Three-dimensional compressive mechanical properties of coral seawater sea sand concrete at different ages
-
摘要: 为探究珊瑚海水海砂混凝土(CSSC)在三向受压条件下的力学性能及其损伤发展过程,考虑围压值和龄期等因素,设计制作了132个CSSC圆柱体试件进行常规三轴试验。结果表明:随着围压值的增大,试件破坏形态由竖向劈裂破坏转为斜向剪切破坏,应力-应变曲线峰部抬高、下降段逐渐平缓,损伤发展得到抑制;龄期T≤60d时,各项力学性能指标变化趋于稳定;T=180d时,屈服应变及屈服应力较28d时分别提高了8.88%、11.64%;T=365d时,弹性模量较28d提高9.18%;根据试验数据,提出了不同围压值下CSSC屈服应力、屈服应变、弹性模量计算公式;围压CSSC内部损伤演化影响显著,且随着围压值增大,龄期对其的影响逐渐减弱;最后,提出了同时考虑龄期、围压两因素的CSSC强度预测公式,预测结果与试验结果拟合程度较好。Abstract: In order to explore the mechanical properties and damage development process of coral seawater sea sand concrete (CSSC) under three-dimensional compression, 132 CSSC cylinder specimens were designed and manufactured for conventional triaxial tests considering factors such as confining pressure and age. The results show that with the increase of confining pressure, the failure mode of the specimen changes from vertical splitting failure to oblique shear failure, the peak of the stress-strain curve is raised and the descending section is gradually gentle, and the damage development is inhibited. When the age T≤60d , the change of mechanical properties tends to be stable. When T=180d, the yield strain and yield stress increase by 8.88% and 11.64% respectively compared with that at 28d. When T=365d, the elastic modulus increases by 9.18% compared with 28d; according to the experimental data, the calculation formulas of yield stress, yield strain and elastic modulus of CSSC under different confining pressure values are proposed. The influence of confining pressure on the internal damage evolution of CSSC is significant, and with the increase of confining pressure, the influence of age on it is gradually weakened. Finally, a CSSC strength prediction formula considering both age and confining pressure is proposed, and the prediction results are in good agreement with the experimental results.
-
表 1 珊瑚粗骨料物理性能
Table 1. Physical properties of coral coarse aggregate
Property Water absorption
capacity in 1 h
(by mass)/%Porosity
(by volume)/%Moisture content
(by mass)/%Bulk density/
(kg∙m−3)Apparent density/
(kg∙m−3)Cylinder pressure
strength/MPaValue 12.79 54.21 0.67 879.90 1667.00 4.11 表 2 海水的主要化学成分(g/L)
Table 2. Main chemical constituents of seawater (g/L)
NaCl Na2SO4 MgCl2 CaCl2 KCl 24.28 4.02 5.04 1.15 0.59 表 3 珊瑚海水海砂混凝土(CSSC)配合比
Table 3. Mix proportion of coral seawater sea sand concrete (CSSC)
Concrete W/C Material consumption/(kg·m−3) Slump/mm Cube crushing strength/MPa CA Sea sand Cement Seawater Additional seawater Wa CSSC 0.4 655.8 760.1 535.0 214.0 75.1 1.4 156 32.09 Notes: CA—Coral coarse aggregate; Wa—Water reducing admixture; W/C—Water-cement ratio. 表 4 CSSC不同龄期下A、B取值及拟合系数
Table 4. The values of A and B and the fitting coefficients of CSSC at different ages
Type 28 d 60 d 180 d 365 d A 5.267 5.220 5.760 5.940 B 3.542 3.030 3.159 3.350 R2 0.83 0.94 0.90 0.92 表 5 不同种类混凝土调整系数Kf
Table 5. Adjustment coefficient Kf of different kinds of concrete
Concrete type Kf Reference Lightweight aggregate concrete 0.0208 σw+0.7079 Chen[29] 0.0218 σw+0.7443 Ye[42] Recycled aggregate concrete 0.0226 σw+0.7455 Chen[41] 0.0136 σw+0.4629 Paula[43] Natural aggregate concrete 0.0121 σw+0.3229 Sfer[44] High-strength concrete 0.0059 σw+0.2010 Feng[45] 0.0061 σw+0.2011 Lu[20] -
[1] 苏晨, 麻海燕, 余红发等. 不同珊瑚骨料对珊瑚混凝土力学性能的影响[J]. 硅酸盐学报, 2020, 48(11): 1771-1780.SU Chen, MA Haiyan, YU Hongfa, et al. Effect of Different Coral Aggregates on Mechanical Properties of Coral Concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1771-1780(in Chinese). [2] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8): 1753-1764.CAI Xinguang, ZHAO Qing, CHEN Huisu, et al. Research Progress in Coral Concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1753-1764(in Chinese). [3] 达波, 陶韬, 蒋沛漪, 等. 热带岛礁珊瑚骨料混凝土的耐久性及提升方法[J]. 哈尔滨工程大学学报, 2023, 44(3): 418-424. doi: 10.11990/jheu.202201059DA Bo, TAO Tao, JIANG Peiyi, et al. Durability and improvement method of coral aggregate concrete on tropical reefs[J]. Journal of Harbin Engineering University, 2023, 44(3): 418-424(in Chinese). doi: 10.11990/jheu.202201059 [4] 刘晋铭, 张寿松, 俞煌, 等. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 94-100. doi: 10.11896/cldb.22010233LIU Jinsong, ZHANG Shousong, YU Huang, et al. Effect of sand binder ratio on dynamic mechanical properties of seawater mixed coral aggregate concrete.[J]. Materials Reports, 2023, 37(18): 94-100(in Chinese). doi: 10.11896/cldb.22010233 [5] 张路, 牛荻涛, 文波, 等. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 78-83.ZHANG Lu, NIU Ditao, WEN Bo, et al. Resistivity model of modified coral aggregate concrete.[J]. Materials Reports, 2022, 36(1): 78-83(in Chinese). [6] Da B, Yu H, Ma H, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. doi: 10.1016/j.conbuildmat.2016.06.064 [7] Wu Z, Yu H, Ma H, et al. Physical and mechanical properties of coral aggregates in the South China Sea[J]. Journal of Building Engineering, 2023, 63: 105478. doi: 10.1016/j.jobe.2022.105478 [8] Da B, Yu H, Ma H, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123: 47-58. doi: 10.1016/j.conbuildmat.2016.06.135 [9] Wu Z, Zhang J, Yu H, et al. 3D mesoscopic investigation of the specimen aspect-ratio effect on the compressive behavior of coral aggregate concrete[J]. Composites Part B: Engineering, 2020, 198: 108025. doi: 10.1016/j.compositesb.2020.108025 [10] 陈宗平, 周济, 陈宇良, 等. 珊瑚粗骨料海水混凝土力学性能试验研究[J]. 应用力学学报, 2022, 37(5): 1999-2006.CHEN Zongping, ZHOU Ji, CHEN Yuliang et al. Experimental study on mechanical properties of coral coarse aggregate seawater concrete[J]. Chinese Journal of Applied Mechanics, 2022, 37(5): 1999-2006(in Chinese). [11] Shi Z, Shui Z, Li Q, et al. Combined effect of metakaolin and sea water on performance and microstructures of concrete[J]. Construction and building Materials, 2015, 74: 57-64. doi: 10.1016/j.conbuildmat.2014.10.023 [12] 李仲欣, 韦灼彬, 沈锦林. 基于BP神经网络的珊瑚混凝土抗压强度预测模型[J]. 混凝土, 2016(1): 64-69.LI zhongxin , WEI Zhuobin , SHEN Jinlin . Forcast model of compressive strength of coral concrete based on BP neural network [J] . Concrete , 2016 (1) : 64-69 . (in Chinese) [13] 白卫峰, 耿越, 管俊峰, 等. 考虑龄期影响的再生混凝土力学性能及损伤机制研究[J/OL]. 工程力学: 1-192024-04-08]. BAI Wei-feng , GENG Yue , GUAN Jun-feng et al. Study on mechanical properties and damage mechanism of recycled concrete considering the effect of age [J/OL]. Engineering Mechanics: 1-19[2024-04-08]. (in Chinese) [14] Bo D A, Hongfa Y U, Haiyan M A, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures, 2017, 38(1): 144. [15] Deng Z, Wu D, Wang Y. Mechanical properties and failure criteria of coral concrete under true triaxial compression[J]. Journal of Materials Science, 2022, 57(37): 17622-17636. doi: 10.1007/s10853-022-07728-1 [16] Cheng S, Shui Z, Sun T, et al. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials[J]. Construction and Building Materials, 2018, 171: 44-53. doi: 10.1016/j.conbuildmat.2018.03.082 [17] Huang Y, He X, Sun H, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 192: 330-347. doi: 10.1016/j.conbuildmat.2018.10.111 [18] Malecot Y, Zingg L, Briffaut M, et al. Influence of free water on concrete triaxial behavior: The effect of porosity[J]. Cement and Concrete Research, 2019, 120: 207-216. doi: 10.1016/j.cemconres.2019.03.010 [19] Deng Z, Wang Y, Sheng J, et al. Strength and deformation of recycled aggregate concrete under triaxial compression[J]. Construction and Building Materials, 2017, 156: 1043-1052. doi: 10.1016/j.conbuildmat.2017.08.189 [20] Lu X, Hsu C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression[J]. Cement and Concrete Research, 2006, 36(9): 1679-1685. doi: 10.1016/j.cemconres.2006.05.021 [21] Chen Y, Li P, Ye P, et al. Experimental investigation on the mechanical behavior of polyvinyl alcohol fiber recycled aggregate concrete under triaxial compression[J]. Construction and Building Materials, 2022, 350: 128825. doi: 10.1016/j.conbuildmat.2022.128825 [22] Jiang J, Yang H, Deng Z, et al. Failure criterion and elasto-plastic constitutive model of seawater concrete incorporating coral aggregate subjected to triaxial loading[J]. Construction and Building Materials, 2024, 435: 136772. doi: 10.1016/j.conbuildmat.2024.136772 [23] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.1−2010[S]. 北京: 中国标准出版社, 2010.Standardization Administration of the People's Republic of China. Lightweight aggregates and its test methods−Part 2: Test methods for lightweight aggregates: GB/T 17431.1−2010[S]. Beijing: Standards Press of China, 2010. (in Chinese) [24] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694−2020[S]. 北京: 中国计划出版社, 2020.China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694−2020[S]. Beijing: China Planning Press, 2020. (in Chinese) [25] 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022State Administration of Market Supervision and Administration, National Standardization Management Committee. Construction sand : GB / T 14684-2022 [ S ]. Beijing : China Standards Press, 2022(in Chinese) [26] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12−2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese) [27] 陈宇良, 朱玲, 吉云鹏等. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验[J]. 复合材料学报, 2022, 39(10): 4801-4812.CHEN Yuliang, ZHU Ling1, JI Yunpeng, et al. Experiment study on mechanical properties of fly ash ceramsite lightweight aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4801-4812(in Chinese). [28] Liu H, Song Y. Experimental study of lightweight aggregate concrete under multiaxial stresses[J]. Journal of Zhejiang University-Science A, 2010, 11(8): 545-554. doi: 10.1631/jzus.A0900619 [29] Su B, Zhou Z, Li Z, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading[J]. Construction and Building Materials, 2019, 209: 41-51. doi: 10.1016/j.conbuildmat.2019.03.097 [30] Sun R W, Fanourakis G C. An assessment of factors affecting the elastic modulus of concrete[J]. Structural Concrete, 2022, 23(1): 593-603. doi: 10.1002/suco.202000553 [31] Gao Y, De Schutter G, Ye G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: Effects of curing age, water to binder ratio and aggregate content[J]. Composites part b: engineering, 2014, 60: 1-13. [32] Wong H S, Buenfeld N R. Patch microstructure in cement-based materials: Fact or artefact?[J]. Cement and Concrete Research, 2006, 36(5): 990-997. doi: 10.1016/j.cemconres.2006.02.008 [33] Zhou L, Guo S, Ma W, et al. Internal curing effect of saturated coral coarse aggregate in high-strength seawater sea sand concrete[J]. Construction and Building Materials, 2022, 331: 127280. doi: 10.1016/j.conbuildmat.2022.127280 [34] 陈宗平, 陈宇良, 姚侃. 再生混凝土三轴受压力学性能试验及其影响因素[J]. 建筑结构学报, 2014, 35(12): 72-81.CHEN Zongping, CHEN Yuliang, YAO Kan. Experimental research on mechanical behavior and influence factor of recycled coarse aggregate concretes under tri-axial compression[J]. Journal of Building Structures, 2014, 35(12): 72-81(in Chinese). [35] Xie S Y, Shao J F, Burlion N. Experimental study of mechanical behaviour of cement paste under compressive stress and chemical degradation[J]. Cement and Concrete Research, 2008, 38(12): 1416-1423. doi: 10.1016/j.cemconres.2008.06.011 [36] 陈宇良, 吉云鹏, 陈宗平等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报, 2022, 39(8): 4005-4016.CHEN Yuliang, JI Yunpeng, CHEN Zongping, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under tri-axial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4005-4016(in Chinese). [37] Chen Z, Mo L, Song C, et al. Investigation on compression properties of seawater-sea sand concrete[J]. Advances in concrete construction, 2021, 12(2): 93-103. [38] 陈宇良, 李培泽, 陈宗平. 珊瑚海水海砂混凝土三轴力学性能[J]. 硅酸盐学报, 2023, 51(11): 2814-2823.CHEN Yuliang, LI Peize, CHEN Zongping. Triaxial Mechanical Properties of Coral Seawater Sea Sand Concrete [J] Journal of the Chinese Ceramic Society, 2023, 51(11): 2814-2823. (in Chinese) [39] Chen D, Yu X, Liu R, et al. Triaxial mechanical behavior of early age concrete: Experimental and modelling research[J]. Cement and Concrete Research, 2019, 115: 433-444. doi: 10.1016/j.cemconres.2018.09.013 [40] Carino N J. The maturity method: theory and application[J]. Cement, Concrete, and Aggregates, 1984, 6(2): 61-73. doi: 10.1520/CCA10358J [41] 陈宗平, 应武挡, 陈宇良, 等. 短龄期再生混凝土三轴受压力学性能及其本构关系[J]. 建筑材料学报, 2015, 18(6): 935-940. doi: 10.3969/j.issn.1007-9629.2015.06.004CHEN Zongping, YING Wudang, CHEN Yuliang, et al. Mechanical properties and constitutive relationship of short age recycled coarse aggregate concrete under tri-axial compression[J]. Journal of Building Materials, 2015, 18(6): 935-940 doi: 10.3969/j.issn.1007-9629.2015.06.004 [42] Ye P, Chen Y, Chen Z, et al. Failure criteria and constitutive relationship of lightweight aggregate concrete under triaxial compression[J]. Materials, 2022, 15(2): 507. doi: 10.3390/ma15020507 [43] Folino P, Xargay H. Recycled aggregate concrete–Mechanical behavior under uniaxial and triaxial compression[J]. Construction and Building Materials, 2014, 56: 21-31. doi: 10.1016/j.conbuildmat.2014.01.073 [44] Sfer D, Carol I, Gettu R, et al. Study of the behavior of concrete under triaxial compression[J]. Journal of engineering mechanics, 2002, 128(2): 156-163. doi: 10.1061/(ASCE)0733-9399(2002)128:2(156) [45] Feng M, Wang Z, Wu L. Experimental study on high-strength concrete, ultrahigh-strength concrete and corresponding mortar under triaxial compression[J]. Arabian Journal for Science and Engineering, 2021, 46(11): 11179-11194. doi: 10.1007/s13369-021-05663-y
计量
- 文章访问数: 34
- HTML全文浏览量: 21
- 被引次数: 0