留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb0.74CoCrFeNi2高熵钎料钎焊陶瓷基复合材料和金属的高温连接性能

姜伟 于康 赵瑞晴 代吉祥 沙建军

姜伟, 于康, 赵瑞晴, 等. Nb0.74CoCrFeNi2高熵钎料钎焊陶瓷基复合材料和金属的高温连接性能[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 姜伟, 于康, 赵瑞晴, 等. Nb0.74CoCrFeNi2高熵钎料钎焊陶瓷基复合材料和金属的高温连接性能[J]. 复合材料学报, 2024, 43(0): 1-10.
JIANG Wei, YU Kang, ZHAO Ruiqing, et al. High-temperature joining properties of Nb0.74CoCrFeNi2 high-entropy filler for brazing ceramic matrix composites and metals[J]. Acta Materiae Compositae Sinica.
Citation: JIANG Wei, YU Kang, ZHAO Ruiqing, et al. High-temperature joining properties of Nb0.74CoCrFeNi2 high-entropy filler for brazing ceramic matrix composites and metals[J]. Acta Materiae Compositae Sinica.

Nb0.74CoCrFeNi2高熵钎料钎焊陶瓷基复合材料和金属的高温连接性能

基金项目: 上海空间推动研究所创新基金(NO:20221025)
详细信息
    通讯作者:

    代吉祥,博士,副教授,研究方向为复合材料结构设计与增材制造工艺 E-mail: jxdai@dlut.edu.cn

  • 中图分类号: TB332

High-temperature joining properties of Nb0.74CoCrFeNi2 high-entropy filler for brazing ceramic matrix composites and metals

Funds: Innovation Foundation of Shanghai Institute of Space Promotion (NO: 20221025)
  • 摘要: 陶瓷基复合材料和金属材料在高温下的连接性能至关重要。本文采用Nb0.74CoCrFeNi2高熵粉末钎料对C/SiC陶瓷基复合材料与GH4169金属进行钎焊连接,揭示了钎焊接头微观组织形貌的演化过程及形成机制,探究了钎焊接头的室温、800℃和1000℃高温下的连接性能。结果显示钎焊接头典型结构为:Cr23C6+(Cr,Fe)23C6/(Cr,Fe)3C2+Ni2Si+NbC/FCC+(Cr,Fe)3C2+Ni2Si,C/SiC陶瓷基复合材料侧界面上随着反应的进行,Cr元素被逐渐消耗,形成了独特的梯度界面结构。随着钎焊温度升高或保温时间延长,焊缝内部缺陷逐渐消失,但脆性界面反应层厚度急剧增加,导致接头室温连接强度呈现先升高后降低的趋势,钎焊接头连接强度最高为188.1 MPa,800℃高温连接强度高达107.7 MPa,1000℃高温连接强度依然保持57.6 MPa。高连接强度源于钎料中Ni元素向C/SiC复合材料侧扩散,使纤维束丝与基体形成了较强的界面结合。

     

  • 图  1  实验示意图:(a) 钎焊装配示意图;(b) 热循环曲线;(c) 压缩剪切测试

    Figure  1.  Schematic diagram of experiment: (a) Schematic diagram of assembly for brazing; (b) Thermal cycle during brazing; (c) Schematic drawing of compression shear test

    图  2  C/SiC复合材料-GH4169钎焊接头界面组织

    Figure  2.  BSE images of C/SiC composite-GH4169 joint

    图  3  钎焊接头XRD分析结果

    Figure  3.  Results of XRD analysis of brazed joints

    图  4  C/SiC陶瓷基复合材料和GH4169钎焊接头的组织演化示意图

    Figure  4.  Schematic diagram of microstructure evolution of C/SiC-GH4169 brazed joints

    图  5  不同钎焊工艺参数下C/SiC-GH4169接头的室温抗剪切强度

    Figure  5.  Room temperature shear strength of C/SiC-GH4169 joints with different brazing parameters

    图  6  不同钎焊温度下保温15 min时C/SiC-GH4169接头的微观形貌:(a,d) 1240℃;(b,e) 1260℃;(c,f) 1280

    Figure  6.  Microstructures at different brazing temperatures of C/SiC-GH4169 joints with 15 min holding time: (a,d) 1240℃; (b,e) 1260℃;(c,f) 1280

    图  7  1260℃不同保温时间下的C/SiC-GH4169接头微观形貌:(a,d) 15 min; (b,e) 25 min; (c,f) 35 min

    Figure  7.  Microstructures of C/SiC-GH4169 joints under different holding time at 1260℃: (a,d) 15 min; (b,e) 25 min; (c,f) 35 min

    图  8  不同连接温度下C/SiC-GH4169接头断口微观图:(a,d) 1240℃; (b,e) 1260℃; (c,f) 1280℃;

    Figure  8.  Microstructures of C/SiC-GH4169 joints fracture surfaces at different brazing temperature: (a,d) 1240℃; (b,e) 1260℃; (c,f) 1280

    图  9  (a) C/SiC-GH4169接头断口XRD图谱;(b)反应示意图

    Figure  9.  (a) XRD patterns of C/SiC-GH4169 joints fracture surfaces;(b) Reaction diagram

    图  10  C/SiC-GH4169钎焊接头的高温力学性能

    Figure  10.  High temperature mechanical properties of C/SiC-GH4169 brazing joints

    图  11  不同测试温度下C/SiC-GH4169接头断口微观形貌:(a,d) 室温; (b,e) 800℃; (c,f) 1000

    Figure  11.  Microstructure of C/SiC-GH4169 joints fracture surface at different testing temperature: (a,d)room temperature; (b,e) 800℃;(c,f) 1000

    图  12  本研究中的连接结合强度与文献对比

    Figure  12.  Comparison of high-temperature shear strength in this study with literatures

    表  1  图2中各点EDS分析结果

    Table  1.   EDS analysis results of chemical composition at each spot in Fig.2

    Spot C Si Cr Fe Ni Co Nb Possible phase
    A 53.97 - 41.7 2.45 0.61 1.26 - Cr23C6
    B 49.87 0.14 35.38 12.52 1.69 0.39 - (Cr,Fe)23C6
    C 47.39 9.2 17.64 6.13 17 2.61 - Ni2Si+(Cr,Fe)3C2
    D 79.43 0.1 0.6 0.15 0.87 - 18.86 NbC
    E 46.08 12.75 2.21 2.04 30.18 1.33 5.42 Ni2Si
    F 42.02 4.41 10.02 14.61 28.59 0.26 - FCC
    G 35.78 10.71 17.30 11.77 23.96 0.48 - Ni2Si+(Cr,Fe)3C2
    H 42.31 4.08 12.73 12.35 28.42 0.11 - FCC
    I 77.88 - 0.16 0.37 0.48 - 21.1 NbC
    下载: 导出CSV
  • [1] 刘彦杰, 马武军, 王松. 陶瓷基复合材料火箭发动机推力室研究进展[J]. 宇航材料工艺, 2007, (4): 1-4. doi: 10.3969/j.issn.1007-2330.2007.04.001

    LIU Yanjie, MA Wujun, WANG Song, et al. Research progress in ceramic matrix composites rocket thrusters[J]. Aerospace Materials and Technology, 2007, (4): 1-4(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.04.001
    [2] 王娜, 李海庆, 徐方涛, 等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺, 2019, 49(3): 1-8. doi: 10.12044/j.issn.1007-2330.2019.03.001

    WANG Na, LI Haiqing, XU Fangtao, et al. Recent development of advanced materials for liquid rocket thruster chambers[J]. Aerospace Materials and Technology, 2019, 49(3): 1-8(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.03.001
    [3] 陈明亮, 刘昌国, 徐辉, 等. 远征三号上面级轨控发动机研制及在轨验证[J]. 火箭推进, 2020, 46(3): 11-18. doi: 10.3969/j.issn.1672-9374.2020.03.002

    CHEN Mingliang, LIU Changguo, XU Hui, et al. Development and in-orbit verification of orbit-control engine in yz-3 upper stage[J]. Journal of Rocket Propulsion, 2020, 46(3): 11-18(in Chinese). doi: 10.3969/j.issn.1672-9374.2020.03.002
    [4] 冯吉才. 异种材料连接研究进展综述[J]. 航空学报, 2022, 43(2): 6-42.

    FENG Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 6-42(in Chinese).
    [5] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3-9): 409-420. doi: 10.1016/j.actaastro.2004.05.052
    [6] LIU D, LI X, SONG X, et al. Effect of GNPs on interfacial microstructure evolution and mechanical property of Cf/SiC-GH99 joints[J]. Materials Characterization, 2023, 196: 112563. doi: 10.1016/j.matchar.2022.112563
    [7] 王杰, 熊清莲, 熊宴邻, 等. 瞬间液相 (TLP) 扩散连接 GH4169/TC4 接头的微观结构及力学性能[J]. 稀有金属材料与工程, 2019, 48(4): 1275-1280.

    WANG Jie, XIONG Qinglian, XIONG Yanlin, et al. Microstructure and mechanical properties of GH4169/TC4 joints prepared by Transient Liquid Phase(TLP) diffusion bonding[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1275-1280(in Chinese).
    [8] LIU G, ZHANG X, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior[J]. Journal of Advanced Ceramics, 2019, 8: 19-38. doi: 10.1007/s40145-018-0297-x
    [9] 张丽霞. 陶瓷及陶瓷基复合材料连接的研究进展[J]. 焊接, 2017, (4): 1-9. doi: 10.3969/j.issn.1001-1382.2017.04.001

    ZHANG Lixia. Research progress on ceramic and ceramic matrix composite connections[J]. Welding and Joining, 2017, (4): 1-9(in Chinese). doi: 10.3969/j.issn.1001-1382.2017.04.001
    [10] SHI J M, FENG J C, TIAN X Y, et al. Interfacial microstructure and mechanical property of ZrC-SiC ceramic and Ti6Al4V joint brazed with AgCuTi alloy[J]. Journal of the European Ceramic Society, 2017, 37(8): 2769-2778. doi: 10.1016/j.jeurceramsoc.2017.02.056
    [11] WANG Y, WANG W, HUANG J, et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society, 2021, 41(14): 6824-6833. doi: 10.1016/j.jeurceramsoc.2021.07.009
    [12] WANG P, LIU X, WANG H, et al. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti+ Sc2(WO4)3 composite filler metal[J]. Journal of Materials Science & Technology, 2022, 108: 102-109.
    [13] YANG J H, ZHANG L X, SUN Z, et al. A novel composite interlayer assembled for C/SiC-GH99 brazed joints[J]. Journal of Manufacturing Processes, 2019, 38: 543-548. doi: 10.1016/j.jmapro.2019.01.030
    [14] LI P, JIN X, HOU C, et al. Cyclic thermal shock behaviours of ZrB2-SiC ultra-high temperature ceramics joints bonded with Ni interlayer[J]. Journal of Alloys and Compounds, 2019, 793: 49-55. doi: 10.1016/j.jallcom.2019.04.149
    [15] ZHANG Q, SUN L, LIU Q, et al. Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb-1Zr joints brazed with Ti-Co-Nb filler alloy[J]. Journal of the European Ceramic Society, 2017, 37(3): 931-937. doi: 10.1016/j.jeurceramsoc.2016.09.031
    [16] CUI B, HUANG J, CAI C, et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials[J]. Composites science and technology, 2014, 97: 19-26. doi: 10.1016/j.compscitech.2014.03.021
    [17] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2–SiC–C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1): 145-153. doi: 10.1016/j.ceramint.2014.08.051
    [18] ZHANG Y, GUO X, GUO W, et al. Effect of Cu foam on the microstructure and strength of the SiCf/SiC-GH536 brazed joint[J]. Ceramics International, 2022, 48(9): 12945-12953. doi: 10.1016/j.ceramint.2022.01.167
    [19] 张成聪, 余丽玲, 王玉华, 等. 焊缝高熵化研究现状与展望[J]. 焊接学报, 2022, 43(4): 7-15. doi: 10.12073/j.hjxb.20211013001

    ZHANG Chengcong, YU Liling, WANG Yuhua, et al. Research progress of welding and joining by using the high entropy alloys as filler metals[J]. Transactions of the China Welding Institution, 2022, 43(4): 7-15(in Chinese). doi: 10.12073/j.hjxb.20211013001
    [20] LUO D, XIAO Y, HARDWICK L, et al. High entropy alloys as filler metals for joining[J]. Entropy, 2021, 23(1): 78. doi: 10.3390/e23010078
    [21] ZHANG L X, SHI J M, LI H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97: 230-238.
    [22] ZHAO S, NAI X, CHEN H, et al. Role of Nb elements in SiCf/SiC/(CoFeNiCrMn)100-xNbx/GH536 brazed joints: Joint residual stress transfer and pinning of dislocations[J]. Materials Science and Engineering: A, 2024, 891: 145914. doi: 10.1016/j.msea.2023.145914
    [23] ZHAO S, CHEN H, NAI X, et al. Microstructure and mechanical properties of SiCf/SiC composites/GH536 superalloy joints brazed with CoFeNiCrCu high-entropy alloy filler[J]. Materials Characterization, 2022, 194: 112419. doi: 10.1016/j.matchar.2022.112419
    [24] LUO Z, WANG G, ZHAO Y, et al. Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy[J]. Ceramics International, 2022, 48(16): 23325-23333. doi: 10.1016/j.ceramint.2022.04.320
    [25] 刘昌国, 陈锐达, 刘犇, 等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进, 2021, 47(3): 8-15. doi: 10.3969/j.issn.1672-9374.2021.03.002

    LIU Changguo, CHEN Ruida, LIU Ben, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15(in Chinese). doi: 10.3969/j.issn.1672-9374.2021.03.002
    [26] LIU G W, VALENZA F, MUOLO M L, et al. Wetting and interfacial behavior of Ni-Si alloy on different substrates[J]. Journal of materials science, 2009, 44: 5990-5997. doi: 10.1007/s10853-009-3858-0
    [27] 杨佳. SiCf/SiC 复合材料及 GH536 高温合金的钎焊工艺及机理研究[D]. 哈尔滨工业大学, 2019.

    YANG Jia. Study on processing and mechanism of brazing SiCf/SiC composite and GH536[D]. Harbin Institute of Technology, 2019. (in Chinese).
    [28] SHI H, PENG H, CHAI Y, et al. Effect of Zr addition on the interfacial reaction of the SiC joint brazed by Inconel 625 powder filler[J]. Journal of the European Ceramic Society, 2021, 41(13): 6238-6247. doi: 10.1016/j.jeurceramsoc.2021.06.047
    [29] SHI J M, ZHANG L X, TIAN X Y, et al. Vacuum brazing of the Cf/C composite and Ni base superalloy using MBF 20 filler[J]. Vacuum, 2018, 156: 427-433. doi: 10.1016/j.vacuum.2018.08.004
    [30] WANG R, WANG G, RAN S, et al. Microstructure and mechanical properties of Cf/SiC composite joints joined using AlCoCrFeNi2.1 eutectic high-entropy alloy filler via spark plasma sintering[J]. Journal of the European Ceramic Society, 2023, 43(5): 1853-1863. doi: 10.1016/j.jeurceramsoc.2022.12.045
    [31] 田晓羽. C/C复合材料与GH99镍基高温合金钎焊工艺及机理研究[D]. 哈尔滨工业大学, 2010.

    TIAN Xiaoyu. Technical and mechanism study on brazing of C/C composites to GH99 nickel-base superalloy[D]. Harbin Institute of Technology, 2010. (in Chinese).
    [32] TIAN X, FENG J, SHI J, et al. Interfacial microstructure and mechanical properties of the vacuum brazed C/SiC composite and Nb joints[J]. Vacuum, 2017, 146: 97-105. doi: 10.1016/j.vacuum.2017.09.039
    [33] YANG Y, WANG G, HE R, et al. Microstructure and mechanical properties of ZrB2-SiC/Nb joints brazed with CoFeNiCrCuTix high-entropy alloy filler[J]. Journal of the American Ceramic Society, 2021, 104(7): 2992-3003. doi: 10.1111/jace.17732
    [34] BA J, JI X, WANG B, et al. In-situ alloying of BNi2+Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy[J]. Journal of Manufacturing Processes, 2021, 67: 52-55. doi: 10.1016/j.jmapro.2021.04.061
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-09-19
  • 录用日期:  2024-10-07
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回