Research progress of anticorrosive coatings on concrete surface
-
摘要: 混凝土是典型的非均质多孔材料,易受到环境中侵蚀离子介质的侵蚀,导致混凝土及其内部钢筋腐蚀,进而影响混凝土结构的性能并缩短其使用寿命。在众多防护措施中,采用表面防腐涂料是防止混凝土腐蚀、延长其结构服役寿命的最经济有效方法。基于此,本文系统总结了四类混凝土表面防腐涂料:表面成膜型、孔隙封闭型、疏水浸渍型和多功能表面处理型。探讨了每种涂料防护机制、防腐性能及存在的问题与不足。其中,重点分析了不同改性方式对混凝土表面防腐涂料增强效果的影响:有机/无机复合涂料能实现优势互补,显著提升涂料整体性能;有机硅和有机氟的低极性使改性后聚合物的表面能降低,从而显著提升涂料疏水性和耐化学稳定性;添加纳米颗粒能改善涂料力学性能和耐久性;构建特殊纳米结构能改善纳米颗粒团聚性,提高涂料疏水性能。展望未来,高效、安全、低成本、适用性强的混凝土表面防腐涂料是研究的重点,尤其是水性防护涂料与可再生材料的结合、纳米复合改性新型涂料以及自修复涂料等。Abstract: Concrete, a typical heterogeneous porous material, is susceptible to the erosion of ionic media in the environment. This erosion leads to the corrosion of concrete and its internal steel bars, consequently affecting the performance of concrete structures and shortening their service life. Among various protective measures, the application of surface anti-corrosion coatings stands out as the most economical and effective method to prevent concrete corrosion and extend the service life of concrete structures. This paper systematically summarizes four types of concrete surface anti-corrosion coatings: surface film-forming, pore-sealing, hydrophobic impregnation, and multi-functional surface treatment coatings. The protection mechanism, corrosion resistance, and existing problems and shortcomings of each coating are discussed. The influence of different modification methods on the enhancement effect of anti-corrosion coatings on concrete surfaces is analyzed emphatically: organic/inorganic composite coatings can achieve complementary advantages and significantly improve the overall performance of coatings. The low polarity of organic silicon and organic fluorine reduces the surface energy of the modified polymer, thereby significantly improving the hydrophobicity and chemical stability of the coating. Adding nanoparticles can improve the mechanical properties and durability of coatings. The construction of special nanostructures can improve the agglomeration of nanoparticles and enhance the hydrophobicity of coatings. Looking forward, the focus of research is on developing efficient, safe, low-cost, and adaptable concrete surface anti-corrosion coatings. This includes exploring the combination of waterborne protective coatings and renewable materials, nano-composite modified new coatings and self-healing coatings.
-
图 7 (a) 水泥的水化反应;(b) 改性体系中聚丙烯酸酯乳液的水解;(c) 聚丙烯酸酯乳液与水泥的交联反应;(d) 聚丙烯酸酯乳胶改性水泥体系中通过化学反应得到的交联网络结构[67]
Figure 7. (a) The hydration reactions of cement; (b) The hydrolysis of polyacrylate latex in the modified system; (c) The crosslinking reaction between polyacrylate latex and cement; (d) The cross-linked network structure which was obtained by chemical reactions in the polyacrylate latex-modified cement system[67]
图 10 纳米SiO2对混凝土表面形貌和力学性能的强化机制:(a) 仅存在微粗糙度,磨损会破坏微观粗糙度;(b) 机械磨损微峰,亲水性水泥基材料将暴露;(c) 表面由具有纳米粗糙度的机械强化微凸块组成[63]
Figure 10. Strengthening mechanism of nano-silica on surface morphology and mechanical properties of concrete: (a) only microroughness is present, abrasion will destroy the micro-scale roughness; (b) mechanical abrasion wears off the micro peaks, hydrophilic cement-based material will be exposed; (c) the surface consists of mechanically strengthened micro-bumps with nano-roughness on them[63]
表 1 混凝土表面防腐有机涂料的性能
Table 1. Performance of organic anticorrosive coating on concrete surface
Organic coatings Curing mechanism Advantage Disadvantage Epoxy Resin[7, 33-35] Excellent hardness;
Easy curing;
Good wear resistance;
Good corrosion resistance;Weak UV resistance;
Easy to age;
High brittleness;
Weather resistance and heat resistance are affected;Acrylate[36-38] The dual-functional groups - vinyl (unsaturated double bond) and ester group (consisting of carbonyl and alkoxy), can undergo self-polymerization or copolymerization with other monomers. Excellent heat resistance and weatherability;
Good UV resistance and color retention;Limited water resistance;
Limited corrosion resistance;
Poor abrasion resistance;Polyurethane[39-42] Excellent abrasion resistance and adhesion;
Outstanding heat resistance;
Good weatherability and chemical resistance;High construction environment requirements;
Long curing time;
Relatively high cost;表 2 不同涂料体系及其防腐效率对比研究
Table 2. Comparative study of different coating systems along with their corrosion efficiencies
Anticorrosive coatings Modification methods Anticorrosion effect References cement-based coatings By introducing GO into silicone-modified polyacrylate (SPA) emulsion, polymer-modified cement-based coatings were prepared. With a 0.05% doping level of GO, the tensile strength is 3.01 MPa; the bond strength is 4.21 MPa; the 24 h water absorption rate is 4.6%; the hardness is 3 H; the Cl− corrosion potential is 3.88 Ω·cm2, and the corrosion current is 8.86×10−3 μA/cm2; after 1000 hours of UV light exposure, the loss rates of tensile strength and elongation at break are 6.85% and 33.55%, respectively.[82] Geopolymer coatings A hydrophobic emulsion was prepared using 70% deionized water, 5% water-soluble polyvinyl alcohol, and 25% hydrogen-containing silicone oil, and used to modify a geopolymer coating based on 1.1% pure acrylic emulsion. When the silicon-to-alumina ratio is 3.2, the water-to-solid ratio is 0.8, and the modulus is 1.6, the coating viscosity is 2.1 Pa·s; the hardness is 6 H; the adhesion is grade 3; and the contact angle is 147.71°. [30] Epoxy resin coatings Nano-TiO2 embedded GO nanosheets were prepared by in-situ intercalation method to modify epoxy resin. With a 0.5% doping level of GO, the bond strength is 13.75 MPa; the capillary absorption rate is 0.004 mm/min0.5; and the Cl− diffusion coefficient is 1.74×10−6 mm2/s. [76] Water-based polyurethane coatings Fluorinated nano-SiO2 incorporated into siloxane-modified hyperbranched water-based polyurethane. The contact angle is 162°, and remains close to 150° after 140 cycles of sandpaper abrasion; after immersion in acidic, alkaline, or other solutions for 144 hours, the contact angle remains greater than 150°; and the ice adhesion force at -20℃ is 21.2 kPa. [107] Cement-based permeable crystalline coatings Apply 11 types of active material solutions separately to the surface of cement mortar substrates. The water absorption rate of the TEOS-coated material is 40.44%, and the compressive strength is 57 MPa. [50] Water glass coatings Preparing waterproof coatings by activating blast furnace slag with sodium silicate modified by styrene-acrylate copolymer. Tensile strength is 2.2 MPa; elongation at break is 90.48%; flexibility is 10 mm; no leakage occurs under a pressure of 0.3 MPa for 30 minutes. [44] Hydrophobic immersion coatings Preparation of TEOS/isobutyltriethoxysilane composite emulsion by sol-gel method. After three months of exposure, the contact angle is 103.15°, and it can effectively inhibit the formation of biofilms, with a reduction of 86.6% in the capillary water absorption coefficient. [84, 87] Superhydrophobic coatings Superhydrophobic coatings were prepared by incorporating fluorinated nano-SiO2 and fly ash floating beads into polyvinyl alcohol. Contact angle is 163.4°; water absorption rates after immersion in deionized water and 3.5wt% NaCl solution for 7 days are 1.85% and 2.71%, respectively; antibacterial rate against Escherichia coli is 84.57%; and antibacterial rate against Streptococcus epidermidis is 90.43%. [95] -
[1] 雷旭, 宋慧平, 薛芳斌, 等. 粉煤灰基混凝土防腐涂料的制备及其性能研究[J]. 涂料工业, 2019, 49(1): 22-26. doi: 10.12020/j.issn.0253-4312.2019.1.22LEI X, SONG H P, XUE F B, et al. Study on Preparation and Performance of Fly Ash-Based Concrete Anticorrosion Coatings[J]. Paint & Coatings Industry, 2019, 49(1): 22-26(in Chinese). doi: 10.12020/j.issn.0253-4312.2019.1.22 [2] 鲁浈浈, 何杨, 王杰, 等. 环氧树脂/SiO2涂层混凝土表面主动抗凝冰性及除冰性能研究[J]. 表面技术, 2020, 49(10): 169-175.LU Z Z, HE Y, WANG J, et al. Initiative Anti-icing Performance and Deicing Ability of Epoxy/SiO2 Coating Concrete Surface[J]. Surface technology, 2020, 49(10): 169-175 (in Chinese). [3] 赵双, 钟媛, 夏跃攀, 等. 热反射型隔热涂料在混凝土桥梁结构中的应用研究[J]. 中国胶粘剂, 2020, 29(12): 40-46+63.ZHAO S, ZHONG Y, XIA Y P. et al. Study on the application of heat reflective thermal insulation coating in concrete bridge structure[J]. China Adhesives, 2020, 29(12): 40-46+63(in Chinese). [4] XIA K, GU Y, JIANG L, et al. Preparation of a hydrophobic coating on cement-based materials by fluorinated hybrid nanoSiO2 and study on its UV-resistance performance[J]. Construction and Building Materials, 2022, 352: 129003. doi: 10.1016/j.conbuildmat.2022.129003 [5] 方圣雁. 氧化石墨烯/丙烯酸树脂涂层的制备及其对混凝土防护效果的研究 [D]. 广东: 华南理工大学, 2019.FANG S Y. The preparation of graphene oxide/acrylic resin coating and its protective effect on concrete [D]. Guangdong: South China University of Technology, 2019(in Chinese). [6] 陈静怡. 混凝土表面功能防护涂层材料研究进展及展望[J]. 科技与创新, 2022, 20: 159-162.CHEN J Y. Research progress and prospect of functional protective coating materials on concrete surface[J]. Science and Technology & Innovation, 2022, 20: 159-162(in Chinese). [7] 齐玉宏, 张国梁, 池金锋, 等. 混凝土防腐涂料的研究进展[J]. 涂料工业, 2018, 48(11): 63-71. doi: 10.12020/j.issn.0253-4312.2018.11.63QI Y H, ZHANG G L, CHI J F, et al. Progress in Anticorrosive Coatings for Concrete[J]. Paint & Coatings Industry, 2018, 48(11): 63-71(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.11.63 [8] 孔丽娟, 梁增蕴, 方珺, 等. 污水环境中生物膜与混凝土防护涂层的交互作用[J]. 表面技术, 2022, 51(8): 342-352.KONG L J, LIANG Z Y, FANG J, et al. Mutual Effect between the Biofilm and Concrete Protective Coatings in Sewage Environment[J]. Surface technology, 2022, 51(8): 342-352(in Chinese). [9] WONG L S, OWEIDA A F M, KONG S Y, et al. The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization[J]. Construction and Building Materials, 2020, 257: 119482. doi: 10.1016/j.conbuildmat.2020.119482 [10] 史才军, 汪越, 潘晓颖, 等. 混凝土无机表面处理技术研究进展[J]. 材料导报, 2017, 31(13): 113-119. doi: 10.11896/j.issn.1005-023X.2017.013.014SHI C J, WANG Y, PAN X Y, et al. Advances in Inorganic Surface Treatment of Concrete[J]. Materials Reports, 2017, 31(13): 113-119(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.013.014 [11] YU Y, SUN T. Polymer-Modified Cement Waterproofing Coating and Cementitious Capillary Crystalline Waterproofing Materials: Mechanism and Applications[J]. Key Engineering Materials, 2017, 726: 527-531. doi: 10.4028/www.scientific.net/KEM.726.527 [12] ZAMAN KHAN M, MILITKY J, PETRU M, et al. Recent advances in superhydrophobic surfaces for practical applications: A review[J]. European Polymer Journal, 2022, 178: 111481. doi: 10.1016/j.eurpolymj.2022.111481 [13] WU Y, DONG L, SHU X, et al. A review on recent advances in the fabrication and evaluation of superhydrophobic concrete[J]. Composites Part B: Engineering, 2022, 237: 109867. doi: 10.1016/j.compositesb.2022.109867 [14] 石妍, 李家正, 李杨, 等. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(S1): 238-241.SHI Y, LI J Z, LI Y, et al. Feasibility Test Study of Thermal Spraying Ceramic Protective Coating on Concrete Surface[J]. Materials Reports, 2021, 35(S1): 238-241(in Chinese). [15] PAN X, SHI Z, SHI C, et al. A review on concrete surface treatment Part I: Types and mechanisms[J]. Construction and Building Materials, 2017, 132: 578-590. doi: 10.1016/j.conbuildmat.2016.12.025 [16] 周中行, 汪在芹, 梁慧, 等. 涂层材料/混凝土界面研究进展[J]. 化工新型材料, 2020, 48(9): 281-284.ZHOU Z X, WANG Z Q, LIANG H, et al. Research progress of coating material/concrete interface[J]. New Chemiacl Materials, 2020, 48(9): 281-284(in Chinese). [17] ZARZUELA R, LUNA M, CONEO J G, et al. Multifunctional silane-based superhydrophobic/impregnation treatments for concrete producing C-S-H gel: Validation on mockup specimens from European heritage structures[J]. Construction and Building Materials, 2023, 367: 130258. doi: 10.1016/j.conbuildmat.2022.130258 [18] PIGINO B, LEEMANN A, FRANZONI E, et al. Ethyl silicate for surface treatment of concrete – Part II: Characteristics and performance[J]. Cement and Concrete Composites, 2012, 34(3): 313-321. doi: 10.1016/j.cemconcomp.2011.11.021 [19] SANDROLINI F, FRANZONI E, PIGINO B. Ethyl silicate for surface treatment of concrete – Part I: Pozzolanic effect of ethyl silicate[J]. Cement and Concrete Composites, 2012, 34(3): 306-312. doi: 10.1016/j.cemconcomp.2011.12.003 [20] LI Y, LI L, WAN D, et al. Preparation and evaluation of a fluorinated nano-silica superhydrophobic coating for cement pavement[J]. Construction and Building Materials, 2022, 360: 129478. doi: 10.1016/j.conbuildmat.2022.129478 [21] YAO H, LI L, LI W, et al. Application of nanomaterials in waterborne coatings: A review[J]. Resources Chemicals and Materials, 2022, 1(2): 184-200. doi: 10.1016/j.recm.2022.06.004 [22] 中华人民共和国工业和信息化部. 漆膜吸水率测定法: HG/T 3344-2012 [S]. 北京: 化学工业出版社, 2012.Ministry of Industry and Information Technology of China. Method for determination of water absorption of lacquer film: HG/T 3344-2012 [S]. Beijing: Chemical Industry Press, 2012. [23] 国家市场监督管理总局, 中国国家标准化管理委员会. 涂膜硬度铅笔测定法: GB/T 6739-2006 [S]. 北京: 中国标准出版社, 2006.State Administration for Market Regulation, Standardization Administration of China. Pencil Test Method for Determining the Hardness of Coatings: GB/T 6739-2006 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2006. [24] 国家市场监督管理总局, 中国国家标准化管理委员会. 漆膜、腻子膜柔韧性测定法: GB/T 1731-2020 [S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation, Standardization Administration of China. Determination of flexibility of paint film and putty film: GB/T 1731-2020 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2020. [25] 国家市场监督管理总局, 中国国家标准化管理委员会. 漆膜耐冲击测定法: GB/T 1732-2020 [S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation, Standardization Administration of China. Impact Resistance Test Method for Paint Films: GB/T 1732-2020 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2020. [26] 国家市场监督管理总局, 中国国家标准化管理委员会. 色漆和清漆 拉开法附着力试验: GB/T 5210-2006 [S]. 北京: 中国标准出版社, 2006.State Administration for Market Regulation, Standardization Administration of China. Pull-off Adhesion Test for Paints and Varnishes: GB/T 5210-2006 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2006. [27] American Society for Testing and Materials. Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration: ASTM C1202-2010 [S]. Pennsylvania, United States: American Society for Testing and Materials International, 2010. [28] American Society for Testing and Materials. Standard Practice for Fluorescent UV-Condensation Exposures of Paint and Related Coatings: ASTM D4587-2011 [S]. Pennsylvania, United States: American Society for Testing and Materials International, 2011. [29] RUAN S, CHEN S, ZHU X, et al. Matrix wettability and mechanical properties of geopolymer cement-polydimethylsiloxane (PDMS) hybrids[J]. Cement and Concrete Composites, 2021, 124: 104268. doi: 10.1016/j.cemconcomp.2021.104268 [30] 戴数一, 谢晓丽, 姚勇. 地聚物防除冰涂层的制备及性能研究[J]. 非金属矿, 2021, 44(2): 14-17. doi: 10.3969/j.issn.1000-8098.2021.02.004DAI S Y, XIE X L, YAO Y. Preparation and Properties of Geopolymer Anti-Ice Coating[J]. Non-Metallic Mines, 2021, 44(2): 14-17(in Chinese). doi: 10.3969/j.issn.1000-8098.2021.02.004 [31] ZHAO N, WANG S, QUAN X, et al. Behavior of polyvinyl alcohol fiber reinforced geopolymer composites under the coupled attack of sulfate and freeze-thaw in a marine environment[J]. Ocean Engineering, 2021, 238: 109734. doi: 10.1016/j.oceaneng.2021.109734 [32] ZHANG M, XU H, PHALé ZEZE A L, et al. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection[J]. Cement and Concrete Composites, 2022, 129: 104495. doi: 10.1016/j.cemconcomp.2022.104495 [33] 刘丹, 伍方, 赵文杰, 等. 环氧树脂防腐性能研究进展[J]. 中国材料进展, 2015, 34(11): 852-861. doi: 10.7502/j.issn.1674-3962.2015.11.08LIU D, FU F, ZHAO W J, et al. Advance in Anticorrosion Performance of Epoxy Resin[J]. Materials China, 2015, 34(11): 852-861(in Chinese). doi: 10.7502/j.issn.1674-3962.2015.11.08 [34] WU C, MENG B C, TAM L-H, et al. Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods[J]. Polymer Testing, 2022, 114: 107708. doi: 10.1016/j.polymertesting.2022.107708 [35] BHAT S I, MOBIN M, ISLAM S, et al. Recent advances in anticorrosive coatings based on sustainable polymers: Challenges and perspectives[J]. Surface and Coatings Technology, 2024, 480: 130596. doi: 10.1016/j.surfcoat.2024.130596 [36] BALLARD N, ASUA J M. Radical polymerization of acrylic monomers: An overview[J]. Progress in Polymer Science, 2018, 79: 40-60. doi: 10.1016/j.progpolymsci.2017.11.002 [37] 黎鹏平, 李安, 张志杰. 海洋环境桥梁混凝土结构清水防腐涂层性能研究[J]. 公路, 2021, 66(12): 336-340.LI P P, LI A, ZHANG Z J. Research on Anti-corrosion Coating for Fair Faced Concrete Structures of Bridge in Mlarine Environment[J]. Highway, 2021, 66(12): 336-340(in Chinese). [38] 马长坡, 刘兴琛, 李永赞, 等. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219. doi: 10.11896/cldb.20050130MA C P, LIU X C, LI Y Z, et al. Research Progress in Modification of Polyacrylate[J]. Materials Reports, 2021, 35(15): 15212-15219(in Chinese). doi: 10.11896/cldb.20050130 [39] ARAUJO T R, BRESOLIN D, DE OLIVEIRA D, et al. Conventional lignin functionalization for polyurethane applications and a future vision in the use of enzymes as an alternative method[J]. European Polymer Journal, 2023, 188: 111934. doi: 10.1016/j.eurpolymj.2023.111934 [40] 杨建军, 陈虹雨, 吴庆云, 等. 改性水性聚氨酯防腐涂料的最新研究进展[J]. 精细化工, 2021, 38(10): 1981-1987+1995.YANG J J, CHEN H Y, WU Q Y, et al. Latest research progress of modified waterborne polyurethane anticorrosive coatings[J]. Fine Chemicals, 2021, 38(10): 1981-1987+1995(in Chinese). [41] WANG C, HUANG S, CHEN Q, et al. Materials, preparation, performances and mechanism of polyurethane modified asphalt and its mixture: A systematic review[J]. Journal of Road Engineering, 2023, 3(1): 16-34. doi: 10.1016/j.jreng.2023.01.002 [42] 胡帅帅, 陈双, 刘育红, 等. 聚氨酯微相分离结构对力学性能的影响分析[J]. 塑料, 2023, 52(03): 109-114+125.HU S S, CHEN S, LIU Y H, et al. Analysis of the Influence of Polyurethane Microphase Separation Structure on Mechanical Properties[J]. Plasics, 52(03): 109-114+125(in Chinese). [43] LUO S, WEI J, XU W, et al. Design, preparation, and performance of a novel organic–inorganic composite coating with high adhesion and protection for concrete[J]. Composites Part B: Engineering, 2022, 234. [44] JUN C, WENZHENG L, DAN W, et al. Effect of silicate modulus on tensile properties and microstructure of waterproof coating based on polymer and sodium silicate-activated GGBS[J]. Construction and Building Materials, 2020, 252: 119056. doi: 10.1016/j.conbuildmat.2020.119056 [45] CHEN L L, WANG Y Q, WANG Z F, et al. Diffusion resisting performance of concrete modified with sodium methyl silicate in saline soil area[J]. Construction and Building Materials, 2022, 350: 128767. doi: 10.1016/j.conbuildmat.2022.128767 [46] SONG Z, XUE X, LI Y, et al. Experimental exploration of the waterproofing mechanism of inorganic sodium silicate-based concrete sealers[J]. Construction and Building Materials, 2016, 104: 276-283. doi: 10.1016/j.conbuildmat.2015.12.069 [47] JIANG L, XUE X, ZHANG W, et al. The investigation of factors affecting the water impermeability of inorganic sodium silicate-based concrete sealers[J]. Construction and Building Materials, 2015, 93: 729-736. doi: 10.1016/j.conbuildmat.2015.06.001 [48] 朱健健, 高建明, 陈菲, 等. 砂浆半浸泡在硫酸钠溶液中不同表面处理材料防护效果比较[J]. 东南大学学报(自然科学版), 2019, 49(6): 1162-1170. doi: 10.3969/j.issn.1001-0505.2019.06.020ZHU J J, GAO J M, CHEN F, et al. Comparison of protective effects on different surface treated concretes partially immersed in sodium sulfate solution[J]. Journal of Southeast University ( National Science Edition ), 2019, 49(6): 1162-1170(in Chinese). doi: 10.3969/j.issn.1001-0505.2019.06.020 [49] LIU P, LIU M, SHA F, et al. Preparation and performance investigation of a high efficiency cement permeation type waterproofing materials[J]. Construction and Building Materials, 2023, 365: 130140. doi: 10.1016/j.conbuildmat.2022.130140 [50] 董一娇, 冯春花, 盖海东, 等. 水泥基渗透结晶型防水涂料活性物质研究[J]. 涂料工业, 2021, 51(1): 21-26. doi: 10.12020/j.issn.0253-4312.2021.1.21DONG Y J, FENG C H, GAI H D, et al. Study on the Active Substance in Cement-Based Permeable Crystalline Waterproof Coatings[J]. Paint & Coatings Industry, 2021, 51(1): 21-26(in Chinese). doi: 10.12020/j.issn.0253-4312.2021.1.21 [51] 杨晓华, 郑坤隆, 徐礼笑. 渗透结晶型材料添加剂对水泥浆液性能影响试验[J]. 中国公路学报, 2019, 32(7): 129-135+157.YANG X H, ZHENG K L, XU L X. Experiment on Effect of Capillary Crystalline Material Additives on Cement Slurry Performance[J]. China Journal of Highway and Transport, 2019, 32(7): 129-135+157(in Chinese). [52] ELSALAMAWY M, MOHAMED A R, ABOSEN A-L E. Performance of crystalline forming additive materials in concrete[J]. Construction and Building Materials, 2020, 230: 117056. doi: 10.1016/j.conbuildmat.2019.117056 [53] DE SOUZA OLIVEIRA A, DA FONSECA MARTINS GOMES O, FERRARA L, et al. An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators[J]. Journal of Building Engineering, 2021, 41: 102400. doi: 10.1016/j.jobe.2021.102400 [54] ZHAO J, GAO X, CHEN S, et al. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review[J]. Composites Part B: Engineering, 2022, 243: 110104. doi: 10.1016/j.compositesb.2022.110104 [55] ZENG Y, ZHANG D W, DAI J G, et al. Determining the service life extension of silane treated concrete structures: A probabilistic approach[J]. Construction and Building Materials, 2020, 249: 118802. doi: 10.1016/j.conbuildmat.2020.118802 [56] ZHANG H, ZHANG F, SHAO X, et al. Effect of pressure impregnated of methyl silicate (TMOS) on pore structure and impermeability of cement mortar[J]. Journal of Building Engineering, 2023, 68: 106178. doi: 10.1016/j.jobe.2023.106178 [57] GARCíA-LODEIRO I, ZARZUELA R, MOSQUERA M J, et al. Consolidation of artificial decayed portland cement mortars with an alkoxysilane-based impregnation treatment and its influence on mineralogy and pore structure[J]. Construction and Building Materials, 2021, 304: 124532. doi: 10.1016/j.conbuildmat.2021.124532 [58] ZHOU Z, LI S, CAO J, et al. The waterproofing effect and mechanism of graphene oxide/silane composite emulsion on cement-based materials under compressive stress[J]. Construction and Building Materials, 2021, 308: 124945. doi: 10.1016/j.conbuildmat.2021.124945 [59] SZYMAŃSKA A, DUTKIEWICZ M, MACIEJEWSKI H, et al. Simple and effective hydrophobic impregnation of concrete with functionalized polybutadienes[J]. Construction and Building Materials, 2022, 315: 125624. doi: 10.1016/j.conbuildmat.2021.125624 [60] FRANZONI E, PIGINO B, PISTOLESI C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments[J]. Cement and Concrete Composites, 2013, 44: 69-76. doi: 10.1016/j.cemconcomp.2013.05.008 [61] 刘喜杰, 呙润华, 何昕, 等. 环氧/纳米金属氧化物复合涂层的混凝土防覆冰性[J]. 热固性树脂, 2022, 37(2): 1-5.LIU X J, GUO R H, HE X, et al. Anti-icing performance of epoxy resin and nano-ZnO/Fe2O3 composite coating for concrete surface[J]. Thermosetting Resin, 2022, 37(2): 1-5(in Chinese). [62] DOĞAN F, DEHGHANPOUR H. Characterization and hydrophobic surface study of silicon-based TiO2, ZnO and recycled carbon additives on cementitious materials surface[J]. Journal of Building Engineering, 2021, 40: 102689. doi: 10.1016/j.jobe.2021.102689 [63] SHE W, YANG J, HONG J, et al. Superhydrophobic concrete with enhanced mechanical robustness: Nanohybrid composites, strengthen mechanism and durability evaluation[J]. Construction and Building Materials, 2020, 247: 118563. doi: 10.1016/j.conbuildmat.2020.118563 [64] MA Y, ZHANG Y, LIU J, et al. GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating[J]. Materials & Design, 2020, 189: 108547. [65] TRAN N P, NGUYEN T N, NGO T D. The role of organic polymer modifiers in cementitious systems towards durable and resilient infrastructures: A systematic review[J]. Construction and Building Materials, 2022, 360: 129562. doi: 10.1016/j.conbuildmat.2022.129562 [66] WANG X, PETRŮ M. Freeze–thaw resistance of epoxy/concrete interface evaluated by a novel wedge splitting test[J]. Construction and Building Materials, 2019, 210: 434-441. doi: 10.1016/j.conbuildmat.2019.03.139 [67] ZHANG X, DU M, FANG H, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials, 2021, 299: 124290. doi: 10.1016/j.conbuildmat.2021.124290 [68] LI D, CHEN B, CHEN X, et al. Synergetic effect of superabsorbent polymer (SAP) and crystalline admixture (CA) on mortar macro-crack healing[J]. Construction and Building Materials, 2020, 247: 118521. doi: 10.1016/j.conbuildmat.2020.118521 [69] 张国梁, 马春风, 张广照. 渗入固结型混凝土防腐涂料的研究[J]. 涂料工业, 2018, 48(1): 1-5. doi: 10.12020/j.issn.0253-4312.2018.1.1ZHANG G L, MA C F, ZHANG G Z. Study on Permeable Coating for Anticorrosion of Concrete[J]. Paint & Coatings Industry, 2018, 48(1): 1-5(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.1.1 [70] 李文政, 王丹, 常钧. 不同乳液对聚合物水玻璃基防水涂料力学性能作用机制[J]. 大连理工大学学报, 2020, 60(3): 276-284.LI W Z, WANG D, CHANG J. The mechanism of action of different emulsions on the mechanical properties of polymer water glass-based waterproof coatings[J]. Journal of Dalian University of Technology, 2020, 60(3): 276-284(in Chinese). [71] SARKAR P K, NAIK R B, MAHATO T K, et al. Anticorrosive self-stratified PDMS-epoxy coating for marine structures[J]. Journal of the Indian Chemical Society, 2023, 100(1): 100865. doi: 10.1016/j.jics.2022.100865 [72] 万涛, 王博, 韩庆, 等. 纳米TiO2改性环氧树脂的制备技术与性能研究进展[J]. 表面技术, 2022, 51(7): 11-26+62.WAN T, WANG B, HAN Q, et al. Research Progress in Preparation Technology and Properties of Nano-TiO2 Modified Epoxy Resin[J]. Surface technology, 2022, 51(7): 11-26+62(in Chinese). [73] 陈彤丹, 文一平, 宋莉芳, 等. 水性氟碳涂料的制备及其用于混凝土防腐研究[J]. 化工新型材料, 2019, 47(10): 246-249+254.CHEN T D, WEN Y P, SONG L F, et al. Preparation of waterborne fluorocation coating and application on concrete anticorrosion[J]. New Chemical Materials, 2019, 47(10): 246-249+254(in Chinese). [74] HUANG H, FANG S, LUO S, et al. Multiscale modification on acrylic resin coating for concrete with silicon/fluorine and graphene oxide (GO) nanosheets[J]. Construction and Building Materials, 2021, 305: 124297. doi: 10.1016/j.conbuildmat.2021.124297 [75] 柏朱安, 李果, 刘萍. 纳米SiO2改性有机成膜涂层对混凝土抗碳化性能的影响[J]. 混凝土, 2017, 04: 4-7. doi: 10.3969/j.issn.1002-3550.2017.10.002BAI Z A, LI G, LIU P. Influences of organic film coatings modified by nano-silica on concrete carbonation resistance[J]. Concrete, 2017, 04: 4-7(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.10.002 [76] GUO S, LUO H, TAN Z, et al. Impermeability and interfacial bonding strength of TiO2-graphene modified epoxy resin coated OPC concrete[J]. Progress in Organic Coatings, 2021, 151: 106029. doi: 10.1016/j.porgcoat.2020.106029 [77] 辛景博. 高稳定性氟化SiO2-环氧树脂超疏水涂层的制备及其防护性能的研究 [D]. 广西: 广西大学, 2022.XIN J B. The preparation of fluorinated SiO2-epoxy resin superhydrophobic coating with stability and its protective properties [D]. Guangxi: Guangxi University, 2022(in Chinese). [78] ANWAR A, XUEMEI L, LIHAI Z. Nano-cementitious composites modified with Graphene Oxide – a review[J]. Thin-Walled Structures, 2023, 183: 110326. doi: 10.1016/j.tws.2022.110326 [79] YIN B, WU C, HOU D, et al. Research and application progress of nano-modified coating in improving the durability of cement-based materials[J]. Progress in Organic Coatings, 2021, 161: 106529. doi: 10.1016/j.porgcoat.2021.106529 [80] ASSAD H, FATMA I, KUMAR A. An overview of the application of graphene-based materials in anticorrosive coatings[J]. Materials Letters, 2023, 330: 133287. doi: 10.1016/j.matlet.2022.133287 [81] FADIL Y, THICKETT S C, AGARWAL V, et al. Synthesis of graphene-based polymeric nanocomposites using emulsion techniques[J]. Progress in Polymer Science, 2022, 125: 101476. doi: 10.1016/j.progpolymsci.2021.101476 [82] LIANG C, ZHAO P, XIE N, et al. Enhanced comprehensive performance of polymer-CSA cement coating with graphene oxide[J]. Construction and Building Materials, 2023, 363: 129885. doi: 10.1016/j.conbuildmat.2022.129885 [83] 陈旭, 李绍纯, 卢霄, 等. 复合硅烷材料对混凝土干缩干裂的抑制效果[J]. 混凝土, 2019, 01: 150-152. doi: 10.3969/j.issn.1002-3550.2019.04.035CHEN X, LI S C, LU X, et al. Protective effect of silane material on drying shrinkage crack of concrete[J]. Concrete, 2019, 01: 150-152(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.04.035 [84] 李绍纯, 耿永娟, 陈旭, 等. TEOS/异丁基三乙氧基硅复合乳液对带损伤水泥基材料的防护[J]. 硅酸盐通报, 2019, 38(7): 2004-2009.LI S C, GENG Y J, CHEN X, et al. Protection of Cement Based Materials with Damage by TEOS-Isobutyl Triethoxysilane Compound Emulsion[J]. Bulletin of the Chinese Silicate Society, 2019, 38(7): 2004-2009(in Chinese). [85] 高菁, 李绍纯, 张伟锋, 等. 异丁基三乙氧基硅烷复合乳液对泡沫混凝土防水性能的影响[J]. 涂料工业, 2020, 50(5): 2-6+13. doi: 10.12020/j.issn.0253-4312.2020.5.2GAO J, LI S C, ZHANG W F, et al. Effect of Isobutyltriethoxysilane Composite Latex on Waterproofing Properties of Foam Concrete[J]. Paint & Coatings Industry, 2020, 50(5): 2-6+13(in Chinese). doi: 10.12020/j.issn.0253-4312.2020.5.2 [86] 徐士林, 李绍纯, 耿永娟, 等. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050+22056. doi: 10.11896/cldb.20070281XU S L, LI S C, GENG Y J, et al. Influence of Silane Composite Emulsion on Drying Shrinkage and Mechanical Properties of Cement Mortar[J]. Materials Reports, 2021, 35(22): 22045-22050+22056(in Chinese). doi: 10.11896/cldb.20070281 [87] 刘珺, 耿永娟, 李绍纯, 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142. doi: 10.11902/1005.4537.2020.261LIU J, GENG Y J, LI S C, et al. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1): 135-142(in Chinese). doi: 10.11902/1005.4537.2020.261 [88] 武子晗, 李绍纯, 眭世玉, 等. 含银复合乳液对混凝土表面抗菌性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2007-2014. doi: 10.3969/j.issn.1001-1625.2022.6.gsytb202206018WU Z H, LI S C, SUI S Y, et al. Effect of Silver-Containing Composite Emulsion on Antibacterial Properties of Concrete Surface[J]. Bulletin of the Chinese Silicate Society, 2022, 41(6): 2007-2014(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.6.gsytb202206018 [89] ZHONG J, ZHOU G X, HE P G, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon, 2017, 117: 421-426. doi: 10.1016/j.carbon.2017.02.102 [90] 刘嘉源, 张宏亮, 左晓宝, 等. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响[J]. 复合材料学报, 2023, 40(9): 5046-5056.LIU J Y, ZHANG H L, ZUO X B, et al. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5046-5056(in Chinese). [91] BUYONDO K A, KASEDDE H, KIRABIRA J B. A comprehensive review on kaolin as pigment for paint and coating: Recent trends of chemical-based paints, their environmental impacts and regulation[J]. Case Studies in Chemical and Environmental Engineering, 2022, 6: 100244. doi: 10.1016/j.cscee.2022.100244 [92] ZHAO J, ZHANG S, KE X, et al. Simultaneously tuning interfacial and interlaminar properties of glass fiber fabric/epoxy laminated composites via modifying fibers with graphene oxide[J]. Composites Science and Technology, 2023, 235: 109970. doi: 10.1016/j.compscitech.2023.109970 [93] 王信刚, 周镇, 赵华, 等. 环氧树脂修复水泥基材料微裂缝的渗透机制[J]. 建筑材料学报, 2021, 24(6): 1200-1207. doi: 10.3969/j.issn.1007-9629.2021.06.011WANG X G, ZHOU Z, ZHAO H, et al. Capillary Transport Mechanism of Epoxy Resin Repairing Micro-cracks in Cement-Based Materials[J]. Journal of Building Materials, 2021, 24(6): 1200-1207(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.06.011 [94] YIN B, XU T, HOU D, et al. Superhydrophobic anticorrosive coating for concrete through in-situ bionic induction and gradient mineralization[J]. Construction and Building Materials, 2020, 257: 119510. doi: 10.1016/j.conbuildmat.2020.119510 [95] YANG F, ZHOU W, LI F, et al. Sprayable coating based on fluorinated silica nanocomposites with superhydrophobic and antibacterial properties for advanced concrete[J]. Progress in Natural Science: Materials International, 2022, 32(4): 472-481. doi: 10.1016/j.pnsc.2022.07.004 [96] LI C, GUO H, SONG S, et al. Polysilsesquioxane precursors stabilizing chlorotrifluoroethylene copolymerization for waterborne hybrid fluorocarbon coatings with excellent synergistic performances[J]. Applied Surface Science, 2022, 602: 154334. doi: 10.1016/j.apsusc.2022.154334 [97] 肖阳, 张亮, 张宿峰, 等. 无机矿物氟碳复合涂料对混凝土抗盐冻性能的影响[J]. 复合材料学报, 2023, 40(5): 2988-3001.XIAO Y, ZHANG L, ZHANG S F, et al. Influence of inorganic mineral fluorocarbon composite coating on salt freezing resistance of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2988-3001(in Chinese). [98] NEELAMBARAM P, SHANKAR A, SYKAM K, et al. Siloxane-based high solid acrylic latex by mini-emulsion polymerization for coatings with improved water resistance[J]. Progress in Organic Coatings, 2022, 171: 107011. doi: 10.1016/j.porgcoat.2022.107011 [99] 江小浦, 胡书可. 高性能水性聚氨酯涂料的发展及改性研究[J]. 表面技术, 2020, 49(11): 296-302.JIANG X P, HU S K. Development and Modification of High Performance Waterborne Polyurethane Coatings[J]. Surface technology, 2020, 49(11): 296-302(in Chinese). [100] WU F, CHEN X, CHEN J. Abrasion resistance enhancement of concrete using surface treatment methods[J]. Tribology International, 2023, 179: 108180. doi: 10.1016/j.triboint.2022.108180 [101] 张飞, 何鹏飞, 韦锋, 等. 冻融循环作用下氟硅涂层对混凝土性能影响研究[J]. 涂层与防护, 2022, 43(7): 34-40. doi: 10.3969/j.issn.1672-2418.2022.7.tljsywz202207008ZHANG F, HE P F, WEI F, et al. Study on Effect of Fluorosilicone Coating on Concrete Performance under Freeze-Thaw Cycles[J]. Coating and Protection, 2022, 43(7): 34-40(in Chinese). doi: 10.3969/j.issn.1672-2418.2022.7.tljsywz202207008 [102] 韩建军, 王俊伟, 李果, 等. 改性纳米SiO2成膜复合涂层对混凝土疏水和抗碳化性能的影响[J]. 科学技术与工程, 2019, 19(19): 268-273.HAN J J, WANG J W, LI G, et al. Effect of Modified Nano-SiO2 Film-forming Composite Coating on Hydrophobicity and Carbonation Resistance of Concrete[J]. Science Technology and Engineering, 2019, 19(19): 268-273(in Chinese). [103] ZHU X, LI Q, WANG L, et al. Current advances of Polyurethane/Graphene composites and its prospects in synthetic leather: A review[J]. European Polymer Journal, 2021, 161: 110837. doi: 10.1016/j.eurpolymj.2021.110837 [104] WANG C, MU C, LIN W, et al. Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview[J]. Adv Colloid Interface Sci, 2020, 283: 102235. doi: 10.1016/j.cis.2020.102235 [105] KARNA N, JOSHI G M, MHASKE S T. Structure-property relationship of silane-modified polyurethane: A review[J]. Progress in Organic Coatings, 2023, 176: 107377. doi: 10.1016/j.porgcoat.2022.107377 [106] WU Y, GUO P, ZHAO Y, et al. Hydrophobic, transparent waterborne polyurethane-polydimethylsiloxane composites prepared from aqueous sol-gel process and applied in corrosion protection[J]. Progress in Organic Coatings, 2019, 127: 231-238. doi: 10.1016/j.porgcoat.2018.06.002 [107] ZHAO Y, HAO T, WU W, et al. A novel moisture-controlled siloxane-modified hyperbranched waterborne polyurethane for durable superhydrophobic coatings[J]. Applied Surface Science, 2022, 587: 152446. doi: 10.1016/j.apsusc.2022.152446 [108] WANG L, ZHANG J, WANG F, et al. Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials[J]. Journal of Building Engineering, 2023, 64: 105665. doi: 10.1016/j.jobe.2022.105665