留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面改性重组竹筋与竹炭砂浆界面粘结性能

郑皓月 刘问

郑皓月, 刘问. 表面改性重组竹筋与竹炭砂浆界面粘结性能[J]. 复合材料学报, 2023, 40(10): 5848-5858. doi: 10.13801/j.cnki.fhclxb.20230203.001
引用本文: 郑皓月, 刘问. 表面改性重组竹筋与竹炭砂浆界面粘结性能[J]. 复合材料学报, 2023, 40(10): 5848-5858. doi: 10.13801/j.cnki.fhclxb.20230203.001
ZHENG Haoyue, LIU Wen. Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5848-5858. doi: 10.13801/j.cnki.fhclxb.20230203.001
Citation: ZHENG Haoyue, LIU Wen. Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5848-5858. doi: 10.13801/j.cnki.fhclxb.20230203.001

表面改性重组竹筋与竹炭砂浆界面粘结性能

doi: 10.13801/j.cnki.fhclxb.20230203.001
基金项目: 中央高校基本科研业务费专项资金资助(2021ZY53)
详细信息
    通讯作者:

    刘问,博士,副教授,硕士生导师,研究方向为竹木结构、低碳混凝土 E-mail: liuwen@bjfu.edu.cn

  • 中图分类号: TB332

Bond performance between surface modified bamboo scrimber bar and bamboo biochar mortar

Funds: Fundamental Research Funds for the Central Universities (2021ZY53)
  • 摘要: 为研究重组竹筋与竹炭砂浆的界面粘结性能,对共85个重组竹筋-竹炭砂浆试件进行中心拉拔试验,考虑了竹筋表面改性方法、等效直径、砂浆抗压强度、粘结长度等因素对界面粘结性能的影响。观察试件的粘结破坏形态,获取了各试件的粘结-滑移曲线、粘结强度和滑移量,分析了破坏机制,提出了界面粘结-滑移本构模型,得到了重组竹筋表面有效改性方法。结果表明:在不同初始条件下,拉拔试件存在3种破坏形态,分别为砂浆劈裂破坏、竹筋拉断破坏、竹筋拔出破坏,其中砂浆劈裂破坏最常见,破坏过程分为微滑移段、滑移段、下降段和残余段。竹筋表面经改性处理,其与砂浆界面粘结强度可提高13~46倍,界面粘结性能随竹筋粘结长度和等效直径的增大而降低,而砂浆强度对粘结性能的影响效果不显著。推荐使用粘砂和涂刷环氧砂浆两种方式对竹筋改性,在保证粘结性能的基础上,可改善养护过程中竹筋吸水膨胀导致与砂浆剥离,结构提前失效等问题。根据试验粘结-滑移曲线,得到经粘砂改性的重组竹筋-竹炭砂浆界面粘结-滑移本构模型,可准确预测重组竹筋与砂浆的界面粘结行为。经验证,该模型同样适用于试验中发生界面破坏的其他竹筋改性方法。

     

  • 图  1  重组竹抗拉试样

    Figure  1.  Bamboo scrimber tensile specimen

    R—Arc radius from the end of the collet to the beginning of the effective stretching area

    图  2  竹筋的不同表面改性方法

    Figure  2.  Different surface modification methods of bamboo scrimber bar

    图  3  拉拔试件示意图

    Figure  3.  Sketch of pullout sample

    L—Bonding length; a—Original thickness of bamboo scrimber bar; b—Original width of bamboo scrimber bar; bc—Diameter of bamboo biochar mortar

    图  4  加载装置

    Figure  4.  Loading installation

    图  5  重组竹筋-竹炭砂浆拉拔试件3种破坏形态

    Figure  5.  Three types failure modes of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    图  6  不同初始条件下重组竹筋-竹炭砂浆试件的平均粘结强度

    Figure  6.  Average bond strength of bamboo scrimber bar-bamboo biochar mortar specimens under different initial conditions

    图  7  重组竹筋-竹炭砂浆拉拔试件粘结-滑移曲线

    Figure  7.  Bond-slip curves of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    图  8  重组竹筋-竹炭砂浆拉拔试件粘结-滑移曲线简化模型

    Figure  8.  Bond-slip curve simplified model of bamboo scrimber bar-bamboo biochar mortar pull-out specimens

    τ0—Peak bonding stress; τu—Residual bonding stress; s0—Slip amount corresponding to peak bonding stress; su—Slip amount corresponding to residual bonding stress

    图  9  重组竹筋-竹炭砂浆试件A-0.5-140-360应变和应力分布规律

    Figure  9.  Strain and bonding stress distribution of bamboo scrimber bar-bamboo biochar mortar specimen A-0.5-140-360

    图  10  重组竹筋-竹炭砂浆本构模型验证

    Figure  10.  Constitutive model verification of bamboo scrimber-bamboo biochar mortar

    表  1  竹炭砂浆配合比

    Table  1.   Mix proportion of bamboo biochar mortar

    Water cement ratioCement/(kg·m−3)Bamboo biochar/(kg·m−3)Water/(kg·m−3)Sand/(kg·m−3)fcu/MPa
    0.45549.455.55250150050
    0.5564.305.70285150045
    0.58500.945.06300150040
    Note: fcu—Mortar pressure resistance intensity.
    下载: 导出CSV

    表  2  拉拔试件明细

    Table  2.   Details of pull-out specimens

    Specimen
    number
    fcu/MPaL/mma/mmb/mmd/mmSurface treatment methodFailure patternAverage value of bond strength/
    MPa
    A-0.5-50-3604550201824.19Stick sandP7.672
    A-0.5-70-3604570201824.19Stick sandP, S6.024
    A-0.5-100-36045100201824.19Stick sandS4.359
    A-0.5-140-36045140201824.19Stick sandS3.522
    A-0.5-180-36045180201824.19Stick sandS3.438
    A-0.58-100-36040100201824.19Stick sandS4.238
    A-0.45-100-36050100201824.19Stick sandS4.309
    A-0.5-100-21645100181219.10Stick sandF4.211
    A-0.5-100-27045100181521.01Stick sandF4.727
    A-0.5-100-50045100202528.65Stick sandS3.819
    B-0.5-100-360(20)45100201824.19NickP1.728
    B-0.5-100-360(40)45100201824.19NickF2.534
    B-0.5-100-360(60)45100201824.19NickF3.511
    C-0.5-100-360(1)45100201824.19Coat epoxy mortarS3.844
    C-0.5-100-360(2)45100201824.19Coat epoxy mortarS4.655
    O-0.5-100-36045100201824.19UntreatedP0.133
    O-0.5-180-36045180201824.19UntreatedP0.150
    Notes: A, B, C, O—Method of sticking sand, nicking, coating epoxy mortar and untreated bamboo scrimber surface modification methods; d—Equivalent diameter of bamboo scrimber bar; S—Spliting failure; P—Pulling-out failure; F represents the tensile failure.
    下载: 导出CSV

    表  3  竹筋膨胀率

    Table  3.   Expansion rate of bamboo scrimber bar

    Specimen numbera/mma1/mmWa/%b/mmb1/mmWb/%
    A-0.5-50-36020.0120.331.6018.0218.321.66
    A-0.5-100-36020.0320.321.4518.0618.331.50
    A-0.5-180-36019.9620.140.9018.1018.250.83
    A-0.58-100-36020.0020.361.8018.0318.452.33
    A-0.45-100-36020.0620.210.7518.0318.231.11
    A-0.5-100-50020.0520.351.5024.9825.421.76
    B-0.5-100-360(20)20.0320.934.4917.9718.784.51
    C-0.5-100-360(1)19.9920.170.9018.0018.221.22
    O-0.5-100-36020.0020.764.3018.0118.723.94
    Notes: a—Original thickness of bamboo scrimber bar; a1—Thickness of bamboo scrimber bar after 28 days of maintenance; Wa—Expansion rate of the thickness direction of the bamboo scrimber bar; b—Original width of bamboo scrimber bar; b1—Width of bamboo scrimber bar after 28 days of maintenance; Wb—Expansion rate of the width direction of the bamboo scrimber bar.
    下载: 导出CSV

    表  4  重组竹筋-竹炭砂浆试件粘结-滑移曲线拟合结果

    Table  4.   Bond-slip curves fitting results of bamboo scrimber bar-bamboo biochar mortar specimens

    Specimen numberRising stageDescending stage
    αR2nR2
    A-0.5-70-3600.3660.8802.2060.991
    A-0.5-100-3600.3320.9541.9690.994
    A-0.5-140-3600.3970.9312.0910.976
    A-0.5-180-3600.2390.9601.9990.975
    A-0.58-100-3600.4280.9761.9370.988
    A-0.45-100-3600.4320.9821.7440.958
    A-0.5-100-5000.4990.9472.3300.941
    Notes: α—Fitting coefficient of rising stage; R2—Correlation coefficient; n—Fitting coefficient of descending stage.
    下载: 导出CSV
  • [1] 李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6):1-10.

    LI Haitao, XUAN Yiwei, XU Bin, et al. Bamboo application in civil engineering field[J]. Journal of Forestry Engineering,2020,5(6):1-10(in Chinese).
    [2] LIU K, JAYARAMAN D, SHI Y, et al. "Bamboo: A very sustainable construction material"-2021 international online seminar summary report[J]. Sustainable Structures,2022,2(1):000015. doi: 10.54113/j.sust.2022.000015
    [3] CHOW H K. Bamboo as material for reinforced concrete[D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 1914.
    [4] 肖岩, 李佳. 现代竹结构的研究现状和展望[J]. 工业建筑, 2015, 45(4):1-6.

    XIAO Yan, LI Jia. The state of the art of modern bamboo structures[J]. Industrial Construction,2015,45(4):1-6(in Chinese).
    [5] MIMENDI L, LORENZO R, LI H. An innovative digital workflow to design, build and manage bamboo structures[J]. Sustainable Structures,2022,2(1):000011. doi: 10.54113/j.sust.2022.000011
    [6] 邹立华, 钟坤禄, 谢吉鸿, 等. 改性竹筋混凝土受弯构件力学性能试验研究[J]. 土木建筑与环境工程, 2015, 37(5):33-40.

    ZOU Lihua, ZHONG Kunlu, XIE Jihong, et al. Experimental analysis of mechanical property of processed bamboo reinforced concrete flexural member[J]. Journal of Civil, Architectural and Environmental Engineering,2015,37(5):33-40(in Chinese).
    [7] LI Y, SHAN W, SHEN H, et al. Bending resistance of I-section bamboo-steel composite beams utilizing adhesive bonding[J]. Thin-Walled Structures,2015,89:17-24. doi: 10.1016/j.tws.2014.12.007
    [8] BHONDE D, NAGARNAIK P B. Experimental investigation of bamboo reinforced concrete slab[J]. American Journal of Engineering Research,2014,3(1):128-131.
    [9] AZARGOHAR R, NANDA S, KOZINSKI J A, et al. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel,2014,125:90-100. doi: 10.1016/j.fuel.2014.01.083
    [10] 刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(5):2299-2307.

    LIU Mingxi, LIU Chengyang, LIU Wen, et al. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica,2022,39(5):2299-2307(in Chinese).
    [11] HUANG D S, ZHOU A P, BIAN Y L. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams[J]. Construction and Building Materials,2013,44:585-592. doi: 10.1016/j.conbuildmat.2013.03.050
    [12] HUANG D S, BIAN Y L, ZHOU A P, et al. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys[J]. Construction and Building Materials,2015,77:130-138. doi: 10.1016/j.conbuildmat.2014.12.012
    [13] 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6):1466-1475.

    XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber's transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica,2020,37(6):1466-1475(in Chinese).
    [14] LIU W, LI K, XU S. Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability[J]. Construction and Building Materials,2022,327:126917. doi: 10.1016/j.conbuildmat.2022.126917
    [15] CARMI I, KRONFELD J, MOINESTER M. Sequestration of atmospheric carbon dioxide as inorganic carbon in the unsaturated zone under semi-arid forests[J]. CATENA,2019,173:93-98. doi: 10.1016/j.catena.2018.09.042
    [16] RESTUCCIA L, FERRO G A. Promising low cost carbon-based materials to improve strength and toughness in cement composites[J]. Construction and Building Materials,2016,126:1034-1043. doi: 10.1016/j.conbuildmat.2016.09.101
    [17] 中国国家标准化管理委员会. 木材顺纹抗拉强度试验方法: GB/T 1938—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Method of testing in tensile strength parallel to grain of wood: GB/T 1938—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 砌筑砂浆配合比设计规程: JGJ/T 98—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of masonry mortar: JGJ/T 98—2010[S]. Beijing: China Architecture Industry Press, 2010(in Chinese).
    [19] HARMON T G, KIM Y J, KARDOS J, et al. Bond of surface-mounted fiber-reinforced polymer reinforcement for concrete structures[J]. ACI Structural Journal,2003,100(5):557-564.
    [20] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [21] 周健. 竹筋陶粒混凝土粘结滑移性能研究[D]. 济南: 山东大学, 2015.

    ZHOU Jian. The experimental investigation and theoretical analysis of bond properties of ceramic reconstituted bamboo-rainforced concrete[D]. Ji'nan: Shandong Univercity, 2015(in Chinese).
    [22] 中国建筑科学研究院. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    China Academy of Building Research. Standard for test method of concrete structure: GB/T 50152—2012[S]. Beijing: China Architecture Industry Press, 2012(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture Industry Press, 2010(in Chinese).
    [24] 许昆. 圆竹-轻质砂浆组合墙体力学性能的试验研究[D]. 西安: 西安建筑科技大学, 2014.

    XU Kun. Experimental study on mechanical properties of composite wall consisted of the bamboo and lightweight material[D]. Xi'an: Xi'an University of Architecture and Technology, 2014(in Chinese).
    [25] GHAVAMI K. Bamboo as reinforcement in structural concrete elements[J]. Cement and Concrete Composites,2005,27(6):637-649. doi: 10.1016/j.cemconcomp.2004.06.002
    [26] DAI J G, UEDA T, SATO Y. Local bond stress slip relations for FRP sheets-concrete interfaces[C]. Singapore: World Scientific Publishing CO. Pte. LTD., 2003: 143-152.
    [27] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: Experimental results and analytical model[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983.
    [28] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [29] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-43. doi: 10.3321/j.issn:1000-8993.2003.07.011

    GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction,2003,33(7):41-43(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.07.011
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  180
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回