留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳/碳蜂窝制备工艺及压缩与剪切行为

杨玉平 张中伟 李玮洁 武豪 董志超

杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 41(0): 1-10
Yuping YANG, Zhongwei ZHANG, Weijie LI, Hao WU, Zhichao DONG. Preparation process, compression and shear behavior of carbon/carbon honeycomb[J]. Acta Materiae Compositae Sinica.
Citation: Yuping YANG, Zhongwei ZHANG, Weijie LI, Hao WU, Zhichao DONG. Preparation process, compression and shear behavior of carbon/carbon honeycomb[J]. Acta Materiae Compositae Sinica.

碳/碳蜂窝制备工艺及压缩与剪切行为

基金项目: 国家重点研发计划 (2022YFB3706100)
详细信息
    通讯作者:

    张中伟,博士,研究员,博士生导师,研究方向为碳/碳、碳/陶、超高温陶瓷等复合材料 E-mail: zhangzhongw@163.com

    李玮洁,博士,教授,博士生导师,研究方向为新型材料和结构的力学行为 E-mail: wj.li@bjtu.edu.cn

  • 中图分类号: TB332

Preparation process, compression and shear behavior of carbon/carbon honeycomb

Funds: National Key Research and Development Program of China(2022YFB3706100)
  • 摘要: 为了满足高分辨率航天飞行器对高尺寸稳定性、轻量化和高强度承载平台结构的多重要求,采用热压成型和树脂浸渍碳化组合工艺制备了不同规格的六边形碳/碳(C/C)蜂窝结构。以碳纤维预浸料为原料,通过热压工艺成型波纹片,用无机胶粘剂粘合波纹片材形成C/C蜂窝,经过浸渍-碳化的致密化工艺,试样在高温工艺过程中未发生节点脱粘。对不同规格的蜂窝试样开展了压缩和剪切试验:表征了C/C蜂窝的面外压缩、L向与W向面内剪切性能;对比分析了不同规格的C/C蜂窝的面外压缩行为。研究表明,在不同加载方式下,C/C蜂窝主要失效模式是双层壁脱粘分层。C/C蜂窝具有较高的抗压强度和良好的力学性能,可以满足未来轻质高强航天器承载平台结构的要求。碳/碳蜂窝制备工艺流程(a)和四种规格边长蜂窝面外压缩强度(b)

     

  • 图  1  碳/碳蜂窝制备过程

    Figure  1.  Preparation process of C/C honeycomb core

    图  2  碳/碳蜂窝几何参数示意图(a)和边长10 mm蜂窝光学照片(b)

    Figure  2.  Geometric parameters C/C honeycomb core (a) and photograph (b) of honeycomb with 10 mm side length

    l—Cell side length of honeycomb core;t—Thickness of the honeycomb single wall;2t—Thickness of the honeycomb double wall;H—Height of the honeycomb core

    图  3  不同轮次树脂浸渍碳化过程后碳/碳蜂窝单层壁((a)~(c))和双层壁胶粘区域((d)~(f))的微观形貌SEM图像

    Figure  3.  SEM images of C/C honeycomb single core ((a)-(c)) and adhesive double wall ((d)-(f)) after different cycles resin impregnation-carbonization process

    图  4  10 mm边长碳/碳蜂窝及夹层结构应力-应变曲线(a)与破坏过程:(b)夹层板试样;(c)蜂窝试样

    Figure  4.  Compression stress-strain curve of C/C honeycomb core and sandwich specimens with l of 10 mm (a) and the failure progress: (b) Sandwich panel specimens; (c) Honeycomb core specimens

    图  5  不同边长碳/碳蜂窝面外压缩应力-应变曲线与破坏过程:(a)~(b)15 mm;(c)~(d)10 mm;(e)~(f)7.5 mm;(g)~(h)5 mm

    Figure  5.  Out-of-plane compression stress-strain curve and failure progress of C/C honeycomb core specimens with different cell side length: (a)-(b) 15 mm; (c)-(d) 10 mm; (e)-(f) 7.5 mm; (g)-(h) 5 mm

    图  6  10 mm边长碳/碳蜂窝面内剪切应力-应变曲线(a)与破坏过程:(b)L向剪切;(c)W向剪切

    Figure  6.  In-plane shear stress-strain curve of 10 mm side length C/C honeycomb core specimens (a) and the failure progress under different loading directions: (b) L shear; (c) W shear

    图  7  不同边长碳/碳蜂窝压缩应力-应变曲线

    Figure  7.  Compressive stress-strain curves for C/C honeycombs with different edge lengths

    图  8  不同边长碳/碳蜂窝压缩强度

    Figure  8.  Compression strength of C/C honeycombs with different side lengths

    图  9  碳/碳蜂窝芯子压缩强度与蜂格几何尺寸(t/l)的关系

    Figure  9.  C/C honeycomb core compression strength versus lattice geometry (t/l)

    表  1  不同几何规格蜂窝芯子规格参数

    Table  1.   Different test specimens of different cell length

    l/mmTest itemDensity
    ρ/(g·cm−3)
    Relative
    density ρ*/%
    15Compression0.134.6
    10Compression;shear0.186.9
    7.5Compression0.269.2
    5Compression0.3613.8
    下载: 导出CSV

    表  2  碳/碳蜂窝结构面外压缩性能和破坏模式

    Table  2.   Failure modes of the different C/C honeycomb structure specimens under various loadings

    l/mmTest itemSpecimens typeModulus/MPaStrength/MPaFailure mode
    10CompressionSandwich panel1595.1Wall delamination
    Honeycomb1683.0Wall delamination
    15CompressionHoneycomb1612.1Wall delamination
    7.5CompressionHoneycomb2436.6Core crushing
    5CompressionHoneycomb2748.2Wall delamination
    下载: 导出CSV

    表  3  边长10 mm碳/碳蜂窝剪切性能和破坏模式

    Table  3.   Failure modes of the different C/C honeycomb structure specimens under various loadings

    l/mmTest itemModulus/MPaStrength/MPaFailure mode
    10L shear601.3Core debonding
    W shear640.9Wall delamination
    下载: 导出CSV
  • [1] KASSAPOGLOU C. Design and analysis of composite structures: with applications to aerospace structures[M]. John Wiley & Sons, 2013.
    [2] TOOR Z S. Space applications of composite materials[J]. Journal of Space Technology,2018,8(1):65-70.
    [3] BAILLY B, CORNU J L, CAPDEPUY B, et al. Dimensionally stable structures[C]//Spacecraft Structures, Materials and Mechanical Engineering. 1996, 386: 361.
    [4] Li F, RUAN P, LI T, et al. Application of carbon-carbon composite for loading-carrying cylinder in lunar optical telescope[C]. SPIE-The International Society for Optical Engineering, Beijing, China, May 24, 2011.
    [5] KRUMWEIDE D E, WONACOTT G D, WOIDA P M, et al. Carbon-carbon mirrors for exoatmospheric and space applications//Optical Materials and Structures Technologies III[J]. International Society for Optics and Photonics,2007,6666:66660H.
    [6] YAO S, XIAO X, et al. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles. Thin-Walled Structure 2018; 123: 360–70
    [7] WANG J, SHI C, YANG N, et al. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body. Composite Structure 2018; 184: 1189–96
    [8] STOCCHI A, COLABELLA L, CISILINO A, et al. Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics[J]. Materials Design,2014,55:394-403. doi: 10.1016/j.matdes.2013.09.054
    [9] ALIA R A, AL-ALI O, KUMAR S, et al. The energy-absorbing characteristics of carbon fiber-reinforced epoxy honeycomb structures[J]. Journal of Composite Materials,2019,53(9):1145-1157. doi: 10.1177/0021998318796161
    [10] HAN D, TSAI S W. Interlocked composite grids design and manufacturing Composite Materials, 2003, 37: 287–316.
    [11] WEI X, LI D, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology,2019,184:107878. doi: 10.1016/j.compscitech.2019.107878
    [12] NEJE G, BEHERA B K. Failure analysis of 3 D woven spacer sandwich composites with woven cross-links and face sheet thickening under compressive and flexural loading[J]. Journal of Composite Materials,2021,55(24):3471-3481. doi: 10.1177/00219983211018733
    [13] RAJKUMAR S. Strength and stiffness characteristics of A3003 aluminum honeycomb core sandwich panels[J]. Materials Today:Proceedings,2021,37:1140-1145. doi: 10.1016/j.matpr.2020.06.348
    [14] 辛亚军, 孙帅, 杨硕, 等. 铝蜂窝夹芯板面外剪切性能试验研究与数值模拟[J]. 复合材料学报, 2022, 39(12):6119-6129. doi: 10.13801/j.cnki.fhclxb.20211125.002

    XIN Y J, SUN S, YANG S, et al. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica,2022,39(12):6119-6129(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211125.002
    [15] CHEOL W K, GI-WON N, et al. Experimental strength of composite sandwich panels with cores made of aluminum honeycomb and foam, Advanced Composite Materials, 2014, 23: 1, 43-52.
    [16] LIU Y, LIU W, GAO W, et al. Mechanical responses of a composite sandwich structure with Nomex honeycomb core[J]. Journal of Reinforced Plastics and Composites,2019,38(13):601-615. doi: 10.1177/0731684419836492
    [17] AYANOGLU M O, TAUHIDUZZAMAN M, CARLSSON L A. In-plane compression modulus and strength of Nomex honeycomb cores[J]. Journal of Sandwich Structures & Materials,2022,24(1):627-642.
    [18] PEHLIVAN L, BAYKASOĞLU C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations[J]. Composites Part B:Engineering,2019,162:653-661. doi: 10.1016/j.compositesb.2019.01.044
    [19] 吴楠, 郝旭峰, 史耀辉, 等. 高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验[J]. 复合材料学报, 2020, 37(7):1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002

    WU N, HAO X F, SHI Y H, et al. Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels[J]. Acta Materiae Compositae Sinica,2020,37(7):1619-1628(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191107.002
    [20] PANIN F, LUTZ-NIVET M, LEMAIRE H. Development of carbon-carbon sandwich panels[J]. EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP,2003,540:81-86.
    [21] LUTZ M, COMILLON L, VITUPIER Y, et al. Evaluation of ultra stable carbon /carbon sandwich structures joined with ceramic cement [C]. The 61 st International Astronautically Congress, Prague, Czech Republic, January 1, 2010.
    [22] SALVO M, CASALEGNO V, VITUPIER Y, et al. Study of joining of carbon/carbon composites for ultra stable structures[J]. Journal of the European Ceramic Society,2010(30):1751-1759.
    [23] 刘宇峰, 张中伟, 许正辉, 等. 空间高稳定碳/碳蜂窝夹层结构制备及性能[J]. 宇航学报, 2020, 41(8):1067-1075. doi: 10.3873/j.issn.1000-1328.2020.08.010

    LIU Y F, ZHANG Z W, XU Z H. et al. Preparation and Properties of Carbon /Carbon Honeycomb Sandwich Panels for Space Ultra - Stable Structures[J]. Journal of Astronautics,2020,41(8):1067-1075(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.08.010
    [24] 中国国家标准化管理委员会(标准制定单位). 夹层结构或芯子平压性能测试方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flatwise compression properties of sandwich constructions or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] 中国国家标准化管理委员会(标准制定单位). 夹层结构或芯子剪切性能测试方法: GB/T 1455—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for shear properties of sandwich constructions or cores: GB/T 1455—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26] 王中刚. 轻质蜂窝结构力学[M]. 科学出版社, 2016.

    WANG Z G. Mechanics of Lightweight Honeycomb Structures [M]. Science Press, 2016(in Chinese).
    [27] 王俊, 樊喜刚. 轻质蜂窝结构压缩性能的测试[J]. 理化检验(物理分册), 2014, 50(4):261-265+272.

    WANG J, FAN X G. Testing of compression properties of lightweight honeycomb structures[J]. Physical and Chemical Examination (Physical Branch),2014,50(4):261-265+272(in Chinese).
    [28] 刘玥. 蜂窝复合材料夹芯结构承载特性及渐进损伤失效研究 [D]. 哈尔滨工业大学, 2020.

    LIU Y. Bearing characteristics and progressive failure behavior of honeycomb composite sandwich structures [D]. Harbin Institute of Technology, 2020(in Chinese).
    [29] 周祝林, 杨云娣. 蜂窝芯子密度及平压强度的理论分析和试验比较[J]. 上海硅酸盐, 1995(1):9.

    ZHOU Z L, YANG Y D. Theoretical analysis and experimental comparison of honeycomb core density and flat compressive strength[J]. Shanghai Silicate,1995(1):9(in Chinese).
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-04-19
  • 录用日期:  2023-04-29
  • 网络出版日期:  2023-05-16

目录

    /

    返回文章
    返回