留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能

吴彤 高原 王伟 王快社

吴彤, 高原, 王伟, 等. 核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 吴彤, 高原, 王伟, 等. 核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能[J]. 复合材料学报, 2023, 41(0): 1-11
Tong WU, Yuan GAO, Wei WANG, Kuaishe WANG. Preparation and High Temperature Tribological Properties of Core-Shell MoS2@SiO2 Nanocomposites[J]. Acta Materiae Compositae Sinica.
Citation: Tong WU, Yuan GAO, Wei WANG, Kuaishe WANG. Preparation and High Temperature Tribological Properties of Core-Shell MoS2@SiO2 Nanocomposites[J]. Acta Materiae Compositae Sinica.

核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能

基金项目: 国家自然科学基金项目(52005386)和陕西省创新能力支撑计划科技创新团队项目(2022TD-30)资助
详细信息
    通讯作者:

    高原,博士,副教授,硕士生导师, E-mail: yuan-gao@xauat.edu.cn

  • 中图分类号: TB332

Preparation and High Temperature Tribological Properties of Core-Shell MoS2@SiO2 Nanocomposites

Funds: National Natural Science Foundation of China (52005386) and The Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan, China (2022TD-30)
  • 摘要: 二硫化钼(MoS2)因其独特的层状结构而具有优异的润滑性能,成为近年来摩擦学领域的研究热点之一。然而MoS2高温下易发生氧化导致润滑失效,最高使用温度仅为400℃,限制了MoS2的发展和应用。采用水热法制备平均粒径为200 nm的MoS2纳米花,再用改良Stöber法制备了核壳MoS2@SiO2纳米复合材料,包覆结构完整,包覆层均匀,平均厚度30 nm。采用浆料法和喷涂技术制备了MoS2@ SiO2粘结固体润滑涂层,利用MoS2涂层作为对比,并研究了涂层的在680℃下的摩擦磨损性能。结果表明,在680℃下,MoS2@SiO2涂层的摩擦学性能优于MoS2涂层。MoS2@SiO2涂层磨损率为2.58×10-3 mm3·N-1·m-1,比MoS2涂层低25.86%。MoS2@SiO2涂层的磨痕里存在MoS2,可以证明SiO2外壳的保护延缓了MoS2的氧化。MoS2@SiO2复合材料的制备和高温摩擦性能Preparation and high temperature tribological properties of MoS2@SiO2 composites

     

  • 图  1  (a) MoS2@SiO2的合成示意图;(b) 摩擦磨损试验示意图

    Figure  1.  (a) Schematic of the preparation of MoS2@SiO2;(b) Schematic of friction and wear tests

    图  2  (a) MoS2和(b) MoS2@SiO2的SEM图像;(c) MoS2 和(d) MoS2@SiO2的TEM图像

    Figure  2.  SEM images of (a) MoS2 and (b) MoS2@SiO2;TEM images of (c) MoS2 and (d) MoS2@SiO2

    图  3  (a) MoS2@SiO2的EDS面扫描图像;相应的EDS元素分布图:(b)Si, (c) O, (d) Mo and (e)S;(f) MoS2@SiO2的EDS光谱数据

    Figure  3.  (a)The EDS map scanning profile across the MoS2@SiO2;The corresponding EDS elemental mapping of (b)Si,(c) O ,(d) Mo and (e)S; (f) EDS spectrum data of MoS2@SiO2

    图  4  (a) MoS2和MoS2@SiO2的XRD衍射图谱;(b) MoS2和MoS2@SiO2的拉曼图谱

    Figure  4.  (a) XRD patterns of MoS2 and MoS2@SiO2; (b) Raman spectrum of MoS2 and MoS2@SiO2

    图  5  MoS2和MoS2@SiO2的TG和DSC曲线

    Figure  5.  TG and DSC curves of MoS2 and MoS2@SiO2

    图  6  MoS2和MoS2@SiO2在纯水中的粒径分布曲线

    Figure  6.  Particle size distribution curves of MoS2 and MoS2@SiO2 in water

    图  7  MoS2涂层(a)和MoS2@SiO2涂层(b)的SEM图像和元素分布

    Figure  7.  SEM images and elemental distributions of MoS2 coating (a) and MoS2@SiO2 coating (b)

    图  8  (a) MoS2涂层和MoS2@SiO2涂层的XRD衍射图谱;(b) MoS2涂层和MoS2@SiO2涂层在680℃高温摩擦实验之后的XRD衍射图

    Figure  8.  (a) XRD patterns of MoS2 coating and MoS2@SiO2 coating;(b) XRD patterns of MoS2 coating and MoS2@SiO2 coating after high temperature friction test at 680℃

    图  9  MoS2涂层和MoS2@SiO2涂层在680℃和室温下的摩擦系数曲线

    Figure  9.  Friction coefficient curves of MoS2 coating and MoS2@SiO2 coating at 680℃ and room temperature

    图  10  (a,b) MoS2涂层和MoS2@SiO2涂层高温摩擦实验之后的对偶球形貌;(c,d) MoS2涂层和MoS2@SiO2涂层高温摩擦实验之后的磨痕

    Figure  10.  (a, b) Friction pairs of MoS2 coating and MoS2@SiO2 coating after friction test; (c, d) Wear scar of MoS2 coating and MoS2@SiO2 coating after friction test

    图  11  (a) MoS2涂层和(b) MoS2@SiO2涂层磨损表面的三维形貌和磨痕深度曲线

    Figure  11.  3 D morphology and wear scar depth curve of (a) MoS2 coating and (b) MoS2@SiO2 coating

    图  12  MoS2涂层(a)和MoS2@SiO2涂层(b)的磨损表面形貌和元素分布

    Figure  12.  Surface morphology and element distribution at wear scar of MoS2 coating (a) and MoS2@SiO2 coating (b)

    图  13  MoS2涂层(a)和MoS2@SiO2涂层(b)磨损表面的拉曼图谱

    Figure  13.  Raman spectrum at wear scar of MoS2 coating (a) and MoS2@SiO2 (b) coating

  • [1] XIE Hongmei, JIANG Bin, HE Junjie, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International,2016,93:63-70. doi: 10.1016/j.triboint.2015.08.009
    [2] LIN Gaoxin, WANG Jiacheng. Progress and perspective on molybdenum disulfide with single-atom doping toward hydrogen evolution[J]. Chemical Journal of Chinese Universities,2022,43(9):65-78.
    [3] 张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复 合材料学报, 2022, 39(8):3882-3890.

    ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(8):3882-3890(in Chinese).
    [4] 靳欣, 朱颖, 胡文浩, 等. 原位碳包覆二硫化钼用于锂离子电池负极材料[J]. 有色金属工程, 2021, 11(6):12-16. doi: 10.3969/j.issn.2095-1744.2021.06.003

    JIN Xin, ZHU Ying, HU Wenhao, et al. In-situ carbon-coated molybdenum disulfide as anode material for lithium-ion batteries[J]. Nonferrous Metals Engineering,2021,11(6):12-16(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.06.003
    [5] CG A, JX A, LZ A, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics,2019,19(12):1318-1324. doi: 10.1016/j.cap.2019.08.017
    [6] WAN Qingming, JIN Yi, SUN Pengcheng, et al. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles[J]. Journal of Nanoparticle Research,2014,16(5):2386. doi: 10.1007/s11051-014-2386-2
    [7] HU E Z, XU Y, HU K H, et al. Tribological properties of 3 types of MoS2 additives in different base greases[J]. Lubrication Science,2017,29(8):541-555. doi: 10.1002/ls.1387
    [8] 谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3):1005-1016.

    XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica,2022,39(3):1005-1016(in Chinese).
    [9] RAJESH S, VELMURUGAN C, EBENEZER J, et al. Studies on the tribological behaviour of exsitu-synthesized AlMg1 SiCu/titanium carbide/molybdenum disulfide hybrid composites[J]. Materials Research Express,2019,6:12.
    [10] NIAN Jingyan, CHEN Liwei, GUO Zhiguang, et al. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum[J]. Friction,2017,5(1):23-31. doi: 10.1007/s40544-016-0128-4
    [11] RAKESH K G, SURESH K R N. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface & Coatings Technology,2017,332:341-350.
    [12] MARTIN J M, DONNET C, MOGNE T L, et al. Superlubricity of molybdenum disulphide[J]. Physical Review B,1993,48(14):10583-10586. doi: 10.1103/PhysRevB.48.10583
    [13] KHARA H. S, BURRIS D. L, The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide[J]. Tribology Letters,2013,52(3):485-493. doi: 10.1007/s11249-013-0233-8
    [14] MURATORE C, BULTMAN J E, AOUADI S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear,2011,270(3):140-145.
    [15] SPYCHALSKI W L, PISAREK M, SZOSEKIEWICZ R. Microscale Insight Into Oxidation of Single MoS2 Crystals in Air[J]. The Journal of Physical Chemistry C,2017,121(46):26027-26033. doi: 10.1021/acs.jpcc.7b05405
    [16] MOHAMMAD R. V, ASHLIE M, DAVID A S, et al. Solid Lubrication with MoS2: A Review[J]. Lubricants,2019,7(7):57. doi: 10.3390/lubricants7070057
    [17] MENG Fanming, YANG Chengzhang, HAN Huali, et al. Study on tribological performances of MoS2 coating at high temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology,2018,232(8):964-973. doi: 10.1177/1350650117735272
    [18] ZHAI Jiao, LI Yujin, ZHAO Lican, et al. Exploring the effects of boron nitride coating on the thermal stability and photoluminescence properties of molybdenum disulfide nanospheres[J]. Ceramics International,2019,45(17):23694-23700. doi: 10.1016/j.ceramint.2019.08.084
    [19] TIAN Yumeng, ZHAO Jingzhe, FU Wuyou. A facile route to synthesis of MoS2 nanorods[J]. Materials Letters,2005,59(27):3452-3455. doi: 10.1016/j.matlet.2005.06.012
    [20] ROSENTSEVIG R, GORODNEV A, FEUERSTEIN N, et al. Fullerene-like MoS2 Nanoparticles and Their Tribological Behavior[J]. Tribology Letters,2009,36:175-182. doi: 10.1007/s11249-009-9472-0
    [21] LEE Yihsien, ZHNG Xinquan, ZHANG Wenijng, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition.[J]. Advanced materials (Deerfield Beach, Fla. ),2012,24(17):2320-2325. doi: 10.1002/adma.201104798
    [22] VOLLATH D, SZABO D. V, Synthesis of Nanocrystalline MoS2 and WS2 in a Microwave Plasma[J]. Materials Letters,1998,35(3):236-244.
    [23] LU Junpeng, LU Jiahui, LIU Hongwei, et al. Improved photoelectrical properties of MoS2 films after laser micromachining.[J]. ACS nano,2014,8(6):6334-6343. doi: 10.1021/nn501821z
    [24] LI Ning, CHAI Yongming, LI Yanpeng, et al. Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres[J]. Materials Letters,2012,66(1):236-238. doi: 10.1016/j.matlet.2011.08.092
    [25] PARK S. K, YU S. H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties[J]. CRYSTENGCOMM,2012,14(24):8323-8325. doi: 10.1039/c2ce26447a
    [26] ZHANG Xianghua, HUANG Xiaohai, XUE Maoquan, et al. Hydrothermal synthesis and characterization of 3 D flower-like MoS2 microspheres[J]. Materials Letters,2015,148:67-70. doi: 10.1016/j.matlet.2015.02.027
    [27] ZHOU Xiaoping, XU Bing, LIN Zhengfeng, et al. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.[J]. Journal of nanoscience and nanotechnology,2014,14(9):7250-7254. doi: 10.1166/jnn.2014.8929
    [28] CHAO Yanhong, ZHU Wenshua, WU Xiangyang, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal,2014,243:60-67. doi: 10.1016/j.cej.2013.12.048
    [29] WANG Xiwen, ZHANG Zhian, CHEN Yaqiong et al. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. Journal of Alloys and Compounds,2014,600:84-90. doi: 10.1016/j.jallcom.2014.02.127
    [30] HU Kunhong, HU Xianguo, XU Yufu, et al. The Effect of Morphology on the Tribological Properties of MoS2 in Liquid Paraffin[J]. Tribology Letters,2010,40(1):155-165. doi: 10.1007/s11249-010-9651-z
    [31] 傅重源, 邢淞, 沈涛, 等. 水热法合成纳米花状二硫化钼及其微观结构表征[J]. 物理学报, 2015, 64(1):212-217. doi: 10.7498/aps.64.016102

    FU Chongyuan, XING Song, SHEN Tao, et al. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method[J]. Acta Physica Sinica,2015,64(1):212-217(in Chinese). doi: 10.7498/aps.64.016102
    [32] ZHANG Zhenwei, WANG Peng, WANG Fei, et al. Controlling dispersion and morphology of MoS2 nanospheres by hydrothermal method using SiO2 as template[J]. Chinese Journal of Chemical Engineering,2018,26(5):1229-1234. doi: 10.1016/j.cjche.2017.12.016
    [33] YIN Yuhang, XU Pengfei, FANG Jiabin, et al. Effect of fly ash cenosphere@SiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools[J]. Diamond and Related Materials,2020,103:107703. doi: 10.1016/j.diamond.2020.107703
    [34] LI Hong, ZHANG Qing, YAP C C R, et al. From Bulk to Monolayer MoS2: Evolution of Raman Scattering[J]. Advanced Functional Materials,2012,22(7):1385-1390. doi: 10.1002/adfm.201102111
    [35] MESTL G, RUIZ P, DELMON B, et al. Oxygen-Exchange Properties of MoO3: An in situ Raman Spectroscopy Study[J]. Journal of Physical Chemistry,1994,98(44):11269-11275. doi: 10.1021/j100095a007
    [36] SANTOS E. B, SILVA J. M D, MAZALI I. O. Raman spectroscopy as a tool for the elucidation of nanoparticles with core-shell structure of TiO2 and MoO3[J]. Vibrational Spectroscopy,2010,54(2):89-92. doi: 10.1016/j.vibspec.2010.03.010
  • 加载中
计量
  • 文章访问数:  194
  • HTML全文浏览量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-21
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回