留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控

周子彦 范天翔 张慧颖 吴杰 陈烨 王华平

周子彦, 范天翔, 张慧颖, 等. 3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控[J]. 复合材料学报, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002
引用本文: 周子彦, 范天翔, 张慧颖, 等. 3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控[J]. 复合材料学报, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002
ZHOU Ziyan, FAN Tianxiang, ZHANG Huiying, et al. Process and performance control of 3D printed continuous carbon fiber/poly(ether ketone ketone) composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002
Citation: ZHOU Ziyan, FAN Tianxiang, ZHANG Huiying, et al. Process and performance control of 3D printed continuous carbon fiber/poly(ether ketone ketone) composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002

3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控

doi: 10.13801/j.cnki.fhclxb.20221215.002
基金项目: 中央高校基本科研业务费专项资金(2232022 G-06);上海市轻质结构复合材料重点实验室开放课题(2232019 A4-10)
详细信息
    通讯作者:

    陈烨,博士,教授,博士生导师,研究方向为3D打印及功能、智能化纤维 E-mail: chenye@dhu.edu.cn

  • 中图分类号: TB332

Process and performance control of 3D printed continuous carbon fiber/poly(ether ketone ketone) composites

Funds: Fundamental Research Funds for the Central Universities (2232022 G-06); Open Project Fund from Shanghai Key Laboratory of Lightweight Structural Composites (2232019 A4-10)
  • 摘要: 以高热性能热塑性树脂—聚醚酮酮(PEKK)为基体与连续碳纤维(CCF)进行原位浸渍3D打印,制备连续碳纤维/聚醚酮酮复合材料(CCF/PEKK),并系统研究了3D打印工艺参数中分层厚度、流量比、打印温度及成型方向对复合材料内部结构、基体结晶、表面质量及力学性能等方面的影响。通过扫描电子显微镜观察3D打印CCF/PEKK的微观结构,采用X射线衍射分析复合材料中基体的结晶性能,使用超景深显微镜观察分析3D打印CCF/PEKK的表面形貌,同时对复合材料进行弯曲性能和层间剪切性能测试。结果显示:当分层厚度为0.2 mm、流量比为85%、打印温度为395℃,并使用水平成型方向时,3D打印CCF/PEKK复合材料的综合性能最优,其中弯曲强度达302.0 MPa,层间剪切强度达24.1 MPa。CCF/PEKK的弯曲强度较3D打印纯PEKK提升194%,层间剪切强度较工艺调控前提升113%。表明在未使用任何附加优化手段的情况下,3D打印CCF/PEKK具备制造复杂结构工程零部件的潜力。

     

  • 图  1  原位浸渍3D打印CCF/PEKK的制备及各工艺参数及示意图

    Figure  1.  Schematic diagram of process parameters and preparing CCF/PEKK by in-situ impregnation 3D printing

    图  2  PEKK原料的TG曲线 (a) 和DSC曲线 (b)、CCF/PEKK样品光学照片 (c)

    Figure  2.  TG curve (a) and DSC curve (b) of PEKK, optical photo of CCF/PEKK samples (c)

    T5%—Thermal decomposition temperature; Tg—Glass transition temperature; Tm—Melting temperature

    图  3  不同分层厚度CCF/PEKK截面SEM图像:(a) 0.5 mm;(b) 0.4 mm;(c) 0.3 mm;(d) 0.2 mm

    Figure  3.  SEM images of CCF/PEKK cross-sections with different layer thickness: (a) 0.5 mm; (b) 0.4 mm; (c) 0.3 mm; (d) 0.2 mm

    图  4  不同分层厚度CCF/PEKK的弯曲性能和纤维含量 (a) 及层间剪切强度(ILSS) (b)

    Figure  4.  Flexural properties and fiber content (a) and interlaminar shear strength (ILSS) (b) of CCF/PEKK with different layer thickness

    图  5  低流量比 ((a1) F=65%、L=0.2 mm;(a2) F=75%、L=0.3 mm)、中流量比 ((b1) F=75%、L=0.2 mm;(b2) F=85%、L=0.3 mm) 和高流量比((b1) F=85%、L=0.2 mm;(b2) F=95%、L=0.3 mm) CCF/PEKK截面SEM图像对比

    Figure  5.  SEM images of cross-sections of CCF/PEKK with low flow ratio ((a1) F=65%, L=0.2 mm; (a2) F=75%, L=0.3 mm), middle flow ratio ((b1) F=85%, L=0.2 mm; (b2) F=95%, L=0.3 mm) and high flow ratio ((b1)F=85%, L=0.2 mm; (b2) F=95%, L=0.3 mm)

    图  6  不同流量比CCF/PEKK的弯曲性能 (a) 和ILSS (b)

    Figure  6.  Flexural properties (a) and ILSS (b) of CCF/PEKK with different flow ratio

    图  7  不同流量比CCF/PEKK表面三维形貌:(a1) L=0.3 mm、F=95%;(a2) L=0.3 mm、F=85%;(a3) L=0.3 mm、F=75%;(b1) L=0.2 mm、F=85%;(b2) L=0.2 mm、F=75%;(b3) L=0.2 mm、F=65%

    Figure  7.  3D morphologies of CCF/PEKK surfaces with different flow ratio: (a1) L=0.3 mm, F=95%; (a2) L=0.3 mm, F=85%; (a3) L=0.3 mm, F=75%; (b1) L=0.2 mm, F=85%; (b2) L=0.2 mm, F=75%; (b3) L=0.2 mm, F=65%

    图  8  不同打印温度CCF/PEKK截面SEM图像:((a1)~(a2)) 375℃;((b1)~(b2)) 385℃;((c1)~(c2)) 395℃;((d1)~(d2)) 405℃

    Figure  8.  SEM images of CCF/PEKK cross-sections with different print temperatures: ((a1)-(a2)) 375°C; ((b1)-(b2)) 385°C; ((c1)-(c2)) 395°C; ((d1)-(d2)) 405°C

    图  9  不同打印温度CCF/PEKK的XRD图谱

    Figure  9.  XRD patterns of CCF/PEKK with different print temperature

    图  10  不同打印温度下CCF/PEKK的弯曲性能 (a) 和ILSS (b)

    Figure  10.  Flexural properties (a) and ILSS (b) of CCF/PEKK with different print temperature

    图  11  打印温度为395℃并采用85%流量比时CCF/PEKK弯曲性能 (a) 和层间剪切强度 (b) 随分层厚度的变化;打印温度为395℃并采用0.2 mm分层厚度时CCF/PEKK弯曲性能 (c) 和层间剪切强度 (d) 随流量比的变化

    Figure  11.  Flexural properties (a) and interlaminar shear strength (b) of CCF/PEKK preparing at 395℃ and flow ratio of 85% with different layer thickness; Flexural properties (c) and interlaminar shear strength (d) of CCF/PEKK preparing at 395℃ and layer thickness of 0.2 mm with different flow ratio

    图  12  不同成型方向PEKK及CCF/PEKK的弯曲性能 (a) 和CCF/PEKK的层间剪切强度 (b)

    Figure  12.  Flexural properties (a) and interlaminar shear strength (b) of PEKK and CCF/PEKK with different build orientation

    图  13  不同成型方向CCF/PEKK的三维模型图 (a)、样品光学照片和载荷施加示意图 (b) 及弯曲断裂处水平方向 (c) 和垂直方向 (d) 的光学显微镜照片

    Figure  13.  3D model of CCF/PEKK with different build orientation (a), optical photo of samples and load application schematic (b), optical microscope photo at flexural fracture position on flat (c), on-edge (d)

    表  1  3D打印制备连续碳纤维/聚醚酮酮复合材料(CCF/PEKK)工艺参数设定

    Table  1.   Process parameters setting of 3D printed continuous carbon fiber/poly(ether ketone ketone) composites (CCF/PEKK)

    Process parametersSet valueOther values of paraments
    Layer thickness L/mm0.5, 0.4, 0.3, 0.2F=85%, T=375℃, B=Flat
    Flow ratio F/%65, 75, 85, 95L=0.2/0.3 mm, T=375℃, B=Flat
    Print temperature T/℃375, 385, 395, 405L=0.2 mm, F=85%, B=Flat
    Build orientation BFlat, on-edgeL=0.2 mm, F=85%, T=395℃
    下载: 导出CSV

    表  2  不同分层厚度下CCF/PEKK样品的总层数、基体挤出速度(Er)、挤出量(Ea)及纤维含量(Wf)

    Table  2.   Number of layers, matrix extrusion rate (Er), extrusion amount (Ea) and fiber content (Wf) of CCF/PEKK with different layer thickness

    L/mmNumber of layerEr/(mg∙min−1)Ea/mgWf/wt%
    0.5 448.1400.514.3
    0.4 537.3403.817.1
    0.3 732.2393.120.0
    0.21023.0383.225.8
    下载: 导出CSV

    表  3  不同流量比CCF/PEKK的ErEa

    Table  3.   Er and Ea of CCF/PEKK with different flow ratios

    F/%L/mmEr/(mg∙min−1)Ea/mg
    650.217.9297.7
    750.220.7345.5
    0.327.5335.7
    850.223.0383.3
    0.332.2393.1
    950.334.2416.9
    下载: 导出CSV

    表  4  不同打印温度CCF/PEKK的结晶性能

    Table  4.   Crystallization properties of CCF/PEKK with different print temperature

    375℃385℃395℃405℃
    Xs/nm8.89.710.813.4
    Xc/%6.07.5 8.710.0
    Notes: Xs—Grain size of PEKK matrix in CCF/PEKK; Xc—XRD crystallinity of PEKK matrix in CCF/PEKK.
    下载: 导出CSV

    表  5  本文与3D打印短切碳纤维(CF)/PEEK和常规工艺制备CCF/PEKK力学性能及纤维含量的比较

    Table  5.   Comparison of mechanical properties and fiber content between 3D printed short carbon fiber CF/PEEK and CCF/PEKK composites of common processes and this work

    Fabrication methodFlexural strength/MPaILSS/MPaFiber content/wt%Ref.
    Hot press molding with CCF/PEKK prepreg687.678.265.0[43]
    Vacuum molding with dry PEKK powder and CCF849.059.060.0[44]
    Vacuum molding with CCF/PEKK prepreg30.966.0[45]
    3D printed short CF/PEEK147.215.0[20]
    3D printed CCF/PEKK302.024.125.8This work
    下载: 导出CSV
  • [1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2] 辛艳喜, 蔡高参, 胡彪, 等. 3D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6):156-164. doi: 10.3969/j.issn.1674-6457.2021.06.022

    XIN Yanxi, CAI Gaoshen, HU Biao, et al. Recent development of main process types of 3D printing technology and application[J]. Journal of Netshape Forming Engineering,2021,13(6):156-164(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.06.022
    [3] 杨勇, 郭啸天, 唐杰, 等. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3):267-277. doi: 10.15541/jim20210705

    YANG Yong, GUO Xiaotian, TANG Jie, et al. Research progress and prospects of non-oxide ceramic in stereolithography additive manufacturing[J]. Journal of Inorganic Materials,2022,37(3):267-277(in Chinese). doi: 10.15541/jim20210705
    [4] SIVADAS B O, ASHCROFT I, KHLOBYSTOV A N, et al. Laser sintering of polymer nanocomposites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):277-300. doi: 10.1016/j.aiepr.2021.07.003
    [5] PENUMAKALA P K, SANTO J, THOMAS A. A critical review on the fused deposition modeling of thermoplastic polymer composites[J]. Composites Part B: Engineering,2020,201:108336. doi: 10.1016/j.compositesb.2020.108336
    [6] CANO-VICENT A, TAMBUWALA M M, HASSAN S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive Manufacturing,2021,47:102378. doi: 10.1016/j.addma.2021.102378
    [7] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201216.002
    [8] ZHANG Z F, HE H J, FU W L, et al. Electro-hydrodynamic direct-writing technology toward patterned ultra-thin fibers: Advances, materials and applications[J]. Nano Today,2020,35:100942. doi: 10.1016/j.nantod.2020.100942
    [9] 黄新朵, 张苗苗, 赵新, 等. 3D打印高分子材料在医疗中的应用与发展趋势[J]. 塑料工业, 2021, 49(S1):1-8.

    HUANG Xinduo, ZHANG Miaomiao, ZHAO Xin, et al. Application and development trend of 3D printed polymer materials in medical treatment[J]. China Plastics Industry,2021,49(S1):1-8(in Chinese).
    [10] ZHANG H Y, KE F Y, SHAO J Y, et al. One-step fabrication of highly sensitive pressure sensor by all FDM printing[J]. Composites Science and Technology,2022,226:109531. doi: 10.1016/j.compscitech.2022.109531
    [11] KLIPPSTEIN H, DIAZ DE CERIO SANCHEZ A, HASSANIN H, et al. Fused deposition modeling for unmanned aerial vehicles (UAVs): A review[J]. Advanced Engineering Materials,2018,20(2):1700552. doi: 10.1002/adem.201700552
    [12] LI L Y, CHEN Y, YU T X, et al. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach[J]. Composites Communications,2019,16:162-167. doi: 10.1016/j.coco.2019.10.004
    [13] ZHANG X, FAN W, LIU T X. Fused deposition modeling 3D printing of polyamide-based composites and its applications[J]. Composites Communications,2020,21:100413. doi: 10.1016/j.coco.2020.100413
    [14] DAWOUD M, TAHA I, EBEID S J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques[J]. Journal of Manufacturing Processes,2016,21:39-45. doi: 10.1016/j.jmapro.2015.11.002
    [15] LI Y, LOU Y. Tensile and bending strength improvements in PEEK parts using fused deposition modelling 3D printing considering multi-factor coupling[J]. Polymers,2020,12(11):2497. doi: 10.3390/polym12112497
    [16] 史长春, 胡镔, 陈定方, 等. 聚醚醚酮3D打印成形工艺的仿真和实验研究[J]. 中国机械工程, 2018, 29(17):2119-2124, 2130. doi: 10.3969/j.issn.1004-132X.2018.17.015

    SHI Changchun, HU Bin, CHEN Dingfang, et al. Process simulation and experiments for PEEK 3D printing technology[J]. China Mechanical Engineering,2018,29(17):2119-2124, 2130(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.17.015
    [17] XU C, CHENG K J, LIU Y F, et al. Effect of processing parameters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling[J]. Polymer Engineering & Science,2021,61(2):465-476.
    [18] 刘顶, 李露瑶, 肖洁, 等. 3D打印PEI成型工艺对制品力学性能的影响[J]. 塑料, 2018, 47(6):94-97, 106.

    LIU Ding, LI Luyao, XIAO Jie, et al. Effect of 3D printing polyetherimide molding technology on mechanical properties of products[J]. Plastics,2018,47(6):94-97, 106(in Chinese).
    [19] DAS A, CHATHAM C A, FALLON J J, et al. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers[J]. Additive Manufacturing,2020,34:101218. doi: 10.1016/j.addma.2020.101218
    [20] WANG P, ZOU B, DING S L, et al. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing[J]. Composites Part B: Engineering,2020,198:108175. doi: 10.1016/j.compositesb.2020.108175
    [21] BERRETTA S, DAVIES R, SHYNG Y T, et al. Fused depo-sition modelling of high temperature polymers: Exploring CNT PEEK composites[J]. Polymer Testing,2017,63:251-262. doi: 10.1016/j.polymertesting.2017.08.024
    [22] TIAN X Y, TODOROKI A, LIU T F, et al. 3D printing of continuous fiber reinforced polymer composites: Development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016
    [23] 龙昱, 李岩, 付昆昆, 等. 3D打印纤维增强复合材料工艺和力学性能研究进展[J]. 复合材料学报, 2022, 39(9): 4196-4212.

    LONG Yu, LI Yan, FU Kunkun, et al. Recent advances in 3D printed fiber reinforced composites: Processing, technique and mechanical performance[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4196-4212(in Chinese).
    [24] CHEN K, YU L G, CUI Y H, et al. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717
    [25] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688
    [26] TIAN X Y, LIU T F, YANG C C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [27] DONG K, KE H Z, PANAHI-SARMAD M, et al. Mechanical properties and shape memory effect of 4D printed cellular structure composite with a novel continuous fiber-reinforced printing path[J]. Materials & Design,2021,198:109303.
    [28] LIU T F, TIAN X Y, ZHANG M Y, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001
    [29] LUO M, TIAN X Y, SHANG J F, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    [30] ZHANG H Y, ZHOU Z Y, GAO X, et al. Enhanced mechanical performance of fused filament fabrication copolyester by continuous carbon fiber in-situ reinforcement[J]. Journal of Applied Polymer Science,2023,140:e53269.
    [31] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.

    XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3D printing and mechanical properties optimization of continuous carbon fiber reinforced polyphenylene sulfide composites[J]. Polymer Materials Science & Engineering,2022,38(7):84-92(in Chinese).
    [32] LUO M, TIAN X Y, SHANG J F, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812
    [33] KAPLUN B W, ZHOU R S, JONES K W, et al. Influence of orientation on mechanical properties for high-performance fused filament fabricated ultem 9085 and electro-statically dissipative polyetherketoneketone[J]. Additive Manufacturing,2020,36:101527. doi: 10.1016/j.addma.2020.101527
    [34] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Macromolecular modifications of poly(etherketoneketone) (PEKK) copolymer at the melting state[J]. Polymer Degradation and Stability,2018,155:103-110. doi: 10.1016/j.polymdegradstab.2018.07.005
    [35] CHOUPIN T, DEBERTRAND L, FAYOLLE B, et al. Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers[J]. Polymer Crystallization,2019,2(6):e10086.
    [36] American Society for Testing and Materials. Standard test method for flexural properties of polymer matrix compo-site materials: ASTM D7264—2015[S]. West Conshohocken: American Society for Testing and Materials, 2015.
    [37] 北京玻璃钢研究设计院. 纤维增强塑料 短梁法测定层间剪切强度: JC/T 773—2010[S]. 北京: 全国纤维增强塑料标准化技术委员会, 2010.

    Beijing FRP Research and Design Institute. Fiber-reinforced plastics: Determination of interlaminar shear strength by short beam method: JC/T 773—2010[S]. Beijing: National Technical Committee for Standardization of Fiber Reinforced Plastics, 2010(in Chinese).
    [38] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer[J]. Polymer,2017,111:73-82. doi: 10.1016/j.polymer.2017.01.033
    [39] BASGUL C, YU T, MACDONALD D W, et al. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages?[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,102:103455. doi: 10.1016/j.jmbbm.2019.103455
    [40] QIAO J, LI Y R, LI L Q. Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) compo-sites[J]. Additive Manufacturing,2019,30:100926. doi: 10.1016/j.addma.2019.100926
    [41] LI N Y, LI Y G, LIU S T. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [42] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [43] 王杰. 连续碳纤维增强聚醚酮酮板材的研究[D]. 淄博: 山东理工大学, 2019.

    WANG Jie. Study on continuous carbon fiber reinfoeced poly(ether ketone ketone) sheet[D]. Zibo: Shandong University of Technology, 2019(in Chinese).
    [44] 陆承志, 赵乐, 杨雪勤, 等. 碳纤维增强聚醚酮酮模压复合材料结构与性能调控[J]. 复合材料学报, 2022, 39(8):3684-3694. doi: 10.13801/j.cnki.fhclxb.20210928.004

    LU Chengzhi, ZHAO Le, YANG Xueqin, et al. Study on structure and performance control of carbon fiber reinforced poly(ether ketone ketone) molding composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3684-3694(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210928.004
    [45] CHOI I, ROH H D, JEONG W N, et al. Laser-assisted joining of carbon fiber reinforced polyetherketoneketone thermoplastic composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2022,163:107228. doi: 10.1016/j.compositesa.2022.107228
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  870
  • HTML全文浏览量:  374
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-11-21
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-16
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回