留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同龄期下珊瑚海水海砂混凝土三向受压力学性能

吴辉琴 申彦兵 陈宇良 叶培欢

吴辉琴, 申彦兵, 陈宇良, 等. 不同龄期下珊瑚海水海砂混凝土三向受压力学性能[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 吴辉琴, 申彦兵, 陈宇良, 等. 不同龄期下珊瑚海水海砂混凝土三向受压力学性能[J]. 复合材料学报, 2024, 43(0): 1-12.
WU Huiqin, SHEN Yanbing, CHEN Yuliang, et al. Three-dimensional compressive mechanical properties of coral seawater sea sand concrete at different ages[J]. Acta Materiae Compositae Sinica.
Citation: WU Huiqin, SHEN Yanbing, CHEN Yuliang, et al. Three-dimensional compressive mechanical properties of coral seawater sea sand concrete at different ages[J]. Acta Materiae Compositae Sinica.

不同龄期下珊瑚海水海砂混凝土三向受压力学性能

基金项目: 国家自然科学基金(52368013; 51908141);广西自然科学基金项目(24GXNSFBA010364);广西重点研发计划(桂科AB23075093)
详细信息
    通讯作者:

    陈宇良,博士,副教授,硕士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构研究、海洋及近海混凝土结构等 E-mail: ylchen@gxust.edu.cn

  • 中图分类号: TU528; TB332

Three-dimensional compressive mechanical properties of coral seawater sea sand concrete at different ages

Funds: National Natural Science Foundation of China (52368013; 51908141); Guangxi Natural Science Foundation Project (24GXNSFBA010364); Guangxi Key Research and Development Plan (Guike AB23075093)
  • 摘要: 为探究珊瑚海水海砂混凝土(CSSC)在三向受压条件下的力学性能及其损伤发展过程,考虑围压值和龄期等因素,设计制作了132个CSSC圆柱体试件进行常规三轴试验。结果表明:随着围压值的增大,试件破坏形态由竖向劈裂破坏转为斜向剪切破坏,应力-应变曲线峰部抬高、下降段逐渐平缓,损伤发展得到抑制;龄期T≤60d时,各项力学性能指标变化趋于稳定;T=180d时,屈服应变及屈服应力较28d时分别提高了8.88%、11.64%;T=365d时,弹性模量较28d提高9.18%;根据试验数据,提出了不同围压值下CSSC屈服应力、屈服应变、弹性模量计算公式;围压CSSC内部损伤演化影响显著,且随着围压值增大,龄期对其的影响逐渐减弱;最后,提出了同时考虑龄期、围压两因素的CSSC强度预测公式,预测结果与试验结果拟合程度较好。

     

  • 图  1  珊瑚骨料破碎前表观特征

    Figure  1.  Apparent characteristics of coral aggregate before crushing

    图  2  珊瑚粗骨料、海砂细骨料级配曲线

    Figure  2.  Gradation curve of coral coarse aggregate and sea sand fine aggregate

    图  3  CSSC试件破坏形态图

    Figure  3.  Failure pattern diagram of CSSC specimens

    图  4  CSSC应力-应变全过程曲线

    Figure  4.  Stress-strain curves of the whole process of the CSSC specimen

    图  5  CSSC偏移屈服点示意图

    Figure  5.  CSSC offset yield point diagram

    图  6  龄期对CSSC力学性能的影响

    Figure  6.  Effect of age on mechanical properties of CSSC

    图  7  围压对CSSC力学性能的影响

    Figure  7.  Effect of confining pressure on mechanical properties of CSSC

    图  8  CSSC应变-损伤关系曲线

    Figure  8.  Strain-damage relationship curve of CSSC

    图  9  不同种类混凝土不同龄期下复合因子拟合曲线

    Figure  9.  Composite factor fitting curves of different types of concrete at different ages

    表  1  珊瑚粗骨料物理性能

    Table  1.   Physical properties of coral coarse aggregate

    Property Water absorption
    capacity in 1 h
    (by mass)/%
    Porosity
    (by volume)/%
    Moisture content
    (by mass)/%
    Bulk density/
    (kg∙m−3)
    Apparent density/
    (kg∙m−3)
    Cylinder pressure
    strength/MPa
    Value 12.79 54.21 0.67 879.90 1667.00 4.11
    下载: 导出CSV

    表  2  海水的主要化学成分(g/L)

    Table  2.   Main chemical constituents of seawater (g/L)

    NaClNa2SO4MgCl2CaCl2KCl
    24.284.025.041.150.59
    下载: 导出CSV

    表  3  珊瑚海水海砂混凝土(CSSC)配合比

    Table  3.   Mix proportion of coral seawater sea sand concrete (CSSC)

    ConcreteW/CMaterial consumption/(kg·m−3)Slump/mmCube crushing strength/MPa
    CASea sandCementSeawaterAdditional seawaterWa
    CSSC0.4655.8760.1535.0214.075.11.415632.09
    Notes: CA—Coral coarse aggregate; Wa—Water reducing admixture; W/C—Water-cement ratio.
    下载: 导出CSV

    表  4  CSSC不同龄期下AB取值及拟合系数

    Table  4.   The values of A and B and the fitting coefficients of CSSC at different ages

    Type28 d60 d180 d365 d
    A5.2675.2205.7605.940
    B3.5423.0303.1593.350
    R20.830.940.900.92
    下载: 导出CSV

    表  5  不同种类混凝土调整系数Kf

    Table  5.   Adjustment coefficient Kf of different kinds of concrete

    Concrete type Kf Reference
    Lightweight aggregate concrete 0.0208σw+0.7079 Chen[29]
    0.0218σw+0.7443 Ye[42]
    Recycled aggregate concrete 0.0226σw+0.7455 Chen[41]
    0.0136σw+0.4629 Paula[43]
    Natural aggregate concrete 0.0121σw+0.3229 Sfer[44]
    High-strength concrete 0.0059σw+0.2010 Feng[45]
    0.0061σw+0.2011 Lu[20]
    下载: 导出CSV
  • [1] 苏晨, 麻海燕, 余红发等. 不同珊瑚骨料对珊瑚混凝土力学性能的影响[J]. 硅酸盐学报, 2020, 48(11): 1771-1780.

    SU Chen, MA Haiyan, YU Hongfa, et al. Effect of Different Coral Aggregates on Mechanical Properties of Coral Concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1771-1780(in Chinese).
    [2] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8): 1753-1764.

    CAI Xinguang, ZHAO Qing, CHEN Huisu, et al. Research Progress in Coral Concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1753-1764(in Chinese).
    [3] 达波, 陶韬, 蒋沛漪, 等. 热带岛礁珊瑚骨料混凝土的耐久性及提升方法[J]. 哈尔滨工程大学学报, 2023, 44(3): 418-424. doi: 10.11990/jheu.202201059

    DA Bo, TAO Tao, JIANG Peiyi, et al. Durability and improvement method of coral aggregate concrete on tropical reefs[J]. Journal of Harbin Engineering University, 2023, 44(3): 418-424(in Chinese). doi: 10.11990/jheu.202201059
    [4] 刘晋铭, 张寿松, 俞煌, 等. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 94-100. doi: 10.11896/cldb.22010233

    LIU Jinsong, ZHANG Shousong, YU Huang, et al. Effect of sand binder ratio on dynamic mechanical properties of seawater mixed coral aggregate concrete.[J]. Materials Reports, 2023, 37(18): 94-100(in Chinese). doi: 10.11896/cldb.22010233
    [5] 张路, 牛荻涛, 文波, 等. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 78-83.

    ZHANG Lu, NIU Ditao, WEN Bo, et al. Resistivity model of modified coral aggregate concrete.[J]. Materials Reports, 2022, 36(1): 78-83(in Chinese).
    [6] Da B, Yu H, Ma H, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. doi: 10.1016/j.conbuildmat.2016.06.064
    [7] Wu Z, Yu H, Ma H, et al. Physical and mechanical properties of coral aggregates in the South China Sea[J]. Journal of Building Engineering, 2023, 63: 105478. doi: 10.1016/j.jobe.2022.105478
    [8] Da B, Yu H, Ma H, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123: 47-58. doi: 10.1016/j.conbuildmat.2016.06.135
    [9] Wu Z, Zhang J, Yu H, et al. 3D mesoscopic investigation of the specimen aspect-ratio effect on the compressive behavior of coral aggregate concrete[J]. Composites Part B: Engineering, 2020, 198: 108025. doi: 10.1016/j.compositesb.2020.108025
    [10] 陈宗平, 周济, 陈宇良, 等. 珊瑚粗骨料海水混凝土力学性能试验研究[J]. 应用力学学报, 2022, 37(5): 1999-2006.

    CHEN Zongping, ZHOU Ji, CHEN Yuliang et al. Experimental study on mechanical properties of coral coarse aggregate seawater concrete[J]. Chinese Journal of Applied Mechanics, 2022, 37(5): 1999-2006(in Chinese).
    [11] Shi Z, Shui Z, Li Q, et al. Combined effect of metakaolin and sea water on performance and microstructures of concrete[J]. Construction and building Materials, 2015, 74: 57-64. doi: 10.1016/j.conbuildmat.2014.10.023
    [12] 李仲欣, 韦灼彬, 沈锦林. 基于BP神经网络的珊瑚混凝土抗压强度预测模型[J]. 混凝土, 2016(1): 64-69.

    LI zhongxin , WEI Zhuobin , SHEN Jinlin . Forcast model of compressive strength of coral concrete based on BP neural network [J] . Concrete , 2016 (1) : 64-69 . (in Chinese)
    [13] 白卫峰, 耿越, 管俊峰, 等. 考虑龄期影响的再生混凝土力学性能及损伤机制研究[J/OL]. 工程力学: 1-19

    2024-04-08]. BAI Wei-feng , GENG Yue , GUAN Jun-feng et al. Study on mechanical properties and damage mechanism of recycled concrete considering the effect of age [J/OL]. Engineering Mechanics: 1-19[2024-04-08]. (in Chinese)
    [14] Bo D A, Hongfa Y U, Haiyan M A, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures, 2017, 38(1): 144.
    [15] Deng Z, Wu D, Wang Y. Mechanical properties and failure criteria of coral concrete under true triaxial compression[J]. Journal of Materials Science, 2022, 57(37): 17622-17636. doi: 10.1007/s10853-022-07728-1
    [16] Cheng S, Shui Z, Sun T, et al. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials[J]. Construction and Building Materials, 2018, 171: 44-53. doi: 10.1016/j.conbuildmat.2018.03.082
    [17] Huang Y, He X, Sun H, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 192: 330-347. doi: 10.1016/j.conbuildmat.2018.10.111
    [18] Malecot Y, Zingg L, Briffaut M, et al. Influence of free water on concrete triaxial behavior: The effect of porosity[J]. Cement and Concrete Research, 2019, 120: 207-216. doi: 10.1016/j.cemconres.2019.03.010
    [19] Deng Z, Wang Y, Sheng J, et al. Strength and deformation of recycled aggregate concrete under triaxial compression[J]. Construction and Building Materials, 2017, 156: 1043-1052. doi: 10.1016/j.conbuildmat.2017.08.189
    [20] Lu X, Hsu C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression[J]. Cement and Concrete Research, 2006, 36(9): 1679-1685. doi: 10.1016/j.cemconres.2006.05.021
    [21] Chen Y, Li P, Ye P, et al. Experimental investigation on the mechanical behavior of polyvinyl alcohol fiber recycled aggregate concrete under triaxial compression[J]. Construction and Building Materials, 2022, 350: 128825. doi: 10.1016/j.conbuildmat.2022.128825
    [22] Jiang J, Yang H, Deng Z, et al. Failure criterion and elasto-plastic constitutive model of seawater concrete incorporating coral aggregate subjected to triaxial loading[J]. Construction and Building Materials, 2024, 435: 136772. doi: 10.1016/j.conbuildmat.2024.136772
    [23] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.1−2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Lightweight aggregates and its test methods−Part 2: Test methods for lightweight aggregates: GB/T 17431.1−2010[S]. Beijing: Standards Press of China, 2010. (in Chinese)
    [24] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694−2020[S]. 北京: 中国计划出版社, 2020.

    China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694−2020[S]. Beijing: China Planning Press, 2020. (in Chinese)
    [25] 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022

    State Administration of Market Supervision and Administration, National Standardization Management Committee. Construction sand : GB / T 14684-2022 [ S ]. Beijing : China Standards Press, 2022(in Chinese)
    [26] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12−2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [27] 陈宇良, 朱玲, 吉云鹏等. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验[J]. 复合材料学报, 2022, 39(10): 4801-4812.

    CHEN Yuliang, ZHU Ling1, JI Yunpeng, et al. Experiment study on mechanical properties of fly ash ceramsite lightweight aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4801-4812(in Chinese).
    [28] Liu H, Song Y. Experimental study of lightweight aggregate concrete under multiaxial stresses[J]. Journal of Zhejiang University-Science A, 2010, 11(8): 545-554. doi: 10.1631/jzus.A0900619
    [29] Su B, Zhou Z, Li Z, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading[J]. Construction and Building Materials, 2019, 209: 41-51. doi: 10.1016/j.conbuildmat.2019.03.097
    [30] Sun R W, Fanourakis G C. An assessment of factors affecting the elastic modulus of concrete[J]. Structural Concrete, 2022, 23(1): 593-603. doi: 10.1002/suco.202000553
    [31] Gao Y, De Schutter G, Ye G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: Effects of curing age, water to binder ratio and aggregate content[J]. Composites part b: engineering, 2014, 60: 1-13.
    [32] Wong H S, Buenfeld N R. Patch microstructure in cement-based materials: Fact or artefact?[J]. Cement and Concrete Research, 2006, 36(5): 990-997. doi: 10.1016/j.cemconres.2006.02.008
    [33] Zhou L, Guo S, Ma W, et al. Internal curing effect of saturated coral coarse aggregate in high-strength seawater sea sand concrete[J]. Construction and Building Materials, 2022, 331: 127280. doi: 10.1016/j.conbuildmat.2022.127280
    [34] 陈宗平, 陈宇良, 姚侃. 再生混凝土三轴受压力学性能试验及其影响因素[J]. 建筑结构学报, 2014, 35(12): 72-81.

    CHEN Zongping, CHEN Yuliang, YAO Kan. Experimental research on mechanical behavior and influence factor of recycled coarse aggregate concretes under tri-axial compression[J]. Journal of Building Structures, 2014, 35(12): 72-81(in Chinese).
    [35] Xie S Y, Shao J F, Burlion N. Experimental study of mechanical behaviour of cement paste under compressive stress and chemical degradation[J]. Cement and Concrete Research, 2008, 38(12): 1416-1423. doi: 10.1016/j.cemconres.2008.06.011
    [36] 陈宇良, 吉云鹏, 陈宗平等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报, 2022, 39(8): 4005-4016.

    CHEN Yuliang, JI Yunpeng, CHEN Zongping, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under tri-axial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4005-4016(in Chinese).
    [37] Chen Z, Mo L, Song C, et al. Investigation on compression properties of seawater-sea sand concrete[J]. Advances in concrete construction, 2021, 12(2): 93-103.
    [38] 陈宇良, 李培泽, 陈宗平. 珊瑚海水海砂混凝土三轴力学性能[J]. 硅酸盐学报, 2023, 51(11): 2814-2823.

    CHEN Yuliang, LI Peize, CHEN Zongping. Triaxial Mechanical Properties of Coral Seawater Sea Sand Concrete [J] Journal of the Chinese Ceramic Society, 2023, 51(11): 2814-2823. (in Chinese)
    [39] Chen D, Yu X, Liu R, et al. Triaxial mechanical behavior of early age concrete: Experimental and modelling research[J]. Cement and Concrete Research, 2019, 115: 433-444. doi: 10.1016/j.cemconres.2018.09.013
    [40] Carino N J. The maturity method: theory and application[J]. Cement, Concrete, and Aggregates, 1984, 6(2): 61-73. doi: 10.1520/CCA10358J
    [41] 陈宗平, 应武挡, 陈宇良, 等. 短龄期再生混凝土三轴受压力学性能及其本构关系[J]. 建筑材料学报, 2015, 18(6): 935-940. doi: 10.3969/j.issn.1007-9629.2015.06.004

    CHEN Zongping, YING Wudang, CHEN Yuliang, et al. Mechanical properties and constitutive relationship of short age recycled coarse aggregate concrete under tri-axial compression[J]. Journal of Building Materials, 2015, 18(6): 935-940 doi: 10.3969/j.issn.1007-9629.2015.06.004
    [42] Ye P, Chen Y, Chen Z, et al. Failure criteria and constitutive relationship of lightweight aggregate concrete under triaxial compression[J]. Materials, 2022, 15(2): 507. doi: 10.3390/ma15020507
    [43] Folino P, Xargay H. Recycled aggregate concrete–Mechanical behavior under uniaxial and triaxial compression[J]. Construction and Building Materials, 2014, 56: 21-31. doi: 10.1016/j.conbuildmat.2014.01.073
    [44] Sfer D, Carol I, Gettu R, et al. Study of the behavior of concrete under triaxial compression[J]. Journal of engineering mechanics, 2002, 128(2): 156-163. doi: 10.1061/(ASCE)0733-9399(2002)128:2(156)
    [45] Feng M, Wang Z, Wu L. Experimental study on high-strength concrete, ultrahigh-strength concrete and corresponding mortar under triaxial compression[J]. Arabian Journal for Science and Engineering, 2021, 46(11): 11179-11194. doi: 10.1007/s13369-021-05663-y
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-10-09
  • 录用日期:  2024-10-18
  • 网络出版日期:  2024-10-30

目录

    /

    返回文章
    返回