留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花菁衍生物/上转换纳米复合材料的制备与发光性质

晏旭 梁作芹 张晓波 李茂茂 叶常青 王筱梅

晏旭, 梁作芹, 张晓波, 等. 花菁衍生物/上转换纳米复合材料的制备与发光性质[J]. 复合材料学报, 2023, 40(6): 3562-3570. doi: 10.13801/j.cnki.fhclxb.20220915.004
引用本文: 晏旭, 梁作芹, 张晓波, 等. 花菁衍生物/上转换纳米复合材料的制备与发光性质[J]. 复合材料学报, 2023, 40(6): 3562-3570. doi: 10.13801/j.cnki.fhclxb.20220915.004
YAN Xu, LIANG Zuoqin, ZHANG Xiaobo, et al. Preparation and luminescence properties of cyanine dye-sensitized upconversion nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3562-3570. doi: 10.13801/j.cnki.fhclxb.20220915.004
Citation: YAN Xu, LIANG Zuoqin, ZHANG Xiaobo, et al. Preparation and luminescence properties of cyanine dye-sensitized upconversion nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3562-3570. doi: 10.13801/j.cnki.fhclxb.20220915.004

花菁衍生物/上转换纳米复合材料的制备与发光性质

doi: 10.13801/j.cnki.fhclxb.20220915.004
基金项目: 国家自然科学基金(51803147)
详细信息
    通讯作者:

    梁作芹,博士,副教授,硕士生导师,研究方向为光电功能材料 E-mail: zuoqinliang@mail.usts.edu.cn

  • 中图分类号: TB332

Preparation and luminescence properties of cyanine dye-sensitized upconversion nanocomposites

Funds: National Natural Science Foundation of China (51803147)
  • 摘要: 利用有机染料敏化上转换纳米材料可以拓展近红外光吸收,然而染料在纳米粒子表面易于聚集限制了上转换发光的提高。本文以花菁IR820为原料,在强碱作用下合成了含有四苯乙烯基团的2-(4-(1, 2,2-三苯基乙烯基)苯氧基)环己烯-1-基)乙烯基)-3,3-二甲基-3H-苯并[f]吲哚-1-基)丁烷-1-磺酸盐(CyBTSO);利用自组装方法制备了IR820、CyBTSO敏化的上转换纳米复合材料,并对它们的结构和形貌等进行了表征。测试了染料在溶液、聚集态的光物理性能及染料敏化复合材料的上转换发光,系统研究了染料分子结构与上转换发光性能之间的关系。结果表明:四苯乙烯基团的引入不仅有利于提高CyBTSO的荧光量子产率和寿命,还能增强其稳定性,并抑制其在纳米粒子表面的聚集。与IR820相比,CyBTSO在纳米粒子表面的稳定性提高了1.7倍,负载量提高了3倍。在808 nm激发下,CyBTSO敏化纳米粒子的上转换发光强度比β-NaYF4:Yb20%,Er2%(980 nm)提高了69倍。本文为设计高效、稳定的上转换材料提供了理论借鉴。

     

  • 图  1  CyBTSO分子的合成

    Figure  1.  Synthesis of CyBTSO

    DMF—Dimethyl formamide

    图  2  β-NaYF4:Yb20%,Er2%的TEM图像 ((a), (b)) 和XRD图谱 (c)

    Figure  2.  TEM images ((a), (b)) and XRD pattern (c) of β-NaYF4:Yb20%,Er2%

    图  3  β-NaYF4:Yb20%,Er2%表面配体为油酸、IR820和CyBTSO及无配体的FTIR图谱

    Figure  3.  FTIR spectra of oleic acid-capped β-NaYF4:Yb20%,Er2%, ligand free β-NaYF4:Yb20%,Er2% and IR820 and CyBTSO sensitized β-NaYF4:Yb20%,Er2%

    UCNPs—β-NaYF4:Yb20%,Er2%; OA—Oleic acid

    图  4  IR820和CyBTSO在乙醇溶液中的紫外-可见吸收 (a) 和荧光光谱 (b) (5×10-6 mol/L)

    Figure  4.  Absorption (a) and PL (b) spectra for IR820 and CyBTSO in ethanol (5×10-6 mol/L)

    图  5  IR820 ((a), (c))、CyBTSO ((b), (d)) 与β-NaYF4:Yb20%,Er2%复合前后的荧光衰减曲线

    Figure  5.  Fluorescence decay curve of R820 ((a), (c)) and CyBTSO ((b), (d)) in the absence and presence of β-NaYF4:Yb20%,Er2%

    τ—Fluorescence lifetime

    图  6  乙醇中不同浓度的IR820 (a) 和CyBTSO (b) 敏化β-NaYF4:Yb20%,Er2%(1 mg/mL)上转换发射光谱;(c) 染料敏化上转换发光强度(540 nm)与染料浓度之间的关系;(d) 在808或980 nm(10 W·cm-2)激光泵浦下,β-NaYF4:Yb20%,Er2%(1 mg/mL)与有机染料复合前后的上转换光谱

    Figure  6.  Upconversion spectra of β-NaYF4:Yb20%,Er2% (1 mg/mL) with different concentrations of IR820 (a) and CyBTSO (b) for sensitization in ethanol; (c) Changes in the upconversion intensity (540 nm) with different concentrations of sensitizers; (d) Upconversion spectra of β-NaYF4:Yb20%,Er2% (1 mg/mL) in the presence and absence of sensitizer in ethanol under 820 or 980 nm excitation with a power density of 10 W·cm-2

    图  7  染料敏化上转换纳米体系中IR820和CyBTSO归一化吸光度(最长吸收波长)随时间的变化趋势(乙醇)

    Figure  7.  Normalized absorbance values at the longest absorption band of IR820 and CyBTSO in the dye-sensitized nanocomposites as a function of time (in ethanol)

    图  8  IR820 ((a), (b)) 和CyBTSO ((c), (d)) 在不同含量环己烷/丙酮溶液中紫外-可见吸收光谱(归一化)和荧光光谱(2×10−5 mol/L)

    Figure  8.  Absorption (normalized) and PL spectra of IR820 ((a), (b)) and CyBTSO ((c), (d)) in cyclohexane/acetone mixtures with different volume fractions of cyclohexane (2×10−5 mol/L)

    图  9  IR820 (a) 和CyBTSO (b) 在β-NaYF4:Yb20%,Er2%(1 mg/mL)表面的归一化吸收光谱

    Figure  9.  Normalized absorption spectra of IR820 (a) and CyBTSO (b) attached on β-NaYF4:Yb20%,Er2% (1 mg/mL)

    表  1  IR820和CyBTSO光物理性质

    Table  1.   Photophysical properties of IR820 and CyBTSO

    Compoundλabs/nmε/(mol−1·L·cm−1)λem/nmΦ/%τ/ns
    IR820754 8259.4×1048492.10.65
    CyBTSO740 8105.9×1048313.31.00
    Notes: λabs—Absorption bands; ε—Molar absorption coefficient of the longest absorption band; λem—Peak position of PL; Φ—Quantum yields; τ—Fluorescence lifetime.
    下载: 导出CSV
  • [1] ANG M, CHAN S, GOH Y, et al. Emerging strategies in developing multifunctional nanomaterials for cancer nano-theranostics[J]. Advanced Drug Delivery Reviews,2021,178:113907. doi: 10.1016/j.addr.2021.113907
    [2] ZHENG K, KANG Y W, YU C, et al. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications[J]. Nano Today,2019,29:100797. doi: 10.1016/j.nantod.2019.100797
    [3] LIU X, LI R, YUAN X, et al. Fast customization of microneedle arrays by static optical projection lithography[J]. ACS Applied Materials & Interfaces,2021,13(50):60522-60530.
    [4] MAHATA M K, RANJIT D, KANG T L, et al. Near-infrared-triggered upconverting nanoparticles for biomedicine applications[J]. Biomedicines,2021,9(7):3113-3120. doi: 10.3390/biomedicines9070756
    [5] XIE Y, SONG Y, SUN G, et al. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage[J]. Light: Science & Applications,2022,11(6):1264-1273.
    [6] YU M, LV X, IDRIS A, et al. Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science,2022,6(12):782-791.
    [7] ZHANG S, DUN S, GUO X, et al. A synergistic effect of NaYF4: Yb, Er@NaGdF4: Nd@SiO2 upconversion nanoparticles and TiO2 hollow spheres to enhance photovoltaic performance of dye-sensitized solar cells[J]. Electrochimica Acta,2022,421:140435. doi: 10.1016/j.electacta.2022.140435
    [8] CHEN B, WANG F. Combating concentration quenching in upconversion nanoparticles[J]. Accounts of Chemical Research,2020,53(2):358-367. doi: 10.1021/acs.accounts.9b00453
    [9] DENG K, XU L, GUO X, et al. Binary nanoparticle superlattices for plasmonically modulating upconversion luminescence[J]. Small,2020,16(38):2002066. doi: 10.1002/smll.202002066
    [10] FAN Y, LIU L, ZHANG F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures[J]. Nano Today,2019,25:68-84. doi: 10.1016/j.nantod.2019.02.009
    [11] LIANG L, QIN X, ZHENG K, et al. Energy flux manipulation in upconversion nanosystems[J]. Accounts of Chemical Research,2019,52(1):228-236. doi: 10.1021/acs.accounts.8b00469
    [12] MAO C, MIN K, BAE K, et al. Enhanced upconversion luminescence by two-dimensional photonic crystal structure[J]. ACS Photonics,2019,6(8):1882-1888. doi: 10.1021/acsphotonics.9b00756
    [13] DING M, NI Y, SONG Y, et al. Li+ ions doping core-shell nanostructures: An approach to significantly enhance upconversion luminescence of lanthanide-doped nanocrystals[J]. Journal of Alloys & Compounds,2015,623:42-48.
    [14] RUAN L, ZHANG Y. Upconversion perovskite nanocrystal heterostructures with enhanced luminescence and stabi-lity by lattice matching[J]. ACS Applied Materials & Interfaces,2021,13(43):51362-51372.
    [15] WEN S, ZHOU J, ZHENG K, et al. Advances in highly doped upconversion nanoparticles[J]. Nature Communications,2018,9(1):2415. doi: 10.1038/s41467-018-04813-5
    [16] ZOU W, VISSER C, MADURO J, et al. Broadband dye-sensitized upconversion of near-infrared light[J]. Nature Photonics,2012,6(8):560-564. doi: 10.1038/nphoton.2012.158
    [17] GARFIELD D J, BORYS N J, HAMED S M, et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission[J]. Nature Photonics,2018,12(7):402-407. doi: 10.1038/s41566-018-0156-x
    [18] HARZA C, ULLAH S, SERGE Y E, et al. Enhanced NIR-I emission fromwater-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles[J]. Journal of Materials Chemistry C,2018,6(17):4777-4785. doi: 10.1039/C8TC00335A
    [19] KAUR M, MANDL G A, MAURIZIO S L, et al. On the photostability and luminescence of dye-sensitized upconverting nanoparticles using modified IR820 dyes[J]. Nanoscale Advances,2022,4(2):608-618. doi: 10.1039/D1NA00710F
    [20] LIANG T, WANG Q, LI Z, et al. Removing the obstacle of dye-sensitized upconversion luminescence in aqueous phase to achieve high-contrast deep imaging in vivo[J]. Advanced Functional Materials,2020,30(16):1910765. doi: 10.1002/adfm.201910765
    [21] BAO G, WEN S, WANG W, et al. Enhancing hybrid upconversion nanosystems via synergistic effects of moiety engineered NIR dyes[J]. Nano Letters,2021,21(23):9862-9868. doi: 10.1021/acs.nanolett.1c02391
    [22] KE J, LU S, LI Z, et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection[J]. Advanced Science,2019,6(22):1901874. doi: 10.1002/advs.201901874
    [23] ZOU X, XU M, YUAN W, et al. A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging[J]. Chemical Communications,2016,52(91):13389-13392. doi: 10.1039/C6CC07180E
    [24] WU X, LEE H, BILSEL O, et al. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging[J]. Nanoscale,2015,7(44):18424-18428. doi: 10.1039/C5NR05437K
    [25] BOGDAN N, VETRONE F, OZIN G A, et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Letters,2011,11(2):835-840. doi: 10.1021/nl1041929
    [26] EXNER R M, TAMARIT F C, PASCU S I. Explorations into the effect of meso-substituents in tricarbocyanine dyes: A path to diverse biomolecular probes and materials[J]. Angewandte Chemie International Edition,2021,60(12):6230-6241. doi: 10.1002/anie.202008075
    [27] JIAO L, LIU Y, ZHANG X, et al. Constructing a local hydrophobic cage in dye-doped fluorescent silica nanoparticles to enhance the photophysical properties[J]. ACS Central Science,2020,6(5):747-759. doi: 10.1021/acscentsci.0c00071
    [28] FANG M, XIA S, BI J, et al. A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells[J]. Chemical Communications,2018,54(9):1133-1136. doi: 10.1039/C7CC08986D
    [29] ZUO M, DUAN Q, LI C C, et al. A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor[J]. Analytical Chemistry,2021,93(13):5635-5643. doi: 10.1021/acs.analchem.1c00470
    [30] LIANG Z Q, ZOU Z Y, YAN X, et al. Conjugate and nonconjugatecontrols of a sensitizer to enhance dye-sensitized upconversion luminescence[J]. Journal of Materials Chemistry C,2022,10(6):2205-2212. doi: 10.1039/D1TC05042G
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  371
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-08-25
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-09-15
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回