留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应

李紫伦 杨安坤 覃小红 武鲜艳 易洪雷

李紫伦, 杨安坤, 覃小红, 等. 三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应[J]. 复合材料学报, 2023, 40(10): 5588-5600. doi: 10.13801/j.cnki.fhclxb.20230105.002
引用本文: 李紫伦, 杨安坤, 覃小红, 等. 三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应[J]. 复合材料学报, 2023, 40(10): 5588-5600. doi: 10.13801/j.cnki.fhclxb.20230105.002
LI Zilun, YANG Ankun, QIN Xiaohong, et al. Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5588-5600. doi: 10.13801/j.cnki.fhclxb.20230105.002
Citation: LI Zilun, YANG Ankun, QIN Xiaohong, et al. Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5588-5600. doi: 10.13801/j.cnki.fhclxb.20230105.002

三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应

doi: 10.13801/j.cnki.fhclxb.20230105.002
基金项目: 中国博士后科学基金(2022 M712731);国家自然科学基金(51805210);嘉兴市公益性研究计划项目(2022 AY10022);国家级大学生创新创业训练计划项目(202210354022)
详细信息
    通讯作者:

    武鲜艳,博士,副教授,硕士生导师,研究方向为纺织复合材料 E-mail: xywu@zjxu.edu.cn

    易洪雷,博士,教授,硕士生导师,研究方向为新型纺纱技术、产业用纺织品的结构与性能 E-mail: yi-hl@163.com

  • 中图分类号: TB332

Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes

Funds: China Postdoctoral Science Foundation (2022 M712731); National Natural Science Foundation of China (51805210); Jiaxing Public Welfare Research Project (2022 AY10022); National Innovation and Entrepreneurship Training Program for College Students (202210354022)
  • 摘要: 通过三维编织成型技术与树脂传递模塑工艺(RTM)制备了15°、25°、35° 3种编织角三维编织玻璃纤维/环氧树脂复合材料薄壁管,分别在低温(−100℃、−50℃)、室温(20℃)和高温(80℃、110℃、140℃、170℃)环境下对三维编织复合材料薄壁管进行轴向准静态压缩性能测试,基于X射线微计算机显微断层扫描技术(显微CT)研究了温度和编织角对三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能和损伤形态的影响。结果表明:三维编织玻璃纤维/环氧树脂复合材料薄壁管准静态压缩性能具有显著的温度效应。温度越高,增强体与基体的结合越弱,编织复合材料薄壁管的压缩强度、压缩模量与比吸收能越低。随着温度的升高,编织复合材料薄壁管的破坏模式发生从局部剪切失效到纤维束-基体界面大面积脱粘的改变。编织角对三维编织复合材料薄壁管的压缩强度、压缩模量及比能量吸收均有不同程度影响,小编织角编织复合材料薄壁管沿编织纱线方向的取向更高,能承受更大的轴向载荷,因此抗压缩性能更好。

     

  • 图  1  三维编织管状预成型体

    Figure  1.  Photograph of 3-D braided tubular preform

    图  2  树脂传递模塑工艺(RTM)成型装置示意图

    Figure  2.  Schematic diagram of resin transfer molding (RTM) process

    图  3  环氧树脂动态热机械分析仪(DMA)测试装置

    Figure  3.  Dynamic mechanical analysis (DMA) test device for epoxy resin

    图  4  压缩测试装置

    Figure  4.  Compression test device

    图  5  Skyscan 1272三维X射线显微镜

    Figure  5.  Skyscan 1272 3D X-ray microscope

    图  6  环氧树脂DMA曲线:(a) 室温至−140°C;(b) 室温至220℃

    Figure  6.  DMA curves of epoxy resin: (a) Room temperature to −140℃; (b) Room temperature to 220℃

    图  7  不同温度下环氧树脂真实应力-应变曲线

    Figure  7.  True stress-strain curves of epoxy resin under various temperatures

    图  8  环氧树脂力学性能随温度变化柱形图:(a) 弹性模量;(b) 屈服应力;(c) 屈服应变

    Figure  8.  Column chart of mechanical properties of epoxy resin changing with temperature: (a) Elastic modulus; (b) Yield stress; (c) Yield strain

    图  9  不同温度下三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩应力-应变曲线:(a) −100℃;(b) −50℃;(c) 20℃;(d) 80℃;(e) 110℃;(f) 140℃;(g) 170℃

    Figure  9.  Axial compressive stress-strain curves of 3-D braided glass fiber/epoxy resin composite thin-walled tubes at different temperatures: (a) −100℃; (b) −50℃; (c) 20℃; (d) 80℃; (e) 110℃; (f) 140℃; (g) 170℃

    图  10  不同温度下三维编织玻璃纤维/环氧树脂复合材料薄壁管压缩强度

    Figure  10.  Compressive strength of 3-D braided glass fiber/epoxy resin composite thin-walled tubes at different temperatures

    图  11  不同温度下三维玻璃纤维/环氧树脂复合材料薄壁管压缩模量

    Figure  11.  Compression modulus of 3-D braided glass fiber/epoxy resin composite thin-walled tubes at different temperatures

    图  12  不同温度下三维编织玻璃纤维/环氧树脂复合材料薄壁管比能量吸收

    Figure  12.  Specific absorption energy of 3-D braided glass fiber/epoxy resin composite thin-walled tubes at different temperatures

    图  13  不同温度下25°编织角三维编织玻璃纤维/环氧树脂复合材料薄壁管压缩载荷-位移曲线

    Figure  13.  Compression load-displacement curves of 3-D braided glass fiber/epoxy resin composite thin-walled tubes with 25° braiding angle at different temperatures

    图  14  不同温度下三维编织玻璃纤维/环氧树脂复合材料薄壁管准静态压缩过程:(a) −100℃;(b) −50℃;(c) 20℃;(d) 80℃;(e) 110℃;(f) 140℃;(g) 170℃

    Figure  14.  Quasi-static compression process of 3-D braided glass fiber/epoxy resin composite thin-walled tubes: (a) −100℃; (b) −50℃; (c) 20℃; (d) 80℃; (e) 110℃; (f) 140℃; (g) 170℃

    图  15  不同温度下不同编织角度三维编织玻璃纤维/环氧树脂复合材料薄壁管破坏形态对比:(a) −100℃;(b) −50℃;(c) 20℃;(d) 80℃;(e) 110℃;(f) 140℃;(g) 170℃

    Figure  15.  Comparison of specimen failure patterns of 3-D braided glass fiber/epoxy resin composite thin-walled tubes with different braiding angles at different temperatures: (a) −100℃; (b) −50℃; (c) 20℃; (d) 80℃; (e) 110℃; (f) 140℃; (g) 170℃

    图  16  不同温度下25°编织角压缩失效试样三维重构图像:(a) −50℃;(b) 20℃;(c) 170℃

    Figure  16.  3-D reconstruction images of compression failure samples with 25° braiding angle at different temperatures: (a) −50℃; (b) 20℃; (c) 170℃

    图  17  25°编织角三维编织复合材料薄壁管在不同温度下的内部破坏特征与分布:(a) −50℃;(b) 20℃;(c) 170℃

    Figure  17.  Characteristics and distribution of internal failure of 3-D braided composite thin-walled tubes with 25° braiding angle at different temperatures: (a) −50℃; (b) 20℃; (c) 170℃

    表  1  玻璃纤维性能参数

    Table  1.   Properties of glass fiber

    Parameterσ/MPaE/GPaρ/(g·cm−3)d/μm
    Value245081.952.6417
    Notes: σ—Tensile strength; E—Tensile modulus; ρ—Density; d—Fiber diameter.
    下载: 导出CSV

    表  2  JC-02A环氧树脂性能参数

    Table  2.   Properties of JC-02A epoxy resin

    ParameterViscosity/(MPa·s)Epoxy value/(mol·(100 g)−1)Density/(g·cm−3)
    Value1000-30000.50-0.531.12-1.14
    下载: 导出CSV

    表  3  三维编织复合材料薄壁管试样规格

    Table  3.   Sample specification of 3-D braided composite thin-walled tubes

    Braiding
    angle/(°)
    Outside
    diameter/mm
    Wall
    thickness/mm
    Fiber volume fraction/vol%
    1525.842.3651.03
    2525.832.3753.79
    3525.882.3856.86
    下载: 导出CSV
  • [1] ZHANG J, KONG X, CHENG S, et al. A coupled multi-scale method for predicting the viscoelastic behavior of resin-based 3D braided composites[J]. Materials & Design,2020,195:109048.
    [2] ISHIKAWA T, AMAOKA K, MASUBUCHI Y, et al. Overview of automotive structural composites technology developments in Japan[J]. Composites Science and Technology,2018,155:221-246. doi: 10.1016/j.compscitech.2017.09.015
    [3] ZHANG C, CURIEL-SOSA J, BUI T. Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading[J]. Composite Structures,2018,201:62-71. doi: 10.1016/j.compstruct.2018.06.021
    [4] 沈怀荣, 郑文龙. 三维编织圆管力学性能及火箭级间段模拟结构承载能力研究[J]. 国防科技大学学报, 1999(1):8-12.

    SHEN Huairong, ZHENG Wenlong. Research on mechanical properties of 3D braided round tube and loading capacity of simulated structure of rocket interstage[J]. Journal of National University of Defense Technology,1999(1):8-12(in Chinese).
    [5] ZENG T, FANG D, LU T. Dynamic crashing and impact energy absorption of 3D braided composite tubes[J]. Materials Letters,2005,59(12):1491-1496. doi: 10.1016/j.matlet.2005.01.007
    [6] 李典森, 刘子仙, 卢子兴, 等. 三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制[J]. 复合材料学报, 2008, 25(1):133-139.

    LI Diansen, LIU Zixian, LU Zixing, et al. Compression properties and failure mechanism of three-dimensional five directional carbon fiber/phenolic woven composite[J]. Acta Materiae Compositae Sinica,2008,25(1):133-139(in Chinese).
    [7] 李嘉禄, 贺桂芳, 陈光伟. 温度对三维五向编织/环氧树脂复合材料拉伸性能的影响[J]. 复合材料学报, 2010, 27(6):58-63.

    LI Jialu, HE Guifang, CHEN Guangwei. Effects of temperature on tensile property of three-dimension and five-direction braided/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2010,27(6):58-63(in Chinese).
    [8] LI D S, FANG D N, ZHANG G B, et al. Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite[J]. Materials & Design,2012,41(16):167-170.
    [9] ZHANG W, PAN Z X, ROTICH G, et al. Effects of temperature and strain rate on impact compression behaviors of three-dimensional carbon fiber/epoxy braided composites[J]. Journal of Composite Materials,2014,49(7):771-782.
    [10] 潘忠祥, 孙宝忠. 三维编织玄武岩/环氧树脂复合材料在温度场下的高应变率压缩试验[J]. 复合材料学报, 2015, 32(2):395-402.

    PAN Zhongxiang, SUN Baozhong. High strain-rate compression tests on 3-D braided basalt/epoxy composites under temperature fields[J]. Acta Materiae Compositae Sinica,2015,32(2):395-402(in Chinese).
    [11] PAN Z X, GU B H, SUN B Z. Experimental investigation of high-strain rate properties of 3-D braided composite material in cryogenic field[J]. Composites Part B: Engineering,2015,77:379-390. doi: 10.1016/j.compositesb.2015.03.002
    [12] PAN Z X, SUN B Z, GU B H. Thermo-mechanical numerical modeling on impact compressive damage of 3-D braided composite materials under room and low temperatures[J]. Aerospace Science and Technology,2016,54:23-40. doi: 10.1016/j.ast.2016.03.027
    [13] WANG H L, SUN B Z, GU B H. Numerical modeling on compressive behaviors of 3-D braided composites under high temperatures at microstructure level[J]. Composite Structures,2017,160:925-938. doi: 10.1016/j.compstruct.2016.10.130
    [14] WANG H L, SUN B Z, GU B H. Finite element analyses on longitudinal compressive behaviors of 3D braided carbon/epoxy composite with different braided angles at low temperatures[J]. Journal of the Textile Institute,2019,110(1):37-49. doi: 10.1080/00405000.2018.1460038
    [15] ZUO H M, LI D S, JIANG L. High temperature mechanical response and failure analysis of 3D five-directional braided composites with different braiding angles[J]. Materials,2019,12(21):3506. doi: 10.3390/ma12213506
    [16] 姜黎黎, 吴日娜, 徐美玲, 等. 三维四向编织碳纤维/环氧树脂复合材料在热环境中的拉压力学性能实验[J]. 复合材料学报, 2020, 37(2):309-317.

    JIANG Lili, WU Rina, XU Meiling, et al. Experimental investigation on the tensile and compressive properties of 3D 4-directional braided carbon fiber/epoxy resin composites in thermal environment[J]. Acta Materiae Compositae Sinica,2020,37(2):309-317(in Chinese).
    [17] GIDEON R K, ZHOU H L, LI Y Y, et al. Quasi-static compression and compression-compression fatigue characteristics of 3D braided carbon/epoxy tube[J]. Journal of the Textile Institute Proceedings & Abstracts,2016,107(7):938-948.
    [18] WU X Y, GU B H, SUN B Z. Comparisons of axial compression behaviors between four-directional and five-directional braided composite tubes under high strain rate loading[J]. Journal of Composite Materials,2016,50(28):377-389. doi: 10.1177/0021998316628619
    [19] LIU T, WU X Y, SUN B Z et al. Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method[J]. Thin-Walled Structures,2021,160:107381. doi: 10.1016/j.tws.2020.107381
    [20] ZHOU H L, LI C, ZHANG L Q, et al. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact[J]. Composites Science and Technology,2018,155:91-99. doi: 10.1016/j.compscitech.2017.11.025
    [21] ZHOU H L, HU D M, GU B H, et al. Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers[J]. Composite Structures,2017,168:345-359. doi: 10.1016/j.compstruct.2017.02.025
    [22] PAN Z X, WU X Y, WU L W. Temperature rise caused by adiabatic shear failure in 3D braided composite tube subjected to axial impact compression[J]. Journal of Composite Materials,2019,54(10):1305-1326.
    [23] 张徐梁, 阳玉球, 阎建华, 等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9):2821-2828.

    ZHANG Xuliang, YANG Yuqiu, YAN Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy 3D braided composite thin-walled circular tube[J]. Acta Materiae Compositae Sinica,2021,38(9):2821-2828(in Chinese).
    [24] WU X Y, ZHANG Q, GU B H, et al. Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3-D braided composite tubes and finite element analysis[J]. International Journal of Damage Mechanics,2017,26(7):1003-1027. doi: 10.1177/1056789516648369
    [25] XUN L M, WU Y Y, HUANG S W, et al. Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing[J]. Thin-Walled Structures,2022,170:108555. doi: 10.1016/j.tws.2021.108555
    [26] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastics composites—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [27] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test methods for properties of resin casting body: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  303
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 修回日期:  2022-12-26
  • 录用日期:  2022-12-27
  • 网络出版日期:  2023-01-06
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回