留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高透光纳米复合TiO2/SiO2超亲水自清洁薄膜的制备及性能

刘入清 刘浩迪 李鹏勃 陈其凤

刘入清, 刘浩迪, 李鹏勃, 等. 高透光纳米复合TiO2/SiO2超亲水自清洁薄膜的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 刘入清, 刘浩迪, 李鹏勃, 等. 高透光纳米复合TiO2/SiO2超亲水自清洁薄膜的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-10.
LIU Ruqing, LIU Haodi, LI Pengbo, et al. Preparation of highly transparent TiO2/SiO2 nanocomposite thin films with superhydrophilic self-cleaning properties[J]. Acta Materiae Compositae Sinica.
Citation: LIU Ruqing, LIU Haodi, LI Pengbo, et al. Preparation of highly transparent TiO2/SiO2 nanocomposite thin films with superhydrophilic self-cleaning properties[J]. Acta Materiae Compositae Sinica.

高透光纳米复合TiO2/SiO2超亲水自清洁薄膜的制备及性能

基金项目: 国家自然科学基金 (22076063);山东省自然科学基金 (ZR2020MB033)
详细信息
    通讯作者:

    陈其凤,博士研究生,教授,硕士生导师,研究方向为微/纳米功能材料与光催化 E-mail: qfchen@126.com

  • 中图分类号: TB332

Preparation of highly transparent TiO2/SiO2 nanocomposite thin films with superhydrophilic self-cleaning properties

Funds: National Natural Science Foundation of China (22076063); Natural Science Foundation of Shandong Province (ZR2020MB033)
  • 摘要: 采用溶胶-凝胶法制备了不同摩尔比的TiO2/SiO2薄膜,该薄膜不仅具有超亲水性,而且具有高透光自清洁性能。超亲水性使得薄膜具有良好的防雾、防污性能,自清洁性质使其拥有光催化分解去除有机物的性能。红外光谱分析和 X 射线光电子能谱分析表明,硅元素已被成功引入到二氧化钛晶体的主体中,这不仅减小了薄膜上水滴的接触角,还提高了薄膜的透明度,使其适用于透镜和反射镜等光学设备。该超亲水性薄膜可在一定光照时间内除去表面上的油酸,并能够在黑暗环境14天内保持良好的亲水性,具有稳定的超亲水性能。试验结果表明,硅含量为10%的TiO2/SiO2薄膜应用于玻璃基底上具有最好的光学性能和光催化性能,而XPS刻蚀试验能谱表明Si成功引入了TiO2中,这不仅导致薄膜上水滴的接触角降低,而且提高了薄膜的透光性能,使之能够应用在镜头、太阳能电池板等以硅片为基底的材料表面。

     

  • 图  1  不同Si含量的TiO2粉末的XRD谱

    Figure  1.  XRD spectra of TiO2 powders with different Si doping content

    图  2  80%TiO2/20%SiO2薄膜的SEM图片

    Figure  2.  SEM image of 80%TiO2/20%SiO2 film

    图  3  TiO2/SiO2粉末的TEM (a) 和HRTEM (b) 图片, (c-d) TiO2/SiO2薄膜的TEM图片

    Figure  3.  TEM (a) and HRTEM (b) of TiO2/SiO2 powder, (c-d) TEM of TiO2/SiO2 film

    图  4  TiO2/SiO2粉末的 X 射线光电子能谱 (XPS)

    Figure  4.  X-ray photoelectron spectroscopy (XPS) of TiO2/SiO2 powder

    图  5  TiO2/SiO2粉末的红外光谱

    Figure  5.  Fourier-transformed infrared spectra of TiO2/SiO2 powder

    图  6  空白玻璃和TiO2/SiO2薄膜的透射光谱

    Figure  6.  Transmission spectra of blank glass and TiO2/SiO2 film

    图  7  TiO2/SiO2粉末对甲醛的光催化降解效果

    Figure  7.  Photocatalytic degradation performance of formaldehyde over different TiO2/SiO2 powder

    图  8  5 μL的水滴在TiO2/SiO2薄膜迅速扩散平铺

    Figure  8.  Rapid spread of 5 μL of water droplets on the TiO2/SiO2 film

    图  9  水滴在TiO2/SiO2等以硅片为基底样品的不同接触角

    Figure  9.  Different contact angles of water droplet on various TiO2/SiO2 coatings on silicon wafers substrate

    图  10  TiO2/SiO2薄膜(左侧) 和普通玻璃片(右侧) 的防雾性能对比

    Figure  10.  Comparison of anti-fog performance of TiO2/SiO2 film (left) and normal glass sheets (right)

    图  11  (a) (b)空白玻璃与TiO2/SiO2薄膜滴加油酸并用水冲洗后薄的对比, (c) TiO2/SiO2薄膜涂上一层油酸光照前后的红外光谱,(d) TiO2/SiO2薄膜涂上一层油酸光照后的水滴接触角变化

    Figure  11.  (a) (b) Comparison of blank glass and TiO2/SiO2 film rinsed with water after adding a drop of refueling acid, (c) Infrared spectra of oleic acid on TiO2/SiO2 film before and after illumination, (d) change in contact angle of water droplet on TiO2/SiO2 film after illumination with a layer of oleic acid

    图  12  TiO2/SiO2薄膜的耐久性测试

    Figure  12.  Durability testing of TiO2/SiO2 film

    图  13  TiO2/SiO2薄膜的铅笔硬度测试

    Figure  13.  pencil hardness testing of TiO2/SiO2 film

    图  14  TiO2/SiO2薄膜的化学稳定性测试

    Figure  14.  Chemical stability testing of TiO2/SiO2 film

  • [1] SONGPANIT M, LIMWICHEAN S, HORPRATHUM M, et al. The Addition of TiO2 Ratios in SiO2–TiO2 Nanocomposite by Sonochemical Process for the Enhancement in Self-cleaning Property; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2023 [C]. IOP Publishing.
    [2] KITAMURA S, KANNO Y, WATANABE M, et al. Films with tunable graded refractive index consisting of spontaneously formed mesoporous silica nanopinnacles[J]. Acs Photonics, 2014, 1(1): 47-52. doi: 10.1021/ph400036a
    [3] YUN J, BAE T-S, KWON J-D, et al. Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition[J]. Nanoscale, 2012, 4(22): 7221-7230. doi: 10.1039/c2nr32381h
    [4] KLOBUKOWSKI E R, TENHAEFF W E, MCCAMY J W, et al. Atmospheric pressure chemical vapor deposition of high silica SiO2–TiO2 antireflective thin films for glass based solar panels[J]. Journal of Materials Chemistry C, 2013, 1(39): 6188-6190. doi: 10.1039/c3tc31465k
    [5] ARIGA K, YAMAUCHI Y, RYDZEK G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution[J]. Chemistry Letters, 2014, 43(1): 36-68. doi: 10.1246/cl.130987
    [6] ZHOU G, HE J, XU L. Antifogging antireflective coatings on Fresnel lenses by integrating solid and mesoporous silica nanoparticles[J]. Microporous and mesoporous materials, 2013, 176: 41-7. doi: 10.1016/j.micromeso.2013.03.038
    [7] ADAK D, GHOSH S, CHAKRABARTY P, et al. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications[J]. Solar Energy, 2017, 155: 410-418. doi: 10.1016/j.solener.2017.06.014
    [8] TAO C, ZOU X, DU K, et al. Fabrication of robust, self-cleaning, broadband TiO2-SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process[J]. Journal of alloys and compounds, 2018, 747: 43-49. doi: 10.1016/j.jallcom.2018.03.008
    [9] GAO L, HE J. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings[J]. Journal of colloid and interface science, 2013, 396: 152-159. doi: 10.1016/j.jcis.2013.01.014
    [10] HUANG J, LI S, GE M, et al. Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil–water separation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2825-2832. doi: 10.1039/C4TA05332J
    [11] 张炜亮, 邓莉, 张田田, 等. 基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能[J]. 复合材料学报, 2025, 42.

    ZHANG Weiliang, DENG Li, ZHANG Tiantian, et al. Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/ aramid nanofibers “grape” structure[J]. Acta Materiae Compositae Sinica, 2025, 42 (in Chinese).
    [12] 周茜, 张瑶, 陈蓉, 等. SiO2 表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响[J]. 复合材料学报, 2020, 37(9): 2144-2151.

    ZHOU Qian, ZHANG Yao, CHEN Rong, et al. Effect of surface modification of SiO2 on properties of highly filled SiO2/polytetrafluoroethylene composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2144-2151(in Chinese).
    [13] 刘春荣, 刘思思, 邓宇星, 等. 高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能[J]. 复合材料学报, 2025, 42.

    LIU Chunrong, LIU Sisi, DENG Yuxing, et al. Preparation and tribological properties of high density polyethylene based hydrogel composite coating[J]. Acta Materiae Compositae Sinica, 2025, 42: (in Chinese).
    [14] RUPP F, HAUPT M, KLOSTERMANN H, et al. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications[J]. Acta biomaterialia, 2010, 6(12): 4566-4577. doi: 10.1016/j.actbio.2010.06.021
    [15] TAO C, ZHANG L. Fabrication of multifunctional closed-surface SiO2-TiO2 antireflective thin films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124045. doi: 10.1016/j.colsurfa.2019.124045
    [16] 田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米 SiO2 复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J]. 复合材料学报, 2025, 42:

    TIAN J F, YANG Z J, YANG G J, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2025, 42: (in Chinese).
    [17] KE C, ZHANG C, JIANG Y. Robust transparent superhydrophilic antifogging coatings on glass substrates by a facile rapid thermal process[J]. Materials Science and Engineering: B, 2023, 298: 116901. doi: 10.1016/j.mseb.2023.116901
    [18] ZHOU J, TAN Z, LIU Z, et al. Preparation of transparent fluorocarbon/TiO2-SiO2 composite coating with improved self-cleaning performance and anti-aging property[J]. Applied Surface Science, 2017, 396: 161-168. doi: 10.1016/j.apsusc.2016.11.014
    [19] CHEN Q, JIANG D, SHI W, et al. Visible-light-activated Ce–Si co-doped TiO2 photocatalyst[J]. Applied Surface Science, 2009, 255(18): 7918-7924. doi: 10.1016/j.apsusc.2009.04.167
    [20] CHEN Q, SHI H, SHI W, et al. Enhanced visible photocatalytic activity of titania–silica photocatalysts: effect of carbon and silver doping[J]. Catalysis Science & Technology, 2012, 2(6): 1213-1220.
    [21] BAPAT R A, LIBAT R, YUIN O S, et al. Antimicrobial FiteBac® K21 promotes antimicrobial Potency and wound healing[J]. Heliyon, 2023, 9(8): e19282. doi: 10.1016/j.heliyon.2023.e19282
    [22] GULDIN S, KOHN P, STEFIK M, et al. Self-cleaning antireflective optical coatings[J]. Nano letters, 2013, 13(11): 5329-5335. doi: 10.1021/nl402832u
    [23] SHAHNOOSHI M, ESHAGHI A, AGHAEI A A. Transparent anti-fogging and anti-scratch SiO2/SiO2–TiO2 thin film on polycarbonate substrate[J]. Materials Research Express, 2019, 6(8): 086447. doi: 10.1088/2053-1591/ab2443
    [24] TRICOLI A, RIGHETTONI M, PRATSINIS S E. Anti-fogging nanofibrous SiO2 and nanostructured SiO2−TiO2 films made by rapid flame deposition and in situ annealing[J]. Langmuir, 2009, 25(21): 12578-12584. doi: 10.1021/la901759p
    [25] KHAJEH AMINIAN M, SAJADI F, MOHAMMADIZADEH M, et al. Hydrophilic and photocatalytic properties of TiO2/SiO2 nano-layers in dry weather[J]. Progress in Color, Colorants and Coatings, 2021, 14(3): 221-232.
    [26] LONG J, LI Y, OUYANG Z, et al. A universal approach to recover the original superhydrophilicity of micro/nano-textured metal or metal oxide surfaces[J]. Journal of colloid and interface science, 2022, 628: 534-544. doi: 10.1016/j.jcis.2022.08.039
    [27] 中国石油和化学工业联合会. 色漆和清漆铅笔法测定膜硬度: GB/T 6739—2022[S]. 北京: 中国标准出版社, 2022.

    China Petroleum and Chemical Industry Federation. Paints and varnishes-Determination of film hardness by pencil test: GB/T 6739—2022[S]. Beijing: China Standards Press, 2022(in Chinese).
    [28] KALEJI B K, HOSSEINABADI N. Enhanced photoinduced super-hydrophilicity in sol–gel TiO2 thin films with co-doped Sn/Nb[J]. Journal of sol-gel science and technology, 2014, 69: 412-417. doi: 10.1007/s10971-013-3235-y
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 录用日期:  2024-09-14
  • 网络出版日期:  2024-09-20

目录

    /

    返回文章
    返回