Preparation and luminescence properties of cyanine dye-sensitized upconversion nanocomposites
-
摘要: 利用有机染料敏化上转换纳米材料可以拓展近红外光吸收,然而染料在纳米粒子表面易于聚集限制了上转换发光的提高。本文以花菁IR820为原料,在强碱作用下合成了含有四苯乙烯基团的2-(4-(1, 2,2-三苯基乙烯基)苯氧基)环己烯-1-基)乙烯基)-3,3-二甲基-3H-苯并[f]吲哚-1-基)丁烷-1-磺酸盐(CyBTSO);利用自组装方法制备了IR820、CyBTSO敏化的上转换纳米复合材料,并对它们的结构和形貌等进行了表征。测试了染料在溶液、聚集态的光物理性能及染料敏化复合材料的上转换发光,系统研究了染料分子结构与上转换发光性能之间的关系。结果表明:四苯乙烯基团的引入不仅有利于提高CyBTSO的荧光量子产率和寿命,还能增强其稳定性,并抑制其在纳米粒子表面的聚集。与IR820相比,CyBTSO在纳米粒子表面的稳定性提高了1.7倍,负载量提高了3倍。在808 nm激发下,CyBTSO敏化纳米粒子的上转换发光强度比β-NaYF4:Yb20%,Er2%(980 nm)提高了69倍。本文为设计高效、稳定的上转换材料提供了理论借鉴。Abstract: Organic dye-sensitized upconversion nanomaterials can expand the absorption of near-infrared light, but dye-aggregation on the surface of nanoparticles limits the improvement of upconversion luminescence. In this paper, sodium 4-(2-((E)-2-((E)-3-((E)-2-(3,3-dimethyl-1-(4-sulfonatobutyl)-1,3-dihydro-2H-benzo[f]indol-2-ylidene)ethylidene)-2-(4-(1,2,2-triphenylvinyl)phenoxy)cyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-3H-benzo[f]indol-1-ium-1-yl)butane-1-sulfonate (CyBTSO) containing tetrastyrene group was synthesized from cyanine IR820 in the presence of strong alkali. IR820 and CyBTSO sensitized upconversion nanocomposites were prepared by a self-assembly method, and their structures and morphologies were characterized. The photophysical properties of dyes in solution and condensed state, as well as the upconversion luminescence of dye-sensitized nanocomposites were investigated. The relationship between molecular structure and upconversion luminescence was systematically studied. It is found that the introduction of tetrastyrene group is not only beneficial to improve the fluorescence quantum yield and lifetime of CyBTSO, but also to enhance its stability and inhibit its aggregation on the nanoparticle surface. Compared with IR820, the stability and the loading amount of CyBTSO on the nanoparticle surface are increased by 1.7 and 3 times, respectively. As a result, a 69-fold enhancement of upconversion luminescence in CyBTSO-sensitized nanocompo-sites excited at 808 nm is achieved compared to that in β-NaYF4:Yb20%, Er2% excited at 980 nm. This work provides a theoretical reference for the development of upconversion materials with high upconversion efficiency and stability.
-
Key words:
- cyanine derivatives /
- nanocomposites /
- upconversion luminescence /
- dye aggregation /
- energy transfer
-
图 6 乙醇中不同浓度的IR820 (a) 和CyBTSO (b) 敏化β-NaYF4:Yb20%,Er2%(1 mg/mL)上转换发射光谱;(c) 染料敏化上转换发光强度(540 nm)与染料浓度之间的关系;(d) 在808或980 nm(10 W·cm-2)激光泵浦下,β-NaYF4:Yb20%,Er2%(1 mg/mL)与有机染料复合前后的上转换光谱
Figure 6. Upconversion spectra of β-NaYF4:Yb20%,Er2% (1 mg/mL) with different concentrations of IR820 (a) and CyBTSO (b) for sensitization in ethanol; (c) Changes in the upconversion intensity (540 nm) with different concentrations of sensitizers; (d) Upconversion spectra of β-NaYF4:Yb20%,Er2% (1 mg/mL) in the presence and absence of sensitizer in ethanol under 820 or 980 nm excitation with a power density of 10 W·cm-2
表 1 IR820和CyBTSO光物理性质
Table 1. Photophysical properties of IR820 and CyBTSO
Compound λabs/nm ε/(mol−1·L·cm−1) λem/nm Φ/% τ/ns IR820 754 825 9.4×104 849 2.1 0.65 CyBTSO 740 810 5.9×104 831 3.3 1.00 Notes: λabs—Absorption bands; ε—Molar absorption coefficient of the longest absorption band; λem—Peak position of PL; Φ—Quantum yields; τ—Fluorescence lifetime. -
[1] ANG M, CHAN S, GOH Y, et al. Emerging strategies in developing multifunctional nanomaterials for cancer nano-theranostics[J]. Advanced Drug Delivery Reviews,2021,178:113907. doi: 10.1016/j.addr.2021.113907 [2] ZHENG K, KANG Y W, YU C, et al. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications[J]. Nano Today,2019,29:100797. doi: 10.1016/j.nantod.2019.100797 [3] LIU X, LI R, YUAN X, et al. Fast customization of microneedle arrays by static optical projection lithography[J]. ACS Applied Materials & Interfaces,2021,13(50):60522-60530. [4] MAHATA M K, RANJIT D, KANG T L, et al. Near-infrared-triggered upconverting nanoparticles for biomedicine applications[J]. Biomedicines,2021,9(7):3113-3120. doi: 10.3390/biomedicines9070756 [5] XIE Y, SONG Y, SUN G, et al. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage[J]. Light: Science & Applications,2022,11(6):1264-1273. [6] YU M, LV X, IDRIS A, et al. Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science,2022,6(12):782-791. [7] ZHANG S, DUN S, GUO X, et al. A synergistic effect of NaYF4: Yb, Er@NaGdF4: Nd@SiO2 upconversion nanoparticles and TiO2 hollow spheres to enhance photovoltaic performance of dye-sensitized solar cells[J]. Electrochimica Acta,2022,421:140435. doi: 10.1016/j.electacta.2022.140435 [8] CHEN B, WANG F. Combating concentration quenching in upconversion nanoparticles[J]. Accounts of Chemical Research,2020,53(2):358-367. doi: 10.1021/acs.accounts.9b00453 [9] DENG K, XU L, GUO X, et al. Binary nanoparticle superlattices for plasmonically modulating upconversion luminescence[J]. Small,2020,16(38):2002066. doi: 10.1002/smll.202002066 [10] FAN Y, LIU L, ZHANG F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures[J]. Nano Today,2019,25:68-84. doi: 10.1016/j.nantod.2019.02.009 [11] LIANG L, QIN X, ZHENG K, et al. Energy flux manipulation in upconversion nanosystems[J]. Accounts of Chemical Research,2019,52(1):228-236. doi: 10.1021/acs.accounts.8b00469 [12] MAO C, MIN K, BAE K, et al. Enhanced upconversion luminescence by two-dimensional photonic crystal structure[J]. ACS Photonics,2019,6(8):1882-1888. doi: 10.1021/acsphotonics.9b00756 [13] DING M, NI Y, SONG Y, et al. Li+ ions doping core-shell nanostructures: An approach to significantly enhance upconversion luminescence of lanthanide-doped nanocrystals[J]. Journal of Alloys & Compounds,2015,623:42-48. [14] RUAN L, ZHANG Y. Upconversion perovskite nanocrystal heterostructures with enhanced luminescence and stabi-lity by lattice matching[J]. ACS Applied Materials & Interfaces,2021,13(43):51362-51372. [15] WEN S, ZHOU J, ZHENG K, et al. Advances in highly doped upconversion nanoparticles[J]. Nature Communications,2018,9(1):2415. doi: 10.1038/s41467-018-04813-5 [16] ZOU W, VISSER C, MADURO J, et al. Broadband dye-sensitized upconversion of near-infrared light[J]. Nature Photonics,2012,6(8):560-564. doi: 10.1038/nphoton.2012.158 [17] GARFIELD D J, BORYS N J, HAMED S M, et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission[J]. Nature Photonics,2018,12(7):402-407. doi: 10.1038/s41566-018-0156-x [18] HARZA C, ULLAH S, SERGE Y E, et al. Enhanced NIR-I emission fromwater-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles[J]. Journal of Materials Chemistry C,2018,6(17):4777-4785. doi: 10.1039/C8TC00335A [19] KAUR M, MANDL G A, MAURIZIO S L, et al. On the photostability and luminescence of dye-sensitized upconverting nanoparticles using modified IR820 dyes[J]. Nanoscale Advances,2022,4(2):608-618. doi: 10.1039/D1NA00710F [20] LIANG T, WANG Q, LI Z, et al. Removing the obstacle of dye-sensitized upconversion luminescence in aqueous phase to achieve high-contrast deep imaging in vivo[J]. Advanced Functional Materials,2020,30(16):1910765. doi: 10.1002/adfm.201910765 [21] BAO G, WEN S, WANG W, et al. Enhancing hybrid upconversion nanosystems via synergistic effects of moiety engineered NIR dyes[J]. Nano Letters,2021,21(23):9862-9868. doi: 10.1021/acs.nanolett.1c02391 [22] KE J, LU S, LI Z, et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection[J]. Advanced Science,2019,6(22):1901874. doi: 10.1002/advs.201901874 [23] ZOU X, XU M, YUAN W, et al. A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging[J]. Chemical Communications,2016,52(91):13389-13392. doi: 10.1039/C6CC07180E [24] WU X, LEE H, BILSEL O, et al. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging[J]. Nanoscale,2015,7(44):18424-18428. doi: 10.1039/C5NR05437K [25] BOGDAN N, VETRONE F, OZIN G A, et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Letters,2011,11(2):835-840. doi: 10.1021/nl1041929 [26] EXNER R M, TAMARIT F C, PASCU S I. Explorations into the effect of meso-substituents in tricarbocyanine dyes: A path to diverse biomolecular probes and materials[J]. Angewandte Chemie International Edition,2021,60(12):6230-6241. doi: 10.1002/anie.202008075 [27] JIAO L, LIU Y, ZHANG X, et al. Constructing a local hydrophobic cage in dye-doped fluorescent silica nanoparticles to enhance the photophysical properties[J]. ACS Central Science,2020,6(5):747-759. doi: 10.1021/acscentsci.0c00071 [28] FANG M, XIA S, BI J, et al. A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells[J]. Chemical Communications,2018,54(9):1133-1136. doi: 10.1039/C7CC08986D [29] ZUO M, DUAN Q, LI C C, et al. A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor[J]. Analytical Chemistry,2021,93(13):5635-5643. doi: 10.1021/acs.analchem.1c00470 [30] LIANG Z Q, ZOU Z Y, YAN X, et al. Conjugate and nonconjugatecontrols of a sensitizer to enhance dye-sensitized upconversion luminescence[J]. Journal of Materials Chemistry C,2022,10(6):2205-2212. doi: 10.1039/D1TC05042G -

计量
- 文章访问数: 254
- HTML全文浏览量: 198
- 被引次数: 0