留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空热压法制备Ti2AlNb/TA15叠层复合材料的微观组织及其高温拉伸性能

邵鑫香 张守银 张堃 万俊杰 卢百平

邵鑫香, 张守银, 张堃, 等. 真空热压法制备Ti2AlNb/TA15叠层复合材料的微观组织及其高温拉伸性能[J]. 复合材料学报, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002
引用本文: 邵鑫香, 张守银, 张堃, 等. 真空热压法制备Ti2AlNb/TA15叠层复合材料的微观组织及其高温拉伸性能[J]. 复合材料学报, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002
SHAO Xinxiang, ZHANG Shouyin, ZHANG Kun, et al. Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002
Citation: SHAO Xinxiang, ZHANG Shouyin, ZHANG Kun, et al. Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002

真空热压法制备Ti2AlNb/TA15叠层复合材料的微观组织及其高温拉伸性能

doi: 10.13801/j.cnki.fhclxb.20240012.002
基金项目: 江西省主要学科学术与技术带头人培养计划 (20225 BCJ22002)
详细信息
    通讯作者:

    张守银,博士,讲师,硕士生导师,研究方向为钛及钛铝合金制备 E-mail: zhangsy@nchu.edu.cn

  • 中图分类号: TB331

Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing

Funds: Jiangxi Province Key Disciplines Academic and Technical Leaders Training Program (20225 BCJ22002)
  • 摘要: 为改善Ti2AlNb合金的本征脆性且不牺牲其高温性能,将其与高温钛合金TA15进行复合,采用真空热压法制备了Ti2AlNb/TA15叠层复合材料,研究了不同热压温度对其微观组织及其拉伸性能的影响。研究结果表明:界面层的孔洞缺陷随热压温度的升高逐渐减少,热压温度在1050℃及以上时可以获得无缺陷冶金结合界面。界面反应层厚度随热压温度的升高而增加,且在1050℃及以上的扩散温度条件下,反应区和Ti2AlNb层间形成了一定宽度的过渡层,提升了界面结合性能。拉伸实验结果表明,相较于Ti2AlNb合金,Ti2AlNb/TA15叠层复合材料的室温和高温拉伸性能均有显著的提升。其中1050℃热压温度条件下的叠层复合材料具有较好的综合性能,650℃高温抗拉强度和应变分别为667.85 MPa和16.2%。

     

  • 图  1  预制体结构示意图

    Figure  1.  Schematic diagram of the preform structure

    图  2  依据Ti-22Al-xNb合金相图设计的热压工艺

    Figure  2.  Hot pressing process designed based on the phase diagram of Ti-22Al-xNb alloy

    图  3  热压工艺参数示意图

    t—Time

    Figure  3.  Schematic diagram of hot pressing process parameters

    图  4  高温拉伸试样示意图

    ϕ—Diameter; R—Radius

    Figure  4.  Schematic diagram of high-temperature tensile specimen

    图  5  Ti2AlNb/TA15叠层复合材料光镜图:(a) 850℃;(b) 980℃;(c) 1050℃;(d) 1100

    Figure  5.  Light microscope diagrams of Ti2AlNb/TA15 laminated composites: (a) 850℃; (b) 980℃; (c) 1050℃; (d) 1100

    图  6  不同热压温度叠层复合材料的SEM图像(二次电子):((a), (e)) 850℃;((b), (f)) 980℃;((c), (g)) 1050℃;((d), (h)) 1100

    Figure  6.  SEM images of laminated composites with different hot pressing temperatures: ((a), (e)) 850℃; ((b), (f)) 980℃; ((c), (g)) 1050℃; ((d), (h)) 1100

    图  7  不同热压温度下叠层界面显微组织SEM(二次电子)图像及扫描能谱图:(a) 850℃;(b) 980℃;(c) 1050℃;(d) 1100

    Figure  7.  SEM images of microstructures and scanning energy spectra of the laminated interface under different hot pressing temperatures: (a) 850℃; (b) 980℃; (c) 1050℃; (d) 1100

    图  8  原始状态及不同热压温度下Ti2AlNb微观组织背散图及对应的X射线衍射图谱:(a)原模铸造;(b) 980℃;(c) 1050℃;(d) 1100

    Figure  8.  Backscattered electron (BSE) of Ti2AlNb microstructures and corresponding X-ray diffraction patterns under original state and different hot pressing temperatures: (a) As cast; (b) 980℃; (c) 1050℃; (d) 1100

    图  9  Ti2AlNb/TA15叠层复合材料界面区相分布图、晶粒取向图和反极图:((a)~(c)) 980℃;((d)~(f)) 1050℃;((g)~(i)) 1100

    Figure  9.  Ti2AlNb/TA15 laminated composites interface zone phase distributions, grain orientations and inverse pole figure diagrams: ((a)-(c)) 980℃; ((d)-(f)) 1050℃; ((g)-(i)) 1100

    图  10  Ti2AlNb/TA15叠层复合材料室温拉伸应力-应变曲线

    Figure  10.  Stress-strain curves of Ti2AlNb/TA15 laminated composites at room temperature

    图  11  Ti2AlNb/TA15叠层复合材料界面处硬度

    Figure  11.  Hardness of Ti2AlNb/TA15 laminated composites near the interfaces

    图  12  Ti2AlNb/TA15叠层复合材料650℃高温拉伸应力-应变曲线

    Figure  12.  Stress-strain curves of Ti2AlNb/TA15 laminated composites at 650℃

    图  13  Ti2AlNb/TA15叠层复合材料界面区、Ti2AlNb基体和TA15基体断口SEM图像:((a)~(c)) 850℃;((d)~(f)) 980℃;((g)~(i)) 1050℃;((j)~(l)) 1100

    Figure  13.  SEM images of Ti2AlNb/TA15 stacked composite interfacial region, Ti2AlNb matrix and TA15 matrix fracture: ((a)-(c)) 850℃; ((d)-(f)) 980℃; ((g)-(i)) 1050℃; ((j)-(l)) 1100

    表  1  Ti2AlNb和TA15的化学成分

    Table  1.   Chemical compositions of Ti2AlNb and TA15

    Material Chemical composition
    TA15/wt% Al: 6.78, Mo: 1.7, V: 2.31, Zr: 2.00, Fe<0.05, Si<0.017, O<0.11, N<0.011, Ti: Balance
    Ti2AlNb/at% Al: 22.3, Nb: 25.2, Ti: Balance
    下载: 导出CSV

    表  2  Ti2AlNb/TA15叠层复合材料制备工艺参数

    Table  2.   Preparation process parameters of Ti2AlNb/TA15 laminated composites

    Experiment Phase 1 Phase 2 Phase 3
    T1/℃ t1/h P1/MPa T2/℃ t2/h P2/MPa T3/℃ t3/h P3/MPa
    1 850 2 10 850 2 40 600 1 10
    2 980 2 10 980 2 40 600 1 10
    3 1050 2 10 1050 2 40 600 1 10
    4 1100 2 10 1100 2 40 600 1 10
    Notes:T1, T2 and T3 are the hot-pressing temperature in the first, second and third stage; t1, t2 and t3 are the holding time in the first, second and third stage; P1, P2 and P3 are the hot-pressing pressure in the first, second and third stage.
    下载: 导出CSV

    表  3  Ti2AlNb/TA15叠层复合材料室温拉伸强度和应变

    Table  3.   Room temperature tensile strength and strain of Ti2AlNb/TA15 laminated composites

    Specimen Hot pressing temperature/℃ Tensile strength/MPa Tensile strain/%
    TA15/Ti2AlNb 850 726.22 6.42
    980 873.21 7.28
    1050 817.44 9.37
    1100 775.79 10.35
    Ti2AlNb (as cast) 660.09 3.10
    下载: 导出CSV

    表  4  Ti2AlNb/TA15叠层复合材料650℃高温拉伸强度和应变

    Table  4.   650℃ high temperature tensile strength and strain of Ti2AlNb/TA15 laminated composites

    Specimen Hot pressing temperature/℃ Tensile strength/MPa Tensile strain/%
    Ti2AlNb/TA15 850 607.71 11.1
    980 711.58 12.5
    1050 667.85 16.2
    1100 632.76 17.7
    Ti2AlNb (as cast) 555.08 10.5
    下载: 导出CSV
  • [1] 王兴杰. “爆炸焊接+热处理”制备Ti/Al3Ti叠层复合材料及其性能研究 [D]. 太原: 中北大学, 2022.

    WANG Xingjie. Research on the preparation and properties of Ti/Al3Ti laminated composites by explosive welding and heat treatment [D]. Taiyuan: North University of China, 2022 (in Chinese).
    [2] 赵赫威, 郭林. 仿贝壳珍珠母层状复合材料的制备及应用[J]. 科学通报, 2017, 62(6): 576-589. doi: 10.1360/N972016-00754

    ZHAO Hewei, GUO Lin. Synthesis and applications of layered structural composites inspired by nacre[J]. Chinese Science Bulletin, 2017, 62(6): 576-589(in Chinese). doi: 10.1360/N972016-00754
    [3] 尹楚藩. 基于爆炸焊接法的Ti/TiAl3叠层复合材料制备技术研究 [D]. 太原: 中北大学, 2020.

    YIN Chufan. Research on the preparation technology of Ti/TiAl3 laminated composites based on explosion welding method [D]. Taiyuan: North University of China, 2020(in Chinese).
    [4] 曹阳, 朱世范, 果春焕, 等. 新型金属间化合物基层状装甲防护复合材料[J]. 兵器材料科学与工程, 2014, 37(6): 122-128. doi: 10.3969/j.issn.1004-244X.2014.06.039

    CAO Yang, ZHU Shifan, GUO Chunhuan, et al. Novel metal-intermetallic laminate composite for armor material[J]. Ordnance Material Science and Engineering, 2014, 37(6): 122-128(in Chinese). doi: 10.3969/j.issn.1004-244X.2014.06.039
    [5] TRESA M, POLLOCK. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15: 809-815. doi: 10.1038/nmat4709
    [6] HAGIWARA M, EMURA S, ARAOKA A, et al. Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy[J]. Metals Materials International, 2003, 9: 265-272. doi: 10.1007/BF03027045
    [7] 冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展[J]. 材料与冶金学报, 2011, 10(1): 30-38. doi: 10.3969/j.issn.1671-6620.2011.01.007

    FENG Aihan, LI Bobo, SHEN Jun. Recent advances on Ti2AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10(1): 30-38(in Chinese). doi: 10.3969/j.issn.1671-6620.2011.01.007
    [8] FRONCZEK D M, WOJEWODA-BUDKA J, CHULIST R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80-89.
    [9] FINDIK F. Recent developments in explosive welding[J]. Materials & Design, 2011, 32(3): 1081-1093.
    [10] SUN W, FAN H Y, YOU F H, et al. Prediction of interfacial phase formation and mechanical properties of Ti6Al4V-Ti43Al9V laminate composites[J]. Materials Science and Engineering, 2020, 782: 139173.
    [11] SUN W, YOU F H, KONG F T, et al. Effect of residual stresses on the mechanical properties of Ti-TiAl laminate composites fabricated by hot-pack rolling[J]. Materials Characterization, 2020, 166: 110394. doi: 10.1016/j.matchar.2020.110394
    [12] LYU S Y, SUN Y B, LI G D, et al. Effect of layer sequence on the mechanical properties of Ti/TiAl laminates[J]. Materials & Design, 2018, 143: 160-168.
    [13] SUN W, YOU F H, KONG F T, et al. Enhanced tensile strength and fracture toughness of a Ti-TiAl metal-intermetallic laminate (MIL) composite[J]. Intermetallics, 2020, 118: 106684. doi: 10.1016/j.intermet.2019.106684
    [14] ZHU H F, SUN W, KONG F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing[J]. Materials Science and Engineering: A, 2019, 742: 704-711. doi: 10.1016/j.msea.2018.07.086
    [15] 孔凡涛, 陈玉勇. γ-TiA1/TC4复合板材的制备及组织性能研究[J]. 稀有金属材料与工程, 2009, 38(8): 1484-1486. doi: 10.3321/j.issn:1002-185X.2009.08.040

    KONG Fantao, CHEN Yuyong. Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties[J]. Rare Metal Materials and Engineering, 2009, 38(8): 1484-1486(in Chinese). doi: 10.3321/j.issn:1002-185X.2009.08.040
    [16] 宋志恒. TiAl/Ti合金层状复合材料的制备及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    SONG Zhiheng. Fabrication and microstructure and mechanical properties of TiAl/Ti laminated composities[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [17] FAN M Y, DOMBLESKY J, JIN K, et al. Effect of original layer thicknesses on the interface bonding and mechanical properties of TiAl laminate composites[J]. Materials & Design, 2016, 99: 535-542.
    [18] 杨蕊鸿, 林飞, 朱岩, 等. TC4/Ti2AlNb异种合金扩散连接接头组织与性能研究[J]. 热加工工艺, 2020, 49(5): 20-24.

    YANG Ruihong, LIN Fei, ZHU Yan, et al. Microstructure and mechanical properties of diffusion bonded joints of TC4/Ti2AlNb dissimilar alloys[J]. Hot Working Technology, 2020, 49(5): 20-24(in Chinese).
    [19] LI D H, WANG B B, LUO L S, et al. The interface structure and its impact on the mechanical behavior of TiAl/Ti2AlNb laminated composites[J]. Materials Science and Engineering, 2021, 827: 142095.
    [20] LI P, JI X H, XUE K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties[J]. Materials Engineering and Performance, 2017, 26(4): 1839-1846. doi: 10.1007/s11665-017-2555-4
    [21] LI P, WANG L S, WANG B, et al. Diffusion and mechanical properties of Ti2AlNb and TA15 interface: From experiments to molecular dynamics[J]. Vacuum, 2022, 195: 110637. doi: 10.1016/j.vacuum.2021.110637
    [22] LIU Y T, ZHANG Y Z. Microstructure and mechanical properties of TA15-Ti2AlNb bimetallic structures by laser additive manufacturing[J]. Materials Science and Engineering: A, 2020, 795: 140019. doi: 10.1016/j.msea.2020.140019
    [23] SUN Z C, YANG H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming[J]. Materials Science and Engineering: A, 2009, 523(1-2): 184-192. doi: 10.1016/j.msea.2009.05.058
    [24] WEI M, CHEN S, LIANG J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing[J]. Vacuum, 2017, 143: 185-194. doi: 10.1016/j.vacuum.2017.06.014
    [25] ZHANG K, LEI Z, CHEN Y, et al. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15[J]. Optics & Laser Technology, 2015, 73: 139-145.
    [26] BOEHLERT C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. Journal of Phase Equilibria, 1999, 20(2): 101-108. doi: 10.1007/s11669-999-0007-z
    [27] ZHANG Y, CAI Q, MA Z, et al. Solution treatment for enhanced hardness in Mo-modified Ti2AlNb-based alloys[J]. Journal of Alloys and Compounds, 2019, 805(15): 1184-1190.
    [28] WANG J Y, GE Z M, ZHOU B Y. Aeronautical titanium alloy [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1985: 120.
    [29] 曹京霞, 方波, 黄旭, 等. 微观组织对TA15钛合金力学性能的影响[J]. 稀有金属, 2004(2): 362-364. doi: 10.3969/j.issn.0258-7076.2004.02.018

    CAO Jingxia, FANG Bo, HUANG Xu, et al. Effects of microstructure on properties of TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2004(2): 362-364(in Chinese). doi: 10.3969/j.issn.0258-7076.2004.02.018
    [30] ARDELL A J. Microstructural stability at elevated temperatures [J]. Journal European Ceramic Society, 1999, 19: 2217-2231.
    [31] STEFANSSO N, SEMIATIN S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment[J]. Metallurgical and Materials Transaction A, 2003, 34(3): 691-698. doi: 10.1007/s11661-003-0103-3
    [32] HE B, WU D, PAN J L, et al. Effect of heat treatment on microstructure and mechanical properties of laser deposited TA15/Ti2AlNb gradient composite structures[J]. Vacuum, 2021, 190: 110309. doi: 10.1016/j.vacuum.2021.110309
    [33] ZHAO Y Y, LI J Y, QIU R F, et al. Growth characterization of intermetallic compound at the Ti/Al solid state interface[J]. Materials, 2019, 12(3): 472.
    [34] 郑友平, 曾卫东, 王伟, 等. Ti-22Al-25Nb合金等轴组织演变和拉伸性能[J]. 稀有金属材料与工程, 2017, 46(S1): 200-203.

    ZHENG Youping, ZENG Weidong, WANG Wei, et al. Equiaxed microstructure evolution and tensile properties of Ti-22Al-25Nb alloy[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 200-203(in Chinese).
    [35] TANG B, XIAN S Q, KOU H C, et al. Recrystallization behavior at diffusion bonding interface of high Nb containing TiAl alloy[J]. Advanced Engineering Material, 2016, 18(4): 657-664. doi: 10.1002/adem.201500457
    [36] ZHANG H, YAN N, LIANG H, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review[J]. Journal of Materials Science & Technology, 2021, 80(21): 203-216.
    [37] ZHOU Y H, WANG D W, SONG L J, et al. Effect of heat treatments on themicrostructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting[J]. Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing, 2021, 817: 141352.
    [38] LI N, ZHAO Z B, SUN H, et al. Effects of heat treatment on microstructure evolution and mechanical properties of Ti-22Al-24Nb-0.5Mo alloy[J]. Materials Science and Engineering: A, 2022, 857: 144052. doi: 10.1016/j.msea.2022.144052
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  148
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-12-10
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回