Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes
-
摘要:
三维编织复合材料因具有优异的力学性能,广泛应用于航空航天、汽车等众多高技术领域,三维圆形编织复合材料薄壁管常用在飞机、汽车等承力结构件中,在复合材料部件服役生命周期中,不可避免面临苛刻的温度环境,进而影响其耐用性和使用安全性,由此研究高低温度和编织角对三维编织复合材料薄壁管准静态压缩力学行为的耦合影响有重要理论和实践意义。本文通过三维四步法编织技术编织15°、25°、35°三种编织角度的管状玻璃纤维预成型体,以环氧树脂作为基体,利用树脂传递模塑工艺(RTM)制备三维编织玻璃纤维/环氧树脂复合材料薄壁管,对其分别进行低温(-100℃、-50℃)、室温(20℃)和高温(80℃、110℃、140℃和170℃)下的轴向准静态压缩性能测试。研究发现三维编织玻璃纤维/环氧树脂复合材料薄壁管准静态压缩性能具有显著温度效应,温度越高,增强体与基体的结合越弱,材料的压缩强度、压缩模量与比吸收能越低。随着温度的升高,三维编织玻璃纤维/环氧树脂复合材料薄壁管的破坏模式发生从局部剪切失效到纤维束-基体界面大面积脱粘的转变。-100℃至80℃环境温度下,编织角对三维编织玻璃纤维/环氧树脂复合材料薄壁管压缩性能影响较为显著,小编织角试样沿纱线方向的取向更高,能承受更大的轴向载荷,因此抗压缩性能更好。 不同温度下25°编织角压缩失效试样三维重构图像:(a) -50℃;(b) 20℃;(c) 170℃3-D reconstruction images of compression failure samples with 25°braiding angle at different temperatures: (a) - 50 ℃; (b) 20℃; (c) 170℃ Abstract: Three-dimensional(3-D) braided glass fiber/epoxy resin composite thin-walled tubes with three braiding angles of 15°, 25°, and 35° were prepared by 3-D braiding molding technology and resin transfer molding process (RTM). The quasi-static compression performance test of 3-D braided composite thin-walled tubes was carried out at low temperature(−100℃, −50℃), normal temperature(20℃) and high temperature field (80°C, 110°C, 140°C and 170°C). The effects of temperature and braiding angle on compression properties and compression failure pattern of 3-D braided composite thin-walled tubes were studied based on X-ray micro-computer tomography (Micro-CT). The results show that the quasi-static compression behavior of 3-D braided composite thin-walled tubes has a significant temperature effect. As the temperature increases, the failure mode of the braided composite thin-walled tubes changes from local shear failure to large-area debonding of the fiber tows-matrix interface. The braiding angle has different effects on the compressive strength, compressive modulus and specific energy absorption of 3-D braided composite thin-walled tubes. The braided composite thin-walled tubes with small braiding angle have a higher orientation along the braided yarn direction which can withstand greater axial compounding, so the compression performance is better. -
图 9 不同温度下三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩应力-应变曲线:(a) −100℃;(b) −50℃;(c) 20℃;(d) 80℃;(e) 110℃;(f) 140℃;(g) 170℃
Figure 9. Axial compressive stress-strain curves of 3-D braided glass fiber/epoxy resin composite thin-walled tubes at different temperatures: (a) −100℃; (b) −50℃; (c) 20℃; (d) 80℃; (e) 110℃; (f) 140℃; (g) 170℃
图 15 不同温度下不同编织角度三维编织玻璃纤维/环氧树脂复合材料薄壁管破坏形态对比图:(a) −100℃;(b) −50℃;(c) 20℃;(d) 80℃;(e) 110℃;(f) 140℃;(g) 170℃
Figure 15. Comparison of specimen failure patterns of 3-D braided glass fiber/epoxy resin composite thin-walled tubes with different braiding angles at different temperatures: (a) −100℃; (b) −50℃; (c) 20℃; (d) 80℃; (e) 110℃; (f) 140℃; (g) 170℃
表 1 玻璃纤维性能参数
Table 1. Properties of glass fiber
Parameter σ/MPa E/GPa ρ/(g·cm−3) d/μm Value 2450 81.95 2.64 17 Notes: σ—Tensile strength;E—Tensile modulus;ρ—Density;d—Fiber diameter. 表 2 JC-02 A环氧树脂性能参数
Table 2. Properties of JC-02 A epoxy resin
Parameter Viscosity/(MPa·s) Epoxy value/(eq/100 g) Density/(g·cm−3) Value 1000-3000 0.50-0.53 1.12-1.14 表 3 三维编织复合材料薄壁管试样规格
Table 3. Sample specification of 3-D braided composite thin-walled tubes
Braiding
angle/(°)Outside
diameter/mmWall
thickness/mmFiber volume fraction/% 15 25.84 2.36 51.03 25 25.83 2.37 53.79 35 25.88 2.38 56.86 -
[1] ZHANG J, KONG X, CHENG S, et al. A coupled multi-scale method for predicting the viscoelastic behavior of resin-based 3 D braided composites[J]. Materials & Design,2020,195:109048. [2] ISHIKAWA T, AMAOKA K, MASUBUCHI Y, et al. Overview of automotive structural composites technology developments in Japan[J]. Composites Science and Technology,2018,155:221-246. doi: 10.1016/j.compscitech.2017.09.015 [3] ZHANG C, CURIEL-SOSA J, BUI T. Meso-scale progressive damage modeling and life prediction of 3 D braided composites under fatigue tension loading[J]. Composite Structures,2018,201:62-71. doi: 10.1016/j.compstruct.2018.06.021 [4] 沈怀荣, 郑文龙. 三维编织圆管力学性能及火箭级间段模拟结构承载能力研究[J]. 国防科技大学学报, 1999(1):8-12.SHEN Huairong, ZHENG Wenlong. Research on mechanical properties of 3 d braided round tube and loading capacity of simulated structure of rocket interstage[J]. Journal of National University of Defense Technology,1999(1):8-12(in Chinese). [5] ZENG T, FANG D, LU T. Dynamic crashing and impact energy absorption of 3 D braided composite tubes[J]. Materials Letters,2005,59(12):1491-1496. doi: 10.1016/j.matlet.2005.01.007 [6] 李典森, 刘子仙, 卢子兴, 等. 三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制[J]. 复合材料学报, 2008, 25(1):133-139.LI Diansen, LIU Zixian, LU Zixing, et al. Compression properties and failure mechanism of three-dimensional five directional carbon fiber/phenolic woven composite[J]. Acta Materiae Compositae Sinica,2008,25(1):133-139(in Chinese). [7] 李嘉禄, 贺桂芳, 陈光伟. 温度对三维五向编织/环氧树脂复合材料拉伸性能的影响[J]. 复合材料学报, 2010, 27(6):58-63.LI Jialu, HE Guifang, CHEN Guangwei. Effects of temperature on tensile property of three-dimension and five-direction braided/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2010,27(6):58-63(in Chinese). [8] LI D S, FANG D N, ZHANG G B, et al. Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite[J]. Materials & Design,2012,41(16):167-170. [9] ZHANG W, PAN Z X, ROTICH G, et al. Effects of temperature and strain rate on impact compression behaviors of three-dimensional carbon fiber/epoxy braided composites[J]. Journal of Composite Materials,2014,49(7):771-782. [10] 潘忠祥, 孙宝忠. 三维编织玄武岩/环氧树脂复合材料在温度场下的高应变率压缩试验[J]. 复合材料学报, 2015, 32(2):395-402.PAN Zhongxiang, SUN Baozhong. High strain-rate compression tests on 3-D braided basalt/epoxy composites under temperature fields[J]. Acta Materiae Compositae Sinica,2015,32(2):395-402(in Chinese). [11] PAN Z X, GU B H, SUN B Z. Experimental investigation of high-strain rate properties of 3-D braided composite material in cryogenic field[J]. Composites Part B,2015,77:379-390. doi: 10.1016/j.compositesb.2015.03.002 [12] PAN Z X, SUN B Z, GU B H. Thermo-mechanical numerical modeling on impact compressive damage of 3-D braided composite materials under room and low temperatures[J]. Aerospace Science and Technology,2016,54:23-40. doi: 10.1016/j.ast.2016.03.027 [13] WANG H L, SUN B Z, GU B H. Numerical modeling on compressive behaviors of 3-D braided composites under high temperatures at microstructure level[J]. Composite Structures,2017,160:925-938. doi: 10.1016/j.compstruct.2016.10.130 [14] WANG H L, SUN B Z, GU B H. Finite element analyses on longitudinal compressive behaviors of 3 D braided carbon/epoxy composite with different braided angles at low temperatures[J]. Journal of the textile institute,2019,110(1):37-49. doi: 10.1080/00405000.2018.1460038 [15] ZUO H M, LI D S, JIANG L. High Temperature mechanical response and failure analysis of 3 D Five-Directional braided composites with different braiding angles[J]. Materials,2019,12(21):3506. doi: 10.3390/ma12213506 [16] 姜黎黎, 吴日娜, 徐美玲, 等. 三维四向编织碳纤维/环氧树脂复合材料在热环境中的拉压力学性能实验[J]. 复合材料学报, 2020, 37(2):309-317.JIANG Lili, WU Rina, XU Meiling, et al. Experimental investigation on the tensile and compressive properties of 3 D 4-directional braided carbon fiber/epoxy resin composites in thermal environment[J]. Acta Materiae Compositae Sinica,2020,37(2):309-317(in Chinese). [17] GIDEON R K, ZHOU H L, LI Y Y, et al. Quasi-static compression and compression–compression fatigue characteristics of 3 D braided carbon/epoxy tube[J]. Journal of the Textile Institute Proceedings & Abstracts,2016,107(7):938-948. [18] WU X Y, GU B H, SUN B Z. Comparisons of axial compression behaviors between four-directional and five-directional braided composite tubes under high strain rate loading[J]. Journal of Composite Materials,2016:377-389. [19] LIU T, WU X Y, SUN B Z et al. Investigations of defect effect on dynamic compressive failure of 3 D circular braided composite tubes with numerical simulation method[J]. Thin-Walled Structures,2021,160:107381. doi: 10.1016/j.tws.2020.107381 [20] ZHOU H L, LI C, ZHANG L Q, et al. Micro-XCT analysis of damage mechanisms in 3 D circular braided composite tubes under transverse impact[J]. Composites Science and Technology,2018,155:91-99. doi: 10.1016/j.compscitech.2017.11.025 [21] ZHOU H L, HU D M, GU B H, et al. Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers[J]. Composite Structures,2017,168:345-359. doi: 10.1016/j.compstruct.2017.02.025 [22] PAN Z X, WU X Y, WU L W. Temperature rise caused by adiabatic shear failure in 3 D braided composite tube subjected to axial impact compression[J]. Journal of Composite Materials,2019,54(10):1305-1326. [23] 张徐梁, 阳玉球, 阎建华, 等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9):2821-2828.ZHANG Xuliang, YANG Yuqiu, YAN Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy 3 D braided composite thin-walled circular tube[J]. Acta Materiae Compositae Sinica,2021,38(9):2821-2828(in Chinese). [24] WU X Y, ZHANG Q, GU B H, et al. Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3-D braided composite tubes and finite element analysis[J]. International Journal of Damage Mechanics,2017,26(7):1003-1027. doi: 10.1177/1056789516648369 [25] XUN L M, WU Y Y, HUANG S W, et al. Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing[J]. Thin-Walled Structures,2022,170:108555. doi: 10.1016/j.tws.2021.108555 [26] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites-Determination of compressive properties: GB/T 1448—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [27] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting body: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese). -

计量
- 文章访问数: 223
- HTML全文浏览量: 117
- 被引次数: 0