Preparation of highly transparent TiO2/SiO2 nanocomposite thin films with superhydrophilic self-cleaning properties
-
摘要: 采用溶胶-凝胶法制备了不同摩尔比的TiO2/SiO2薄膜,该薄膜不仅具有超亲水性,而且具有高透光自清洁性能。超亲水性使得薄膜具有良好的防雾、防污性能,自清洁性质使其拥有光催化分解去除有机物的性能。红外光谱分析和 X 射线光电子能谱分析表明,硅元素已被成功引入到二氧化钛晶体的主体中,这不仅减小了薄膜上水滴的接触角,还提高了薄膜的透明度,使其适用于透镜和反射镜等光学设备。该超亲水性薄膜可在一定光照时间内除去表面上的油酸,并能够在黑暗环境14天内保持良好的亲水性,具有稳定的超亲水性能。试验结果表明,硅含量为10%的TiO2/SiO2薄膜应用于玻璃基底上具有最好的光学性能和光催化性能,而XPS刻蚀试验能谱表明Si成功引入了TiO2中,这不仅导致薄膜上水滴的接触角降低,而且提高了薄膜的透光性能,使之能够应用在镜头、太阳能电池板等以硅片为基底的材料表面。Abstract: TiO2/SiO2 films with different molar ratios Ti/Si were prepared by a sol-gel method. The films not only have super hydrophilicity, but also have high light transmittance and self-cleaning properties. The superhydrophilicity of the film endows it with excellent anti-fog and anti-fouling properties, while its self-cleaning properties enable it to exhibit photocatalytic decomposition and removal of organic matters. Infrared spectroscopy and X-ray photoelectron spectroscopy indicate that silicon element has been successfully introduced into the bulk of TiO2 crystal, which not only reduces the contact angle of water droplets on the film, but also improves the transparency of the film, making it suitable for use in optical devices such as lenses and mirrors. This superhydrophilic film can remove oleic acid on the film surface within a certain period of light exposure and maintain good hydrophilicity in a dark for 14 days, and it still exhibits stable superhydrophilic properties. The experimental results show that TiO2/SiO2 films with 10% silicon content have the best optical and photocatalytic properties when applied to glass substrates, while the energy spectrum of the XPS etching test shows that Si has been successfully introduced into TiO2, which not only leads to a decrease in the contact angle of the water droplets on the film but also improves the light transmittance of the film, enabling it to be applied to the surface of silicon wafer-based materials such as lenses and solar cell panels.
-
Key words:
- Multifunctional film /
- nanocomposite film /
- Superhydrophilic /
- Photocatalysis /
- Self-cleaning
-
图 11 (a) (b)空白玻璃与TiO2/SiO2薄膜滴加油酸并用水冲洗后薄的对比, (c) TiO2/SiO2薄膜涂上一层油酸光照前后的红外光谱,(d) TiO2/SiO2薄膜涂上一层油酸光照后的水滴接触角变化
Figure 11. (a) (b) Comparison of blank glass and TiO2/SiO2 film rinsed with water after adding a drop of refueling acid, (c) Infrared spectra of oleic acid on TiO2/SiO2 film before and after illumination, (d) change in contact angle of water droplet on TiO2/SiO2 film after illumination with a layer of oleic acid
-
[1] SONGPANIT M, LIMWICHEAN S, HORPRATHUM M, et al. The Addition of TiO2 Ratios in SiO2–TiO2 Nanocomposite by Sonochemical Process for the Enhancement in Self-cleaning Property; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2023 [C]. IOP Publishing. [2] KITAMURA S, KANNO Y, WATANABE M, et al. Films with tunable graded refractive index consisting of spontaneously formed mesoporous silica nanopinnacles[J]. Acs Photonics, 2014, 1(1): 47-52. doi: 10.1021/ph400036a [3] YUN J, BAE T-S, KWON J-D, et al. Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition[J]. Nanoscale, 2012, 4(22): 7221-7230. doi: 10.1039/c2nr32381h [4] KLOBUKOWSKI E R, TENHAEFF W E, MCCAMY J W, et al. Atmospheric pressure chemical vapor deposition of high silica SiO2–TiO2 antireflective thin films for glass based solar panels[J]. Journal of Materials Chemistry C, 2013, 1(39): 6188-6190. doi: 10.1039/c3tc31465k [5] ARIGA K, YAMAUCHI Y, RYDZEK G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution[J]. Chemistry Letters, 2014, 43(1): 36-68. doi: 10.1246/cl.130987 [6] ZHOU G, HE J, XU L. Antifogging antireflective coatings on Fresnel lenses by integrating solid and mesoporous silica nanoparticles[J]. Microporous and mesoporous materials, 2013, 176: 41-7. doi: 10.1016/j.micromeso.2013.03.038 [7] ADAK D, GHOSH S, CHAKRABARTY P, et al. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications[J]. Solar Energy, 2017, 155: 410-418. doi: 10.1016/j.solener.2017.06.014 [8] TAO C, ZOU X, DU K, et al. Fabrication of robust, self-cleaning, broadband TiO2-SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process[J]. Journal of alloys and compounds, 2018, 747: 43-49. doi: 10.1016/j.jallcom.2018.03.008 [9] GAO L, HE J. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings[J]. Journal of colloid and interface science, 2013, 396: 152-159. doi: 10.1016/j.jcis.2013.01.014 [10] HUANG J, LI S, GE M, et al. Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil–water separation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2825-2832. doi: 10.1039/C4TA05332J [11] 张炜亮, 邓莉, 张田田, 等. 基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能[J]. 复合材料学报, 2025, 42.ZHANG Weiliang, DENG Li, ZHANG Tiantian, et al. Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/ aramid nanofibers “grape” structure[J]. Acta Materiae Compositae Sinica, 2025, 42 (in Chinese). [12] 周茜, 张瑶, 陈蓉, 等. SiO2 表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响[J]. 复合材料学报, 2020, 37(9): 2144-2151.ZHOU Qian, ZHANG Yao, CHEN Rong, et al. Effect of surface modification of SiO2 on properties of highly filled SiO2/polytetrafluoroethylene composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2144-2151(in Chinese). [13] 刘春荣, 刘思思, 邓宇星, 等. 高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能[J]. 复合材料学报, 2025, 42.LIU Chunrong, LIU Sisi, DENG Yuxing, et al. Preparation and tribological properties of high density polyethylene based hydrogel composite coating[J]. Acta Materiae Compositae Sinica, 2025, 42: (in Chinese). [14] RUPP F, HAUPT M, KLOSTERMANN H, et al. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications[J]. Acta biomaterialia, 2010, 6(12): 4566-4577. doi: 10.1016/j.actbio.2010.06.021 [15] TAO C, ZHANG L. Fabrication of multifunctional closed-surface SiO2-TiO2 antireflective thin films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124045. doi: 10.1016/j.colsurfa.2019.124045 [16] 田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米 SiO2 复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J]. 复合材料学报, 2025, 42:TIAN J F, YANG Z J, YANG G J, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2025, 42: (in Chinese). [17] KE C, ZHANG C, JIANG Y. Robust transparent superhydrophilic antifogging coatings on glass substrates by a facile rapid thermal process[J]. Materials Science and Engineering: B, 2023, 298: 116901. doi: 10.1016/j.mseb.2023.116901 [18] ZHOU J, TAN Z, LIU Z, et al. Preparation of transparent fluorocarbon/TiO2-SiO2 composite coating with improved self-cleaning performance and anti-aging property[J]. Applied Surface Science, 2017, 396: 161-168. doi: 10.1016/j.apsusc.2016.11.014 [19] CHEN Q, JIANG D, SHI W, et al. Visible-light-activated Ce–Si co-doped TiO2 photocatalyst[J]. Applied Surface Science, 2009, 255(18): 7918-7924. doi: 10.1016/j.apsusc.2009.04.167 [20] CHEN Q, SHI H, SHI W, et al. Enhanced visible photocatalytic activity of titania–silica photocatalysts: effect of carbon and silver doping[J]. Catalysis Science & Technology, 2012, 2(6): 1213-1220. [21] BAPAT R A, LIBAT R, YUIN O S, et al. Antimicrobial FiteBac® K21 promotes antimicrobial Potency and wound healing[J]. Heliyon, 2023, 9(8): e19282. doi: 10.1016/j.heliyon.2023.e19282 [22] GULDIN S, KOHN P, STEFIK M, et al. Self-cleaning antireflective optical coatings[J]. Nano letters, 2013, 13(11): 5329-5335. doi: 10.1021/nl402832u [23] SHAHNOOSHI M, ESHAGHI A, AGHAEI A A. Transparent anti-fogging and anti-scratch SiO2/SiO2–TiO2 thin film on polycarbonate substrate[J]. Materials Research Express, 2019, 6(8): 086447. doi: 10.1088/2053-1591/ab2443 [24] TRICOLI A, RIGHETTONI M, PRATSINIS S E. Anti-fogging nanofibrous SiO2 and nanostructured SiO2−TiO2 films made by rapid flame deposition and in situ annealing[J]. Langmuir, 2009, 25(21): 12578-12584. doi: 10.1021/la901759p [25] KHAJEH AMINIAN M, SAJADI F, MOHAMMADIZADEH M, et al. Hydrophilic and photocatalytic properties of TiO2/SiO2 nano-layers in dry weather[J]. Progress in Color, Colorants and Coatings, 2021, 14(3): 221-232. [26] LONG J, LI Y, OUYANG Z, et al. A universal approach to recover the original superhydrophilicity of micro/nano-textured metal or metal oxide surfaces[J]. Journal of colloid and interface science, 2022, 628: 534-544. doi: 10.1016/j.jcis.2022.08.039 [27] 中国石油和化学工业联合会. 色漆和清漆铅笔法测定膜硬度: GB/T 6739—2022[S]. 北京: 中国标准出版社, 2022.China Petroleum and Chemical Industry Federation. Paints and varnishes-Determination of film hardness by pencil test: GB/T 6739—2022[S]. Beijing: China Standards Press, 2022(in Chinese). [28] KALEJI B K, HOSSEINABADI N. Enhanced photoinduced super-hydrophilicity in sol–gel TiO2 thin films with co-doped Sn/Nb[J]. Journal of sol-gel science and technology, 2014, 69: 412-417. doi: 10.1007/s10971-013-3235-y
计量
- 文章访问数: 61
- HTML全文浏览量: 41
- 被引次数: 0