.5-140-3600.3970.9312.0910.976
    A-0.5-180-3600.2390.9601.9990.975
    A-0.58-100-3600.4280.9761.9370.988
    A-0.45-100-3600.4320.9821.7440.958
    A-0.5-100-5000.4990.9472.3300.941
    下载: 导出CSV
  • [1] 李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6):1-10.

    LI Haitao, XUAN Yiwei, XU Bin, et al. Bamboo application in civil engineering field[J]. Journal of Forestry Engineering,2020,5(6):1-10(in Chinese).
    [2] LIU K, JAYARAMAN D, SHI Y, et al. "Bamboo: A Very Sustainable Construction Material" - 2021 International Online Seminar summary report[J]. Sustainable Structures,2022,2(1):000015.
    [3] CHOW H K. Bamboo as material for reinforced concrete[D]. America: Massachusetts Institute of Technology, 1914.
    [4] 肖岩, 李佳. 现代竹结构的研究现状和展望[J]. 工业建筑, 2015, 45(4):1-6.

    XIAO Yan, LI Jia. The state of the art of modern bamboo structures[J]. Industrial Construction,2015,45(4):1-6(in Chinese).
    [5] MIMENDI L, Lorenzo R, Li H. An innovative digital workflow to design, build and manage bamboo structures[J]. Sustainable Structures,2022,2(1):000011.
    [6] 邹立华, 钟坤禄, 谢吉鸿, 等. 改性竹筋混凝土受弯构件力学性能试验研究[J]. 土木建筑与环境工程, 2015, 37(5):33-40.

    ZOU Lihua, ZHONG Kunlu, XIE Jihong, et al. Experimental analysis of mechanical property of processed bamboo reinforced concrete flexural member[J]. Journal of Civil and Environmental Engineering,2015,37(5):33-40(in Chinese).
    [7] LI Y, SHAN W, SHEN H, et al. Bending resistance of I-section bamboo-steel composite beams utilizing adhesive bonding[J]. Thin-Walled Structures,2015,89:17-24. doi: 10.1016/j.tws.2014.12.007
    [8] BHONDE D, NAGARNAIK P B. Experimental investigation of bamboo reinforced concrete slab[J]. American Journal of Engineering Research,2014,3(1):128-131.
    [9] AZARGOHAR R, NANDA S, KOZINSKI J A, et al. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel,2014,125:90-100. doi: 10.1016/j.fuel.2014.01.083
    [10] 刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(5):2299-2307.

    LIU Mingxi, LIU Chengyang, LIU Wen, et al. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica,2022,39(5):2299-2307(in Chinese).
    [11] HUANG D S, ZHOU A P, BIAN Y L. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams[J]. Constructionand Building Materials,2013,44:585-592. doi: 10.1016/j.conbuildmat.2013.03.050
    [12] HUANG D S, BIAN Y L, ZHOU A P, et al. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys[J]. Construction and Building Materials,2015,77:130-138. doi: 10.1016/j.conbuildmat.2014.12.012
    [13] 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6):1466-1475.

    XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber's transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica,2020,37(6):1466-1475(in Chinese).
    [14] LIU W, LI K, XU S. Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability[J]. Construction and Building Materials,2022,327:126917. doi: 10.1016/j.conbuildmat.2022.126917
    [15] CARMI I, KRONFELD J, MOINESTER M. Sequestration of atmospheric carbon dioxide as inorganic carbon in the unsaturated zone under semi-arid forests[J]. CATENA,2019,173:93-98. doi: 10.1016/j.catena.2018.09.042
    [16] RESTUCCIA L, FERRO G A. Promising low cost carbon-based materials to improve strength and toughness in cement composites[J]. Construction and Building Materials,2016,126:1034-1043. doi: 10.1016/j.conbuildmat.2016.09.101
    [17] 中国国家标准化管理委员会. 木材顺纹抗拉强度试验方法: GB/T 1938-2009[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Method of testing in tensile strength parallel to grain of wood: GB/T 7314—1987[S]. Beijing: China Standards Press, 2005 (in Chinese).
    [18] 中华人民共和国住房与城乡建设部. 砌筑砂浆配合比设计规程: JGJ/T 98—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of housing and urban-rural development of the People's Republic of China. Specification for mix proportion design of masonry mortar: GB50010-2010[S]. Beijing: China Architecture Industry Press, 2011(in Chinese).
    [19] HARMON T G, Kim Y J, Kardos J, et al. Bond of surface-mounted fiber-reinforced polymer reinforcement for concrete structures[J]. ACI Structural Journal,2003,100(5):557-564.
    [20] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [21] 周健. 竹筋陶粒混凝土粘结滑移性能研究[D]. 济南: 山东大学, 2015.

    Zhou Jian. The experimental investigation and theoretical analysis of bond properties of ceramic reconstituted bamboo-rainforced concrete[D]. Jinan: Shandong Univercity, 2015(in Chinese).
    [22] 中国建筑科学研究院. 混凝土结构试验方法标准, GB50152-2012[S]. 北京: 中国建筑工业出版社, 2012.

    China Academy of Building Research. Standard for test method of concrete structure, GB50152-2012[S]. Beijing: China Architecture Industry Press, 2012(in Chinese).
    [23] 中华人民共和国住房与城乡建设部. 混凝土结构设计规范, GB50010-2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of housing and urban-rural development of the People's Republic of China. Code for design of concrete structures, GB50010-2010[S]. Beijing: China Architecture Industry Press, 2010(in Chinese).
    [24] 许昆. 圆竹-轻质砂浆组合墙体力学性能的试验研究[D]. 西安: 西安建筑科技大学, 2014.

    Xu Kun. Experimental Study on Mechanical Properties of Composite Wall Consisted of the Bamboo and Lightweight Material[D]. Xian: Xian University of Architecture and Technology, 2014(in Chinese).
    [25] GHAVAMI K. Bamboo as reinforcement in structural concrete elements[J]. Cement and Concrete Composites,2005,27(6):637-649. doi: 10.1016/j.cemconcomp.2004.06.002
    [26] DAI J G, UEDA T, SATO Y. Local bond stress slip relations for FRP sheets-concrete interfaces[J]. Fiber-Reinforced Polymer Reinforcement for Concrete Structures,2003:143-152.
    [27] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: experimental results and analytical model[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983.
    [28] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [29] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-43. doi: 10.3321/j.issn:1000-8993.2003.07.011

    Gao Danying, Zhu Haitang, Xie Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction,2003,33(7):41-43(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.07.011
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回