[1] |
XIE Hongmei, JIANG Bin, HE Junjie, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International,2016,93:63-70. doi: 10.1016/j.triboint.2015.08.009
|
[2] |
LIN Gaoxin, WANG Jiacheng. Progress and perspective on molybdenum disulfide with single-atom doping toward hydrogen evolution[J]. Chemical Journal of Chinese Universities,2022,43(9):65-78.
|
[3] |
张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复 合材料学报, 2022, 39(8):3882-3890.ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(8):3882-3890(in Chinese).
|
[4] |
靳欣, 朱颖, 胡文浩, 等. 原位碳包覆二硫化钼用于锂离子电池负极材料[J]. 有色金属工程, 2021, 11(6):12-16. doi: 10.3969/j.issn.2095-1744.2021.06.003JIN Xin, ZHU Ying, HU Wenhao, et al. In-situ carbon-coated molybdenum disulfide as anode material for lithium-ion batteries[J]. Nonferrous Metals Engineering,2021,11(6):12-16(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.06.003
|
[5] |
CG A, JX A, LZ A, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics,2019,19(12):1318-1324. doi: 10.1016/j.cap.2019.08.017
|
[6] |
WAN Qingming, JIN Yi, SUN Pengcheng, et al. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles[J]. Journal of Nanoparticle Research,2014,16(5):2386. doi: 10.1007/s11051-014-2386-2
|
[7] |
HU E Z, XU Y, HU K H, et al. Tribological properties of 3 types of MoS2 additives in different base greases[J]. Lubrication Science,2017,29(8):541-555. doi: 10.1002/ls.1387
|
[8] |
谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3):1005-1016.XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica,2022,39(3):1005-1016(in Chinese).
|
[9] |
RAJESH S, VELMURUGAN C, EBENEZER J, et al. Studies on the tribological behaviour of exsitu-synthesized AlMg1 SiCu/titanium carbide/molybdenum disulfide hybrid composites[J]. Materials Research Express,2019,6:12.
|
[10] |
NIAN Jingyan, CHEN Liwei, GUO Zhiguang, et al. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum[J]. Friction,2017,5(1):23-31. doi: 10.1007/s40544-016-0128-4
|
[11] |
RAKESH K G, SURESH K R N. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface & Coatings Technology,2017,332:341-350.
|
[12] |
MARTIN J M, DONNET C, MOGNE T L, et al. Superlubricity of molybdenum disulphide[J]. Physical Review B,1993,48(14):10583-10586. doi: 10.1103/PhysRevB.48.10583
|
[13] |
KHARA H. S, BURRIS D. L, The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide[J]. Tribology Letters,2013,52(3):485-493. doi: 10.1007/s11249-013-0233-8
|
[14] |
MURATORE C, BULTMAN J E, AOUADI S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear,2011,270(3):140-145.
|
[15] |
SPYCHALSKI W L, PISAREK M, SZOSEKIEWICZ R. Microscale Insight Into Oxidation of Single MoS2 Crystals in Air[J]. The Journal of Physical Chemistry C,2017,121(46):26027-26033. doi: 10.1021/acs.jpcc.7b05405
|
[16] |
MOHAMMAD R. V, ASHLIE M, DAVID A S, et al. Solid Lubrication with MoS2: A Review[J]. Lubricants,2019,7(7):57. doi: 10.3390/lubricants7070057
|
[17] |
MENG Fanming, YANG Chengzhang, HAN Huali, et al. Study on tribological performances of MoS2 coating at high temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology,2018,232(8):964-973. doi: 10.1177/1350650117735272
|
[18] |
ZHAI Jiao, LI Yujin, ZHAO Lican, et al. Exploring the effects of boron nitride coating on the thermal stability and photoluminescence properties of molybdenum disulfide nanospheres[J]. Ceramics International,2019,45(17):23694-23700. doi: 10.1016/j.ceramint.2019.08.084
|
[19] |
TIAN Yumeng, ZHAO Jingzhe, FU Wuyou. A facile route to synthesis of MoS2 nanorods[J]. Materials Letters,2005,59(27):3452-3455. doi: 10.1016/j.matlet.2005.06.012
|
[20] |
ROSENTSEVIG R, GORODNEV A, FEUERSTEIN N, et al. Fullerene-like MoS2 Nanoparticles and Their Tribological Behavior[J]. Tribology Letters,2009,36:175-182. doi: 10.1007/s11249-009-9472-0
|
[21] |
LEE Yihsien, ZHNG Xinquan, ZHANG Wenijng, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition.[J]. Advanced materials (Deerfield Beach, Fla. ),2012,24(17):2320-2325. doi: 10.1002/adma.201104798
|
[22] |
VOLLATH D, SZABO D. V, Synthesis of Nanocrystalline MoS2 and WS2 in a Microwave Plasma[J]. Materials Letters,1998,35(3):236-244.
|
[23] |
LU Junpeng, LU Jiahui, LIU Hongwei, et al. Improved photoelectrical properties of MoS2 films after laser micromachining.[J]. ACS nano,2014,8(6):6334-6343. doi: 10.1021/nn501821z
|
[24] |
LI Ning, CHAI Yongming, LI Yanpeng, et al. Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres[J]. Materials Letters,2012,66(1):236-238. doi: 10.1016/j.matlet.2011.08.092
|
[25] |
PARK S. K, YU S. H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties[J]. CRYSTENGCOMM,2012,14(24):8323-8325. doi: 10.1039/c2ce26447a
|
[26] |
ZHANG Xianghua, HUANG Xiaohai, XUE Maoquan, et al. Hydrothermal synthesis and characterization of 3 D flower-like MoS2 microspheres[J]. Materials Letters,2015,148:67-70. doi: 10.1016/j.matlet.2015.02.027
|
[27] |
ZHOU Xiaoping, XU Bing, LIN Zhengfeng, et al. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.[J]. Journal of nanoscience and nanotechnology,2014,14(9):7250-7254. doi: 10.1166/jnn.2014.8929
|
[28] |
CHAO Yanhong, ZHU Wenshua, WU Xiangyang, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal,2014,243:60-67. doi: 10.1016/j.cej.2013.12.048
|
[29] |
WANG Xiwen, ZHANG Zhian, CHEN Yaqiong et al. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. Journal of Alloys and Compounds,2014,600:84-90. doi: 10.1016/j.jallcom.2014.02.127
|
[30] |
HU Kunhong, HU Xianguo, XU Yufu, et al. The Effect of Morphology on the Tribological Properties of MoS2 in Liquid Paraffin[J]. Tribology Letters,2010,40(1):155-165. doi: 10.1007/s11249-010-9651-z
|
[31] |
傅重源, 邢淞, 沈涛, 等. 水热法合成纳米花状二硫化钼及其微观结构表征[J]. 物理学报, 2015, 64(1):212-217. doi: 10.7498/aps.64.016102FU Chongyuan, XING Song, SHEN Tao, et al. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method[J]. Acta Physica Sinica,2015,64(1):212-217(in Chinese). doi: 10.7498/aps.64.016102
|
[32] |
ZHANG Zhenwei, WANG Peng, WANG Fei, et al. Controlling dispersion and morphology of MoS2 nanospheres by hydrothermal method using SiO2 as template[J]. Chinese Journal of Chemical Engineering,2018,26(5):1229-1234. doi: 10.1016/j.cjche.2017.12.016
|
[33] |
YIN Yuhang, XU Pengfei, FANG Jiabin, et al. Effect of fly ash cenosphere@SiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools[J]. Diamond and Related Materials,2020,103:107703. doi: 10.1016/j.diamond.2020.107703
|
[34] |
LI Hong, ZHANG Qing, YAP C C R, et al. From Bulk to Monolayer MoS2: Evolution of Raman Scattering[J]. Advanced Functional Materials,2012,22(7):1385-1390. doi: 10.1002/adfm.201102111
|
[35] |
MESTL G, RUIZ P, DELMON B, et al. Oxygen-Exchange Properties of MoO3: An in situ Raman Spectroscopy Study[J]. Journal of Physical Chemistry,1994,98(44):11269-11275. doi: 10.1021/j100095a007
|
[36] |
SANTOS E. B, SILVA J. M D, MAZALI I. O. Raman spectroscopy as a tool for the elucidation of nanoparticles with core-shell structure of TiO2 and MoO3[J]. Vibrational Spectroscopy,2010,54(2):89-92. doi: 10.1016/j.vibspec.2010.03.010
|