High-temperature joining properties of Nb0.74CoCrFeNi2 high-entropy filler for brazing ceramic matrix composites and metals
-
摘要: 陶瓷基复合材料和金属材料在高温下的连接性能至关重要。本文采用Nb0.74CoCrFeNi2高熵粉末钎料对C/SiC陶瓷基复合材料与GH4169金属进行钎焊连接,揭示了钎焊接头微观组织形貌的演化过程及形成机制,探究了钎焊接头的室温、800℃和
1000 ℃高温下的连接性能。结果显示钎焊接头典型结构为:Cr23C6+(Cr,Fe)23C6/(Cr,Fe)3C2+Ni2Si+NbC/FCC+(Cr,Fe)3C2+Ni2Si,C/SiC陶瓷基复合材料侧界面上随着反应的进行,Cr元素被逐渐消耗,形成了独特的梯度界面结构。随着钎焊温度升高或保温时间延长,焊缝内部缺陷逐渐消失,但脆性界面反应层厚度急剧增加,导致接头室温连接强度呈现先升高后降低的趋势,钎焊接头连接强度最高为188.1 MPa,800℃高温连接强度高达107.7 MPa,1000 ℃高温连接强度依然保持57.6 MPa。高连接强度源于钎料中Ni元素向C/SiC复合材料侧扩散,使纤维束丝与基体形成了较强的界面结合。Abstract: Nb0.74CoCrFeNi2 high-entropy powder filler was used to braze C/SiC composites andGH4169, and the effects of brazing temperature and holding time on the microstructure and shear strength of the joints were systematically investigated to reveal the formation mechanism of the joints. It was found that the typical structure of joint is Cr23C6+(Cr,Fe)23C6/(Cr,Fe)3C2+Ni2Si+NbC/FCC+(Cr,Fe)3C2+Ni2Si. With the reaction progressing on the side interface of the composite material, the Cr element was gradually consumed, forming a unique gradient interfacial structure, which is conducive to the relief of residual stresses in the joint. With the increase of brazing temperature or the prolongation of holding time, the internal defects of the joints gradually disappeared, but the thickness of the brittle interfacial reaction layer increased sharply, resulting in the joint shear strength showing a tendency of first increasing and then decreasing. When the brazing temperature is1260 ℃ and the holding time is 25 min, the shear strength of the brazed joint is up to 188.1 MPa, and high-temperature shear strength up to 107.7 MPa at 800℃, and still 57.6 MPa at1000 ℃. The high shear strength originates from the diffusion of Ni element from the brazing material into the SiC matrix of the composite material, which forms a strong interfacial bond between the fiber bundles and the matrix.-
Key words:
- C/SiC composites /
- High-temperature alloys /
- Reactive brazing /
- High-entropy alloys /
- Dissimilar joints
-
表 1 图2中各点EDS分析结果
Table 1. EDS analysis results of chemical composition at each spot in Fig.2
Spot C Si Cr Fe Ni Co Nb Possible phase A 53.97 - 41.7 2.45 0.61 1.26 - Cr23C6 B 49.87 0.14 35.38 12.52 1.69 0.39 - (Cr,Fe)23C6 C 47.39 9.2 17.64 6.13 17 2.61 - Ni2Si+(Cr,Fe)3C2 D 79.43 0.1 0.6 0.15 0.87 - 18.86 NbC E 46.08 12.75 2.21 2.04 30.18 1.33 5.42 Ni2Si F 42.02 4.41 10.02 14.61 28.59 0.26 - FCC G 35.78 10.71 17.30 11.77 23.96 0.48 - Ni2Si+(Cr,Fe)3C2 H 42.31 4.08 12.73 12.35 28.42 0.11 - FCC I 77.88 - 0.16 0.37 0.48 - 21.1 NbC -
[1] 刘彦杰, 马武军, 王松. 陶瓷基复合材料火箭发动机推力室研究进展[J]. 宇航材料工艺, 2007, (4): 1-4. doi: 10.3969/j.issn.1007-2330.2007.04.001LIU Yanjie, MA Wujun, WANG Song, et al. Research progress in ceramic matrix composites rocket thrusters[J]. Aerospace Materials and Technology, 2007, (4): 1-4(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.04.001 [2] 王娜, 李海庆, 徐方涛, 等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺, 2019, 49(3): 1-8. doi: 10.12044/j.issn.1007-2330.2019.03.001WANG Na, LI Haiqing, XU Fangtao, et al. Recent development of advanced materials for liquid rocket thruster chambers[J]. Aerospace Materials and Technology, 2019, 49(3): 1-8(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.03.001 [3] 陈明亮, 刘昌国, 徐辉, 等. 远征三号上面级轨控发动机研制及在轨验证[J]. 火箭推进, 2020, 46(3): 11-18. doi: 10.3969/j.issn.1672-9374.2020.03.002CHEN Mingliang, LIU Changguo, XU Hui, et al. Development and in-orbit verification of orbit-control engine in yz-3 upper stage[J]. Journal of Rocket Propulsion, 2020, 46(3): 11-18(in Chinese). doi: 10.3969/j.issn.1672-9374.2020.03.002 [4] 冯吉才. 异种材料连接研究进展综述[J]. 航空学报, 2022, 43(2): 6-42.FENG Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 6-42(in Chinese). [5] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3-9): 409-420. doi: 10.1016/j.actaastro.2004.05.052 [6] LIU D, LI X, SONG X, et al. Effect of GNPs on interfacial microstructure evolution and mechanical property of Cf/SiC-GH99 joints[J]. Materials Characterization, 2023, 196: 112563. doi: 10.1016/j.matchar.2022.112563 [7] 王杰, 熊清莲, 熊宴邻, 等. 瞬间液相 (TLP) 扩散连接 GH4169/TC4 接头的微观结构及力学性能[J]. 稀有金属材料与工程, 2019, 48(4): 1275-1280.WANG Jie, XIONG Qinglian, XIONG Yanlin, et al. Microstructure and mechanical properties of GH4169/TC4 joints prepared by Transient Liquid Phase(TLP) diffusion bonding[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1275-1280(in Chinese). [8] LIU G, ZHANG X, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior[J]. Journal of Advanced Ceramics, 2019, 8: 19-38. doi: 10.1007/s40145-018-0297-x [9] 张丽霞. 陶瓷及陶瓷基复合材料连接的研究进展[J]. 焊接, 2017, (4): 1-9. doi: 10.3969/j.issn.1001-1382.2017.04.001ZHANG Lixia. Research progress on ceramic and ceramic matrix composite connections[J]. Welding and Joining, 2017, (4): 1-9(in Chinese). doi: 10.3969/j.issn.1001-1382.2017.04.001 [10] SHI J M, FENG J C, TIAN X Y, et al. Interfacial microstructure and mechanical property of ZrC-SiC ceramic and Ti6Al4V joint brazed with AgCuTi alloy[J]. Journal of the European Ceramic Society, 2017, 37(8): 2769-2778. doi: 10.1016/j.jeurceramsoc.2017.02.056 [11] WANG Y, WANG W, HUANG J, et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society, 2021, 41(14): 6824-6833. doi: 10.1016/j.jeurceramsoc.2021.07.009 [12] WANG P, LIU X, WANG H, et al. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti+ Sc2(WO4)3 composite filler metal[J]. Journal of Materials Science & Technology, 2022, 108: 102-109. [13] YANG J H, ZHANG L X, SUN Z, et al. A novel composite interlayer assembled for C/SiC-GH99 brazed joints[J]. Journal of Manufacturing Processes, 2019, 38: 543-548. doi: 10.1016/j.jmapro.2019.01.030 [14] LI P, JIN X, HOU C, et al. Cyclic thermal shock behaviours of ZrB2-SiC ultra-high temperature ceramics joints bonded with Ni interlayer[J]. Journal of Alloys and Compounds, 2019, 793: 49-55. doi: 10.1016/j.jallcom.2019.04.149 [15] ZHANG Q, SUN L, LIU Q, et al. Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb-1Zr joints brazed with Ti-Co-Nb filler alloy[J]. Journal of the European Ceramic Society, 2017, 37(3): 931-937. doi: 10.1016/j.jeurceramsoc.2016.09.031 [16] CUI B, HUANG J, CAI C, et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials[J]. Composites science and technology, 2014, 97: 19-26. doi: 10.1016/j.compscitech.2014.03.021 [17] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2–SiC–C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1): 145-153. doi: 10.1016/j.ceramint.2014.08.051 [18] ZHANG Y, GUO X, GUO W, et al. Effect of Cu foam on the microstructure and strength of the SiCf/SiC-GH536 brazed joint[J]. Ceramics International, 2022, 48(9): 12945-12953. doi: 10.1016/j.ceramint.2022.01.167 [19] 张成聪, 余丽玲, 王玉华, 等. 焊缝高熵化研究现状与展望[J]. 焊接学报, 2022, 43(4): 7-15. doi: 10.12073/j.hjxb.20211013001ZHANG Chengcong, YU Liling, WANG Yuhua, et al. Research progress of welding and joining by using the high entropy alloys as filler metals[J]. Transactions of the China Welding Institution, 2022, 43(4): 7-15(in Chinese). doi: 10.12073/j.hjxb.20211013001 [20] LUO D, XIAO Y, HARDWICK L, et al. High entropy alloys as filler metals for joining[J]. Entropy, 2021, 23(1): 78. doi: 10.3390/e23010078 [21] ZHANG L X, SHI J M, LI H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97: 230-238. [22] ZHAO S, NAI X, CHEN H, et al. Role of Nb elements in SiCf/SiC/(CoFeNiCrMn)100-xNbx/GH536 brazed joints: Joint residual stress transfer and pinning of dislocations[J]. Materials Science and Engineering: A, 2024, 891: 145914. doi: 10.1016/j.msea.2023.145914 [23] ZHAO S, CHEN H, NAI X, et al. Microstructure and mechanical properties of SiCf/SiC composites/GH536 superalloy joints brazed with CoFeNiCrCu high-entropy alloy filler[J]. Materials Characterization, 2022, 194: 112419. doi: 10.1016/j.matchar.2022.112419 [24] LUO Z, WANG G, ZHAO Y, et al. Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy[J]. Ceramics International, 2022, 48(16): 23325-23333. doi: 10.1016/j.ceramint.2022.04.320 [25] 刘昌国, 陈锐达, 刘犇, 等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进, 2021, 47(3): 8-15. doi: 10.3969/j.issn.1672-9374.2021.03.002LIU Changguo, CHEN Ruida, LIU Ben, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15(in Chinese). doi: 10.3969/j.issn.1672-9374.2021.03.002 [26] LIU G W, VALENZA F, MUOLO M L, et al. Wetting and interfacial behavior of Ni-Si alloy on different substrates[J]. Journal of materials science, 2009, 44: 5990-5997. doi: 10.1007/s10853-009-3858-0 [27] 杨佳. SiCf/SiC 复合材料及 GH536 高温合金的钎焊工艺及机理研究[D]. 哈尔滨工业大学, 2019.YANG Jia. Study on processing and mechanism of brazing SiCf/SiC composite and GH536[D]. Harbin Institute of Technology, 2019. (in Chinese). [28] SHI H, PENG H, CHAI Y, et al. Effect of Zr addition on the interfacial reaction of the SiC joint brazed by Inconel 625 powder filler[J]. Journal of the European Ceramic Society, 2021, 41(13): 6238-6247. doi: 10.1016/j.jeurceramsoc.2021.06.047 [29] SHI J M, ZHANG L X, TIAN X Y, et al. Vacuum brazing of the Cf/C composite and Ni base superalloy using MBF 20 filler[J]. Vacuum, 2018, 156: 427-433. doi: 10.1016/j.vacuum.2018.08.004 [30] WANG R, WANG G, RAN S, et al. Microstructure and mechanical properties of Cf/SiC composite joints joined using AlCoCrFeNi2.1 eutectic high-entropy alloy filler via spark plasma sintering[J]. Journal of the European Ceramic Society, 2023, 43(5): 1853-1863. doi: 10.1016/j.jeurceramsoc.2022.12.045 [31] 田晓羽. C/C复合材料与GH99镍基高温合金钎焊工艺及机理研究[D]. 哈尔滨工业大学, 2010.TIAN Xiaoyu. Technical and mechanism study on brazing of C/C composites to GH99 nickel-base superalloy[D]. Harbin Institute of Technology, 2010. (in Chinese). [32] TIAN X, FENG J, SHI J, et al. Interfacial microstructure and mechanical properties of the vacuum brazed C/SiC composite and Nb joints[J]. Vacuum, 2017, 146: 97-105. doi: 10.1016/j.vacuum.2017.09.039 [33] YANG Y, WANG G, HE R, et al. Microstructure and mechanical properties of ZrB2-SiC/Nb joints brazed with CoFeNiCrCuTix high-entropy alloy filler[J]. Journal of the American Ceramic Society, 2021, 104(7): 2992-3003. doi: 10.1111/jace.17732 [34] BA J, JI X, WANG B, et al. In-situ alloying of BNi2+Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy[J]. Journal of Manufacturing Processes, 2021, 67: 52-55. doi: 10.1016/j.jmapro.2021.04.061
点击查看大图
计量
- 文章访问数: 19
- HTML全文浏览量: 21
- 被引次数: 0