留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶地聚物混凝土力学性能及阻尼特性试验研究

孙杰 陈国珍 吕康琪 王安宁

孙杰, 陈国珍, 吕康琪, 等. 橡胶地聚物混凝土力学性能及阻尼特性试验研究[J]. 复合材料学报, 2022, 39(11): 5321-5332. doi: 10.13801/j.cnki.fhclxb.20211201.002
引用本文: 孙杰, 陈国珍, 吕康琪, 等. 橡胶地聚物混凝土力学性能及阻尼特性试验研究[J]. 复合材料学报, 2022, 39(11): 5321-5332. doi: 10.13801/j.cnki.fhclxb.20211201.002
SUN Jie, CHEN Guozhen, LV Kangqi, et al. Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5321-5332. doi: 10.13801/j.cnki.fhclxb.20211201.002
Citation: SUN Jie, CHEN Guozhen, LV Kangqi, et al. Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5321-5332. doi: 10.13801/j.cnki.fhclxb.20211201.002

橡胶地聚物混凝土力学性能及阻尼特性试验研究

doi: 10.13801/j.cnki.fhclxb.20211201.002
基金项目: 湖北省建设科技计划项目(202144);湖北省教育厅科学研究计划青年人才项目(Q20201101)
详细信息
    通讯作者:

    孙杰,博士,副教授,硕士生导师,研究方向为路基路面材料、新型建筑材料 E-mail:63460968@qq.com

  • 中图分类号: TU52

Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete

  • 摘要: 为了研究橡胶地聚物混凝土的力学性能及阻尼特性,基于橡胶颗粒替代体积分数为试验参数,进行了混凝土力学性能试验和悬臂梁在低周反复作用下的自由振动试验,分析了橡胶地聚物混凝土的力学性能随橡胶颗粒替代体积分数变化的影响规律,研究了橡胶地聚物混凝土悬臂梁在不同损伤控制位移下和不同橡胶颗粒替代体积分数下的阻尼性能,建立了悬臂梁阻尼比与损伤指数之间的关系。结果表明:少量的橡胶颗粒能够提高地聚物混凝土抗折强度,改善混凝土的韧性;相同损伤指数的橡胶地聚物混凝土悬臂梁的阻尼比随着橡胶颗粒替代体积分数的增大而增大;随着损伤指数的增大,同一橡胶颗粒替代体积分数下的橡胶地聚物混凝土悬臂梁阻尼比均呈现先增大后减小的趋势;通过分析不同替代体积分数下的橡胶地聚物混凝土的弯曲动刚度、损伤指数及阻尼比和损伤指数之间的关系,采用替代体积分数为10vol%的橡胶颗粒不仅可以增强橡胶地聚物混凝土悬臂梁的阻尼特性,而且其刚度退化规律具有可控性。

     

  • 图  1  钢筋布置图

    Φ—First grade steel symbol

    Figure  1.  Reinforcement arrangement

    图  2  橡胶地聚物混凝土悬臂梁加载图

    Figure  2.  Loading diagram of the rubber geopolymer concrete cantilever beam

    图  3  自由振动试验加载程序

    Figure  3.  Free vibration test loading procedure

    图  4  自由振动测试装置

    Figure  4.  Free vibration testing device

    图  5  橡胶地聚物混凝土抗压强度

    Figure  5.  Compressive strength of the rubber geopolymer concrete

    图  6  橡胶地聚物混凝土抗折强度

    Figure  6.  Flexural strength of the rubber geopolymer concrete

    图  7  橡胶颗粒在混凝土中裂纹桥接

    R—Rubber

    Figure  7.  Crack bridging of the rubber particles in the concrete

    图  8  抗折试验后橡胶地聚物混凝土试块

    Figure  8.  Rubber geopolymer concrete specimen after bending

    图  9  橡胶地聚物混凝土力学性能变异系数

    Figure  9.  Variation coefficient of the mechanical properties of the rubber geopolymer concrete

    图  10  橡胶地聚物混凝土悬臂梁自由衰减时程曲线

    Figure  10.  Time history curve of vibration of the rubber geopolymer concrete cantilever beam

    图  11  橡胶地聚物混凝土悬臂梁各阶段裂缝发展

    Figure  11.  Fracture development of the rubber geopolymer concrete cantilever beam at the different stages

    图  12  橡胶地聚物混凝土悬臂梁各损伤阶段的阻尼比

    Figure  12.  Damping ratio at damage stages of the rubber geopolymer concrete cantilever beam

    图  13  橡胶地聚物混凝土悬臂梁各损伤阶段的基本频率

    Figure  13.  Fundamental frequency at damage stages of the rubber geopolymer concrete cantilever beam

    图  14  橡胶地聚物混凝土截面的弯曲动刚度与损伤位移的关系

    Figure  14.  Relationship between bending dynamic stiffness and the damage displacement of the rubber geopolymer concrete

    图  15  橡胶地聚物混凝土损伤指数随位移角的变化

    Figure  15.  Change of damage indexes of the rubber geopolymer concrete with displacement angle

    图  16  橡胶地聚物混凝土损伤指数$ {I}_{\text{D}} $与位移角的统计关系

    P-R/GC—Plan of rubber geopolymer concrete fit curve; R/GC—Rubber geopolymer concrete

    Figure  16.  Statistical relationship between damage index $ {I}_{\text{D}} $ of the rubber geopolymer concrete and displacement angle

    图  17  橡胶地聚物混凝土阻尼比与损伤指数的关系

    Figure  17.  Relationship between damping ratio and damage index of the rubber geopolymer concrete

    图  18  橡胶地聚物混凝土阻尼比与损伤指数的统计关系

    Figure  18.  Statistical relationship between damping ratio and damage index of the rubber geopolymer concrete

    表  1  矿渣粉性能参数

    Table  1.   Performance parameters of slag powder

    Density/
    (g·cm−3)
    Specific surface area/(kg·m−3)28 days activity index/%Ignition loss/%Fluidity than/%
    2.90418970.2398
    下载: 导出CSV

    表  2  橡胶颗粒替代体积分数

    Table  2.   Replacement volume fraction of the rubber particles

    SpecimenVolume fraction of rubber
    replacement/vol%
    GC 0
    5%R/GC 5
    10%R/GC 10
    15%R/GC 15
    Notes: R—Rubber; GC—Geopolymer concrete.
    下载: 导出CSV

    表  3  橡胶地聚物混凝土立方体抗压强度及变异系数

    Table  3.   Compressive strength and variation coefficient of the rubber geopolymer concrete

    SpecimenCompressive strength/MPaStandard deviationVariation coefficient
    GC 71.88 8.35 0.11
    5%R/GC 57.74 4.04 0.07
    10%R/GC 54.66 7.31 0.13
    15%R/GC 52.84 10.14 0.19
    下载: 导出CSV

    表  4  橡胶地聚物混凝土抗折强度及变异系数

    Table  4.   Flexural strength and variation coefficient of the rubber geopolymer concrete

    SpecimenFlexural strength/MPaStandard deviationVariation coefficient
    GC 5.58 0.20 0.03
    5%R/GC 6.08 0.62 0.10
    10%R/GC 5.51 0.43 0.08
    15%R/GC 5.41 0.55 0.10
    下载: 导出CSV

    表  5  橡胶地聚物混凝土悬臂梁各损伤阶段基本频率$ f $和阻尼比$ \xi $

    Table  5.   Fundamental frequency$ f $ and damping ratio $ \xi $ of the rubber geopolymer concrete cantilever beam

    $ {y}_{i} /$mmGC5%R/GC10%R/GC15%R/GC
    $ f /$Hz$ \xi /$%$ f /$Hz$ \xi /$%$ f /$Hz$ \xi /$%$ f /$Hz$ \xi /$%
    079.51.0377.01.2676.81.7475.51.88
    573.51.2674.01.8371.52.2068.52.34
    1070.01.8470.02.7869.02.9855.24.67
    2065.02.4663.03.6561.23.5451.44.44
    3061.02.1958.52.1653.63.2148.53.32
    4059.01.9654.01.8647.52.4445.22.84
    Note: $ {y}_{i} $—Damage control displacement and the damage control displacement is 0 mm, 5 mm, 10 mm, 20 mm, 30 mm and 40 mm, which are respectively recorded as $ {y}_{0} $-$ {y}_{5} $.
    下载: 导出CSV
  • [1] JOHNPROVIS, JANNIE S J, VAN DEVENTER. Geopolymers: Structure, processing, properties and industrial applications[M]. Oxford: Woodhead Publishing Materials, 2009.
    [2] 何培刚. Cf/铝硅酸盐聚合物及其转化陶瓷基复合材料的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    HE Peigang. Processing and characterization of the Cf/geopolymer and derived ceramic matrix composites[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [3] 马鸿文, 杨静, 任玉峰, 等. 矿物聚合材料: 研究现状与发展前景[J]. 地学前缘, 2002(4):397-407. doi: 10.3321/j.issn:1005-2321.2002.04.020

    MA Hongwen, YANG Jing, REN Yufeng, et al. Mineral polymer: Current developments and prospects[J]. Earth Science Frontiers,2002(4):397-407(in Chinese). doi: 10.3321/j.issn:1005-2321.2002.04.020
    [4] SINGH N B, MIDDENDORF B. Geopolymers as an alterna-tive to portland cement: An overview[J]. Construction and Building Materials,2020,237:117455-117469. doi: 10.1016/j.conbuildmat.2019.117455
    [5] 陈晓堂. 地质聚合物的合成、结构及其性能评价的研究[D]. 郑州: 郑州大学, 2008.

    CHEN Xiaotang. The research preparation, microstructure and properties evaluation of geopolymer[D]. Zhengzhou: Zhengzhou University, 2008(in Chinese).
    [6] BHUTTA A, BORGES PAULO H R, ZANOTTI C, et al. Flexu-ral behavior of geopolymer composites reinforced with steel and polypropylene macro fibers[J]. Cement and Concrete Composites,2017(80):31-40.
    [7] HORDIJK D A, LUKOVIC M. High tech concrete: Where technology and engineering meet[M]. Berlin: Springer Internation, 2018.
    [8] TRIPATHY S K, DASU J, YANAMANDRA R M, et al. Utilisation perspective on water quenched and air-cooled blast furnace slags[J]. Journal of Cleaner Production,2020,262:121354. doi: 10.1016/j.jclepro.2020.121354
    [9] 王浩, 王晓佳, 桂峰, 等. 高炉矿渣资源化利用现状及展望[J]. 化工矿物与加工, 2021, 50(11):48-53.

    WANG Hao, WANG Xiaojia, GUI Feng, et al. The present situation and prospect of blast furnace slag resource utili-zation[J]. Industrial Minerals & Processing,2021,50(11):48-53(in Chinese).
    [10] 李东波, 董仓, 芦苇, 等. 基于矿渣粉与氧化石墨烯协同效应的水泥基材料冻融损伤力学性能研究[J]. 应用力学学报, 2021, 38(4):1431-1440.

    LI Dongbo, DONG Cang, LU Wei, et al. Mechanical properties of freeze-thaw damage of cement-based materials based on synergistic effect of slag powder and graphene oxid[J]. Chinese Journal of Applied Mechanics,2021,38(4):1431-1440(in Chinese).
    [11] ADVINCULA P A, LUONG D X , CHEN W Y, et al. Flash graphene from rubber waste[J]. Carbon,2021,178:649-656. doi: 10.1016/j.carbon.2021.03.020
    [12] SAPUTRA R, WALVEKAR R, KHALID M, et al. Current progress in waste tire rubber devulcanization[J]. Chemosphere,2021(65):129033.
    [13] 柳治国. 我国“黑色污染”日益严重[J]. 生态经济, 2016, 32(9):6-9. doi: 10.3969/j.issn.1671-4407.2016.09.002

    LIU Zhiguo. China's "black pollution" is increasingly serious[J]. Ecological Economy,2016,32(9):6-9(in Chinese). doi: 10.3969/j.issn.1671-4407.2016.09.002
    [14] 朱军. 关于《中国轮胎循环利用行业“十四五”发展规划》(征求意见稿)有关情况的说明[J]. 中国轮胎资源综合利用, 2021(1):11-13.

    ZHU Jun. Explanation on the fourteenth five-year development plan for China's tire recycling industry (Draft for comments)[J]. China Tire Resources Recycling,2021(1):11-13(in Chinese).
    [15] LING T C. Effects of compaction method and rubber content on the properties of concrete paving blocks[J]. Construction & Building Materials,2012,28(1):164-175.
    [16] KI SANG S, IMAN H, KYPROS P. Strength and deformabi-lity of waste tyre rubber-filled reinforced concrete columns[J]. Construction and Building Materials,2011,25(1):218-226. doi: 10.1016/j.conbuildmat.2010.06.035
    [17] TRILOK G, SANDEEP C, RAVI K. Assessment of mechani-cal and durability properties of concrete containing waste rubber tire as fine aggregate[J]. Construction and Building Materials,2014,73:562-574. doi: 10.1016/j.conbuildmat.2014.09.102
    [18] FARHAD A. Mechanical properties of waste tire rubber concrete[J]. Journal of Materials in Civil Engineering,2016,28(3):04015152. doi: 10.1061/(ASCE)MT.1943-5533.0001429
    [19] HUANG X, PANG J Y, LIU G C, et al. The influence of equal amplitude high stress repeated loading on the mechanical and deformation characteristics of rubber concrete[J]. Construction and Building Materials,2021,266:121135.
    [20] AYMAN A, EL-FEKY M S. Performance of high strength concrete containing recycled rubber[J]. Construction and Building Materials,2019,227:116660. doi: 10.1016/j.conbuildmat.2019.08.041
    [21] KAEWUNRUEN S, LI D, CHEN Y, et al. Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber[J]. Materials (Basel, Switzerland),2018,11(7):1169-1188. doi: 10.3390/ma11071169
    [22] 安新正, 边金明, 申彦利. 含砖粒再生混凝土悬臂梁阻尼性能试验与分析[J]. 科学技术与工程, 2021, 21(6):2439-2444. doi: 10.3969/j.issn.1671-1815.2021.06.044

    AN Xinzheng, BIAN Jinming, SHEN Yanli. Test and analy-sis of damping performance of recycle concrete cantilever beam containing brick particles[J]. Science Technology and Engineering,2021,21(6):2439-2444(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.06.044
    [23] CHIN K L, LEUN G, ZACHARY C G. Effect of micrometric and nanometric viscoelastic inclusions on mechanical damping behavior of cementitious composites[J]. Construction and Building Materials,2012,35:444-451. doi: 10.1016/j.conbuildmat.2012.04.021
    [24] HE L, CAI H D, HUANG Y, et al. Research on the properties of rubber concrete containing surface-modified rubber powders[J]. Journal of Building Engineering,2021,35:101991. doi: 10.1016/j.jobe.2020.101991
    [25] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料报, 2020, 37(11):2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese).
    [26] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of concrete physical mechanical performance test method: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019(in Chinese).
    [27] ERHAN G, MEHMET G, TURAN Ö. Properties of rubberized concretes containing silica fume[J]. Cement & Concrete Research,2004,34(12):2309-2317.
    [28] 刘莉莎, 郭永昌, 谢建和, 等. 橡胶钢纤维再生骨料混凝土抗压性能研究[J]. 混凝土, 2013, 10(10):83-86.

    LIU Lisha, GUO Yongchang, XIE Jianhe, et al. Experimental study on compressive properties of crumb rubber and steel fiber reinforced recycled aggregate concrete[J]. Concrete,2013,10(10):83-86(in Chinese).
    [29] XIE J H, WANG J J, RAO R, et al. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate[J]. Composites Part B: Engineering,2019,169:179-190.
    [30] NAJIM K B, HALL M R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete[J]. Construction & Building Materials,2012,27(1):521-530.
    [31] 谢志红, 黄培彦, 张剑洪, 等. 橡胶钢纤维再生骨料混凝土断裂性能试验研究[J]. 深圳大学学报(理工版), 2014, 31(5):521-528. doi: 10.3724/SP.J.1249.2014.05521

    XIE Zhihong, HUANG Peiyan, ZHANG Jianhong, et al. Experimental study on the fracture behavior of steel fiber and crumb rubber reinforced recycled aggregate concrete[J]. Journal of Shenzhen University Science and Engineering,2014,31(5):521-528(in Chinese). doi: 10.3724/SP.J.1249.2014.05521
    [32] HERNANDEZ-OLIVARES F, BARLUENGA G. Static and dynamic behaviour of recycled tyre rubber-filled concrete[J]. Cement & Concrete Research,2002,32(10):1587-1596.
    [33] HOLMES N, DUNNE K, O'DONNELL J. Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings[J]. Construction & Building Materials,2014,55(3):365-378.
    [34] SEGRE N, OSTERTAG C, MONTEIRO P. Effect of tire rubber particles on crack propagation in cement paste[J]. Materials Research,2006,9(3):311-320. doi: 10.1590/S1516-14392006000300011
    [35] WANG R, HE X, LI Y. Evaluation of microcracks in the interfacial transition zone of recycled rubber concrete[J]. Structural Concrete,2019,20(5):1684-1694. doi: 10.1002/suco.201900044
    [36] 赵江霞, 高越青, 梁超锋, 等. 橡胶混凝土动态力学性能研究进展[J]. 混凝土, 2020(8):37-40. doi: 10.3969/j.issn.1002-3550.2020.06.009

    ZHAO Jiangxia, GAO Yueqing, LIANG Chaofeng, et al. Review on the dynamic mechanical properties of rubber concrete[J]. Concrete,2020(8):37-40(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.06.009
    [37] 王元丰, 钟铭, 潘玉华. 钢筋混凝土柱低周疲劳损伤后的阻尼性能试验[J]. 中国公路学报, 2011, 24(5):32-39.

    WANG Yuanfeng, ZHONG Ming, PAN Yuhua. Damping performance test of reinforced concrete columns after low-cycle fatigue damage[J]. China Journal of Highway and Transport,2011,24(5):32-39(in Chinese).
    [38] 张培, 朱涵, 朱银萍. 简支梁法测量混凝土阻尼特性试验研究[J]. 混凝土, 2015(4):65-67, 73.

    ZHANG Pei, ZHU Han, ZHU Yinping. Experimental study on concrete damping characteristics with simply supported beam measurement[J]. Concrete,2015(4):65-67, 73(in Chinese).
    [39] 汪梦甫, 宋兴禹. 高阻尼混凝土构件阻尼性能研究[J]. 振动与冲击, 2012, 31(11):173-179.

    WANG Mengfu, SONG Xingyu. Damping property of high damping concrete members[J]. Journal of Vibration and Shock,2012,31(11):173-179(in Chinese).
    [40] 李兆霞. 损伤力学及其应用[M]. 北京: 科学出版社, 2002.

    LI Zhaoxia. Damage mechanics and its application[M]. Beijing: Science Press, 2002(in Chinese).
    [41] CLOUGH R W, PENZIEN J. Dynamic of structures[M]. New York: Computer and Structures, 2003.
    [42] 刘如月. 防屈曲支撑混凝土框架结构地震损伤分析[J]. 南昌大学学报(工科版), 2020, 42(4):346-354.

    LIU Ruyue. Seismic damage analysis of RC frame with buckling-restrained brace[J]. Journal of Nanchang University (Engineering & Technology),2020,42(4):346-354(in Chinese).
    [43] COLOMBO A, NEGRO P. A damage index of generalised applicability[J]. Engineering Structures,2005,27(8):1164-1174. doi: 10.1016/j.engstruct.2005.02.014
    [44] RODRIGUEZ-GOMEZ S, CAKMAK A S. Evaluation of seismic damage indices for reinforced concrete structures[R]. Buffalo: State University of New York, 1990: 90-97.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  367
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-11-23
  • 录用日期:  2021-11-24
  • 网络出版日期:  2021-12-03
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回