留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高分子配体修饰改善卤系钙钛矿稳定性的研究进展

马彤彤 马建中 范倩倩 张文博 刘蜜

马彤彤, 马建中, 范倩倩, 等. 基于高分子配体修饰改善卤系钙钛矿稳定性的研究进展[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 马彤彤, 马建中, 范倩倩, 等. 基于高分子配体修饰改善卤系钙钛矿稳定性的研究进展[J]. 复合材料学报, 2024, 42(0): 1-11.
MA Tongtong, MA Jianzhong, FAN Qianqian, et al. Research progress on stability improvement by polymeric ligand modification for halide perovskite[J]. Acta Materiae Compositae Sinica.
Citation: MA Tongtong, MA Jianzhong, FAN Qianqian, et al. Research progress on stability improvement by polymeric ligand modification for halide perovskite[J]. Acta Materiae Compositae Sinica.

基于高分子配体修饰改善卤系钙钛矿稳定性的研究进展

基金项目: 国家自然科学基金(No. 22378251,No. 52103088);陕西省科协青年人才托举计划项目(No.20230469)
详细信息
    通讯作者:

    马建中,博士,教授,博士生导师,研究方向为有机/无机纳米复合材料的关键技术, E-mail: majz@sust.edu.cn

    范倩倩,博士,副教授,硕士生导师,研究方向为新型钙钛矿复合光催化材料, E-mail: qianqianfan@sust.edu.cn

  • 中图分类号: TB383; TB332

Research progress on stability improvement by polymeric ligand modification for halide perovskite

Funds: National Natural Science Foundation of China (No. 22378251, No. 52103088); Youth Talent Support Program of Shaanxi Association for Science and Technology (No.20230469)
  • 摘要: 卤系钙钛矿具有吸收系数大、载流子迁移率高、荧光量子产率高、载流子寿命长、光电转化系数高、带隙可调等优异的特性,在发光二极管、太阳能电池、探测传感器、防伪等多领域,具有良好的应用前景,但其稳定性较差,易受外界环境影响(如温度、湿度),引起其发生分解、晶体结构改变、相变等,导致其光学性能减弱,局限了它的应用。目前,卤系钙钛矿稳定性仍是一个重要的研究方向。本文首先介绍了卤系钙钛矿的结构,并分析了影响卤系钙钛矿稳定性的外部因素;然后,总结了高分子配体修饰改善卤系钙钛矿稳定性的研究进展;最后,就现阶段卤系钙钛矿纳米材料研究中存在的问题及未来研究方向进行了展望。

     

  • 图  1  卤系钙钛矿的结构。(a) ABX3卤系钙钛矿的单胞晶体结构,(b)三维和(c) 二维钙钛矿材料

    Figure  1.  Figure caption structure of halide perovskite. (a) Unicellular crystal structure of ABX3 halide perovskite. (b) 3 D and (c) 2 D perovskite materials.

    图  2  卤系钙钛矿在水存在下可能的分解途径

    Figure  2.  Possible decomposition pathways of halide perovskite in the presence of water.

    图  3  碘基钙钛矿中光诱导离子重组示意图

    Figure  3.  Schematic of light-induced ionic restructuring in iodine-based perovskites.

    图  4  卤系钙钛矿-淀粉结构示意图[54-55]

    Figure  4.  Perovskite-starch structures[54-55]

    图  5  (a) 骨明胶钝化钙钛矿纳米晶的示意图; (b) 骨明胶-钙钛矿纳米晶对Fe3+离子的检测机制图[19]

    Figure  5.  (a)Bone gelatin passivation perovskite nanocrystals; (b) Detection mechanism of bone gelatin and perovskite nanocrystals for Fe3+ ions[19]

    图  6  EC与钙钛矿之间氢键形成示意图[58]

    Figure  6.  Schematic diagram of hydrogen bond formation between EC and perovskite[58]

    图  7  CsPbBr3@PAA-b-PS PQDs的示意图[60]

    Figure  7.  A schematic of CsPbBr3 @PAA-b-PS PQDs[60]

    图  8  聚酰胺(PAA)的化学结构及合成过程

    Figure  8.  The chemical structure and synthesize procedure of polyamide (PAA)

  • [1] SHARMA R, SHARMA A, AGARWAL S, et al. Stability and efficiency issues solutions and advancements in perovskite solar cells: A review[J]. Solar Energy, 2022, 244: 516-535. doi: 10.1016/j.solener.2022.08.001
    [2] 王卿, 武书凡, 钱露, 等. 离子掺杂调节钙钛矿单晶光电性能的研究进展[J]. 应用技术学报, 2023, 23(1): 10-19. doi: 10.3969/j.issn.2096-3424.2023.01.002

    WANG Qing, WU Shufan, QIAN Lu, et al. Progress in tuning the photoelectric properties of perovskite single crystals by iondoping[J]. Journal of Technology, 2023, 23(1): 10-19(in Chinese). doi: 10.3969/j.issn.2096-3424.2023.01.002
    [3] 肖慧. 几种金属卤化物(类)钙钛矿的发光调控及应用探索研究[D]. 合肥: 中国科学技术大学, 2022.

    XIAO Hui. Study on luminescence regulation and application exploration of several metal halide (quasi) perovskites[D]. He Fei: University of Science and Technology of China, 2022(in Chinese).
    [4] BARI M, WU H, BOKOV A A, et al. Room-temperature synthesis growth mechanisms and opto-electronic properties of organic–inorganic halide perovskite CH3NH3PbX3 (X = I, Br, and Cl) single crystals[J]. CrystEngComm, 2021, 23: 3326-3339. doi: 10.1039/D0CE01690J
    [5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶: 新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.

    FAN Qianqian, WEN Lu, MA Jianzhong. Lead-free halide perovskite nanocrystals: a new generation of photocatalytic materials[J]. Progress in Chemistry, 2022, 34(8): 1809-1814(in Chinese).
    [6] 欧阳子琳, 有机无机杂化二维钙钛矿设计制备及光电物性研究[D]. 成都 : 电子科技大学, 2021.

    OUYANG Zilin. Design and preparation of organic-inorganic hybrid 2D perovskite and their photoelectric properties[D]. Cheng Du: University of Electronic Science and Technology of China, 2021(in Chinese).
    [7] FU Q X, TANG X L, HUANG B, et al. Recent progress on the long-term sstability of perovskite solar cells[J]. Advanced Science, 2018, 5(5): 1700387. doi: 10.1002/advs.201700387
    [8] SHAH S A A, SAYYAD M H, SUN J H, et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells[J]. Journal of Rare Earths, 2022, 40(11): 1651-1667 doi: 10.1016/j.jre.2021.12.001
    [9] CHEN W C, HUNG C W, CHANG C H, et al. Crystal orientation and insulating ligand of quasi-two dimensional perovskite optimized through silver ion doping for realizing efficient light emitting diodes[J]. Chemical Engineering Journal, 2022, 443: 136496. doi: 10.1016/j.cej.2022.136496
    [10] ZOU H S, LIU Y S, LI J H, et al. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II)Substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139: 11443-11450. doi: 10.1021/jacs.7b04000
    [11] 胡泽浩, 陈婷, 徐彦乔, 等. 表面包覆策略: 提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 3(9): 1614-1626.

    HU Zehao, CHEN Ting, XU Yanqiao, et al. Surface coating strategy: from improving the luminescence stability to lighting and display applications of all-inorganic cesium lead halide perovskite nanocrystals[J]. Progress in Chemistry, 2021, 3(9): 1614-1626(in Chinese).
    [12] HE Q Q, WORKU M, LIU H, et al. Highly efficient and stable perovskite solar cells enabled by low-cost industrial organic pigment coating[J]. Angewandte Chemie-international Edition, 2021, 60: 2485-2492. doi: 10.1002/anie.202012095
    [13] GONG M G, SAKIDJA R, GOUL R, et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability[J]. ACS Nano, 2019, 13(2): 1772-1783.
    [14] YU M M, ZHANG D, XU Y B, et al. Surface ligand engineering of CsPbBr3 perovskite nanowires for highperformance photodetectors[J]. Journal of Colloid and Interface Science, 2022, 608: 2367-2376. doi: 10.1016/j.jcis.2021.10.141
    [15] YIN W X, LI K, Dong W, et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets[J]. ACS Energy Letters, 2021, 6(2): 477-484. doi: 10.1021/acsenergylett.0c02651
    [16] ZHU L, ZHANG X, LI M, et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency[J]. Advanced Energy Materials, 2021, 11(20): 2100529. doi: 10.1002/aenm.202100529
    [17] 范倩倩. 基于酪素胶束模板的多孔TiO2复合材料及其在功能涂层中的应用[D]. 西安: 陕西科技大学, 2019.

    FAN Qianqian. Casein micelle-templated porous TiO2 composite and its application in functional coatings[D]. Xi An: shaanxi university of science and technology, 2019(in Chinese).
    [18] LYU B, GUO X, GAO D G, et al. Highly-stable tin-based perovskite nanocrystals produced by passivation and coating of gelatin[J]. Journal of Hazardous Materials, 2021, 403: 123967 doi: 10.1016/j.jhazmat.2020.123967
    [19] GAO D G, ZHANG Y, LYU B, et al. Encapsulation of Pb-Free CsSnCl3 perovskite nanocrystals with bone gelatin: enhanced stability and application in Fe3+ sensing[J]. Inorganic Chemistry, 2022, 61: 6547-6554. doi: 10.1021/acs.inorgchem.2c00354
    [20] 卫思颖, 马建中, 范倩倩. 量子点/TiO2 复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3): 712-721.

    WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721(in Chinese).
    [21] ZHANG X, CHEN S, WANG X, et al. Controlled synthesis and photonics applications of metal halide perovskite nanowires[J]. Small Methods, 2019, 3: 1800294. doi: 10.1002/smtd.201800294
    [22] KIM E B, AKHTAR M S, SHIN H S, et al. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2021, 48: 100405. doi: 10.1016/j.jphotochemrev.2021.100405
    [23] 王蕾, 周勤, 黄禹琼, 等. 界面钝化策略: 提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.

    WANG Lei, ZHOU Qin, HUANG Yuqiong, et al. Interface passivation strategy improving the stability of perovskite socal cells[J]. Prog. Chem, 2020, 32(1): 119-132(in Chinese).
    [24] 段家顺, 彭丽萍, 于华阳, 等. 二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展[J]. 复合材料学报, 2022, 39(5): 1890-1906.

    DUAN Jiashun, PENG Liping, YU Huayang, et al. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1890-1906(in Chinese).
    [25] 黄兴, 祝文强, 李珍珍. CsPbBr3 钙钛矿的光催化 CO2 还原研究进展[J]. 复合材料学报, 2023, 40(4): 1841-1856.

    HUANG Xing, ZHU Wenqiang, LI Zhenzhen. Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1841-1856(in Chinese).
    [26] DIVITINII G, CACOVICH S, MATTEOCCI F, et al. In situ observation of heat-induced degradation of perovskite solar cells[J]. American Cancer Society, 2016, 15012.
    [27] BERT C, JEROER D, NICOALS G, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 2015, 5(15): 1-8.
    [28] ANDREAS B, FABIAN C H. PABLO D, et al. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide[J]. The Journal of Physical Chemistry Letters, 2015, 6(7): 1249-1253 doi: 10.1021/acs.jpclett.5b00380
    [29] BAIKIE T , FANG Y , KADRO J M , et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641.
    [30] STRAUS D B, GUO S, ABEYKOON A M, et al. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis[J]. Advanced Materials, 2020, 32: 2001069. doi: 10.1002/adma.202001069
    [31] HAN Y, MEYER S, DKHISSI Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. Journal of Materials Chemistry A, 2015, 3: 8139-8147. doi: 10.1039/C5TA00358J
    [32] AHMAD S, FU P, YU S, et al. Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability[J]. Joule, 2019, 3(3): 794-806. doi: 10.1016/j.joule.2018.11.026
    [33] FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells.[J]. Nano Letters, 2014, 14(5): 2584-2590. doi: 10.1021/nl500390f
    [34] 金胜利, 寿春晖, 黄绵吉, 等. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201.

    JIN Shengli, SHOU chunhui, HUANG mianji, et al. Research progress on stability of perovskite solar cells and industrialization trend of modules[J]. Materials Reports, 2023, 37(5): 21030201(in Chinese).
    [35] BRTANT D, ARISTIDOU N, PONT S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(5): 1655-1660.
    [36] BAI S , DA P , LI C , et al. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019, 571(7764): 245-250.
    [37] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nature Communications, 2017, 8: 15218. doi: 10.1038/ncomms15218
    [38] ZHU H W, TEALE S, LINTANGPRADIPTO M N, et al. Long-term operating stability in perovskite photovoltaics[J]. Nature Reviews Materials, 2023, 8: 569-586. doi: 10.1038/s41578-023-00582-w
    [39] KIM G Y, SENOCRATE A, YANG T Y, et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition[J]. Nature Materials, 2018, 17(5): 445-449. doi: 10.1038/s41563-018-0038-0
    [40] SENOCRATE A, KIM G Y, GRATZEL M, et al. Thermochemical stability of hybrid halide perovskites[J]. ACS Energy Letters, 2019, 4(12): 2859-2870. doi: 10.1021/acsenergylett.9b01605
    [41] LEHMANN F, FRANZA A, TOBBENSA D M, et al. The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-Ray Diffraction[J]. Rsc Advances, 2019, 9: 11151-11159. doi: 10.1039/C8RA09398A
    [42] KNIGHT A J, BORCHERT J, OLIVER R D J. et al. Halide segregation in mixed-halide perovskites: influence of a-site cations[J]. ACS Energy Letters, 2021, 6: 799-808. doi: 10.1021/acsenergylett.0c02475
    [43] ZHU T, TEALE S, GRATER L, et al. Coupling photogeneration with thermodynamic modeling of light-induced alloy segregation enables the discovery of stabilizing dopants[J]. arXiv, 2023, 2301: 12627.
    [44] WANG X, LING Y C, LIAN X J, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices[J]. Nature Communications, 2019, 10: 695. doi: 10.1038/s41467-019-08610-6
    [45] DUBOSE J T, KAMAT P V. Hole trapping in halide perovskites induces phase segregation[J]. Accounts of Materials Research, 2022, 3(7): 761-771. doi: 10.1021/accountsmr.2c00076
    [46] BELISLE R A, BUSH K A, BERTOLUZZI L, GOLD-PARKER A, TONEY M F, MCGEHEE M D, Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites[J]. ACS Energy Letters, 2018, 3: 2694-2700.
    [47] BAG M, RENNA L A, ADHIKARI R Y, et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability[J]. Journal of the American Chemical Society, 2015, 137(40): 13130-13137. doi: 10.1021/jacs.5b08535
    [48] TANG Y Y, LESAGE A, SCHALL P. CsPbI3 nanocrystal films: towards higher stability and efficiency[J]. Journal of Materials Chemistry C, 2020, 8: 17139-17156. doi: 10.1039/D0TC04475J
    [49] 吕斌, 提高钙钛矿量子点稳定性的研究进展[J]. 化工进展, 2021, 40(1): 247-258.

    LYU Bin, GUO Xu, GAO Dangge, et al. Research progress on the improvement of the stability of perovskite quantum dots[J]. Chemical industry and engineering progress, 2021, 40(1): 247-258. (in Chinese).
    [50] ZHANG H, NNAZEERUDDIN M K, CHOY W C H. Perovskite photovoltaics: the significant role of ligands in film formation passivation and stability[J]. Advanced Materials, 2019, 31: 1805702. doi: 10.1002/adma.201805702
    [51] 沈一鸣, 马建中, 范倩倩. 天然多糖与纳米材料在皮革无铬鞣制中的研究进展[J]. 精细化工, 2022, 39(5): 865-872.

    SHEN Yiming, MA Jianzhong, FAN Qianqian. Research progress of natural polysaccharides and nanomaterials in leather chrome-free tanning[J]. Fine Chemicals, 2022, 39(5): 865-872(in Chinese).
    [52] SHEN Y M, MA J Z, FAN Q Q, et al. Strategical development of chrome-free tanning agent by integrating layered double hydroxide with starch derivatives[J]. Carbohyd Polymers, 2023, 304: 120511. doi: 10.1016/j.carbpol.2022.120511
    [53] SHEN Y M, MA J Z, FAN Q Q, et al. One-step synthesis of starch-based composite chrome-free tanning agents via in situ catalysis using hydrotalcites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 11342-11352.
    [54] BISCONTI F, GIURUI A, SUHONEN R, et al. One-step polymer assisted roll-to-roll gravureprinted perovskite solar cells without using anti-solvent bathing[J]. Cell Reports Physical Science, 2021, 2: 100639. doi: 10.1016/j.xcrp.2021.100639
    [55] GIURI A, MASI S, LISTORTI A, et al. Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells[J]. Nano Energy, 2018, 54: 400. doi: 10.1016/j.nanoen.2018.10.039
    [56] LEONCINI M, GIANNUZZI R, GIURI A, et al. Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite[J]. Journal of Science: Advanced Materials and Devices, 2021, 6: 543-550. doi: 10.1016/j.jsamd.2021.07.006
    [57] NIU Y C, YAN Y J, OUYANG X C, et al. Highly fluorescent collagen-based quantum dots as an efficient interlinkage in the 2D perovskite bulk for improved solar cells[J]. ACS Applied Materials& Interfaces, 2022, 14: 34706-34713.
    [58] YANG J M, XIONG S B, QU T Y, et al. Extremely low-cost and Green cellulose passivating perovskites for stable and high-performance solar cells[J]. ACS Applied Materials& Interfaces, 2019, 11: 13491-13498.
    [59] LIU J Q, HE Q Q, BI J Y, et al. Remarkable quality improvement of CsPbIBr2 perovskite film by cellulose acetate addition for efficient and stable carbon-based inorganic perovskite solar cells[J]. Chemical Engineering Journal, 2021, 424: 130324. doi: 10.1016/j.cej.2021.130324
    [60] SHEN J H, MENG N, CHEN J Z, et al. Polyacrylic acid-b-polystyrene-passivated CsPbBr3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes[J]. Chemical Communications, 2022, 58: 4235-4238. doi: 10.1039/D2CC00051B
    [61] SHU Y, WANG Y, GUAN J, et al. Amphiphilic polymer ligand-assisted synthesis of highly luminescent and stable perovskite nanocrystals for sweat fluorescent sensing[J]. Analytical Chemistry, 2022, 94: 5415-5424. doi: 10.1021/acs.analchem.2c00235
    [62] LI L H, TU S L, YOU G F, et al. Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry[J]. Chemical Engineering Journal, 2022, 431: 133951. doi: 10.1016/j.cej.2021.133951
    [63] LUO H T, TU F L, CHEN X T, et al. A functionalized polyamide acid additive for perovskite solar cells with high efficiency and stability[J]. Journal of Materials Chemistry A, 2023, 11: 8791-8797. doi: 10.1039/D2TA09627G
    [64] LIU X, WU T H, CHEN J Y, et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells[J]. Energy & Environmental Science, 2020, 13: 2896-2902.
    [65] HUANG Y F, JIANG Y T, ZOU S L, et al. Substitution of ethylammonium halides enabling lead-free tin-based perovskite solar cells with enhanced efficiency and stability[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15775-15784.
    [66] GUO Y L, SHOYAMA K, SATO W, et al. Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells[J]. Advanced Energy Materials, 2016, 6: 1502317. doi: 10.1002/aenm.201502317
    [67] ZUO L J, GUO H X, QUILETTES D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells[J]. Science Advances, 2017, 3: e1700106. doi: 10.1126/sciadv.1700106
    [68] TENG H Q, MA L, CUI C H, et al. Luminescent perovskite-cross-linked olymer with low shrinkage and excellent stability[J]. ACS Applied Materials & Interfaces, 2024, 16(18): 23924-23931.
    [69] CAI W X, WANG Y D, LI W Z, et al. A single-step cleaning process for simultaneous removal of surface impurities and passivation of sub-surface defects in perovskite solar cells[J]. Advanced Energy Materials, 2024, 2304521.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-05-09
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回