留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控

周子彦 范天翔 张慧颖 吴杰 陈烨 王华平

周子彦, 范天翔, 张慧颖, 等. 3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控[J]. 复合材料学报, 2022, 41(0): 1-15
引用本文: 周子彦, 范天翔, 张慧颖, 等. 3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控[J]. 复合材料学报, 2022, 41(0): 1-15
Ziyan ZHOU, Tianxiang FAN, Huiying ZHANG, Jie WU, Ye CHEN, Huaping WANG. Process and performance control of 3D printed continuous carbon fiber/poly (ether ketone ketone) composites[J]. Acta Materiae Compositae Sinica.
Citation: Ziyan ZHOU, Tianxiang FAN, Huiying ZHANG, Jie WU, Ye CHEN, Huaping WANG. Process and performance control of 3D printed continuous carbon fiber/poly (ether ketone ketone) composites[J]. Acta Materiae Compositae Sinica.

3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控

基金项目: 中央高校基本科研业务费专项资金资助(2232022G-06);上海市轻质结构复合材料重点实验室开放课题(2232019A4-10)
详细信息
    通讯作者:

    陈烨,副教授,博士生导师,研究方向为3 D打印及功能、智能化纤维 E-mail: chenye@dhu.edu.cn

  • 中图分类号: TB332

Process and performance control of 3D printed continuous carbon fiber/poly (ether ketone ketone) composites

Funds: The Fundamental Research Funds for the Central Universities(No. 2232022 G-06);Open Project Fund from Shanghai Key Laboratory of Lightweight Structural Composites(No. 2232019 A4-10)
  • 摘要: 连续纤维在3D打印过程中不仅可以均匀铺设、定向取向,还可以较为大量引入,作为增强体可以大幅提高热塑性3D打印制品的力学性能。但目前的连续纤维3D打印工艺中,以高热性能热塑性树脂作为基体的研究仍然有限。聚醚酮酮(PEKK)是理想的高热性能热塑性3D打印原料,但目前还缺乏以其作基体进行连续纤维3D打印的系统研究,特别是3D打印工艺参数对PEKK基连续纤维复合材料性能的影响尚不明确。本文选择PEKK作为基体,以原位浸渍3D打印工艺制备连续碳纤维/聚醚酮酮(CCF/PEKK)复合材料,系统研究了分层厚度、基体流量、成形温度以及成形方向对复合材料内部结构、基体结晶性能、表面粗糙度及力学性能等的影响。结果显示,未使用任何附加优化手段的情况下,采用0.2 mm的分层厚度、85%的流量比、395℃的打印温度并使用水平成型方向时,3D打印CCF/PEKK复合材料的综合性能最优,其中弯曲强度达302.0 MPa,层间剪切强度达24.1 MPa。CCF/PEKK的弯曲强度较3D打印纯PEKK提升194%,层间剪切强度较工艺调控前提升113%,具备制造复杂结构工程零部件的潜力。3D打印纯PEKK、CCF/PEKK以及优化工艺后CCF/PEKK的弯曲性能(a)和层间剪切强度(b)对比

     

  • 图  1  原位浸渍3 D打印CCF/PEKK的制备及各工艺参数及示意图

    Figure  1.  Schematic diagram of process parameters and preparing CCF/PEKK by in-situ impregnation 3 D printing

    图  2  PEKK原料的TG曲线(a)和DSC曲线(b),CCF/PEKK样品光学照片(c)

    Figure  2.  TG curve (a) and DSC curve (b) of PEKK, optical photo of CCF/PEKK samples (c)

    图  3  不同分层厚度(a:0.5 mm、b:0.4 mm、c:0.3 mm和d:0.2 mm)CCF/PEKK截面SEM形貌

    Figure  3.  SEM morphologies of CCF/PEKK cross-sections with different layer thickness (a: 0.5 mm, b: 0.4 mm, c: 0.3 mm and d: 0.2 mm)

    图  4  不同分层厚度CCF/PEKK的弯曲性能和纤维含量(a)及层间剪切强度(b)

    Figure  4.  Flexural properties and fiber content (a) and interlaminar shear strength (b) of CCF/PEKK with different layer thickness

    图  5  低流量比(a1:F=65%、L=0.2 mm,a2:F=75%、L=0.3 mm)、中流量比(b1:F=75%、L=0.2 mm,b2:F=85%,L=0.3 mm)和高流量比(b1:F=85%、L=0.2 mm,b2:F=95%,L=0.3 mm)CCF/PEKK截面SEM形貌对比

    Figure  5.  SEM morphologies of cross-sections of CCF/PEKK with low flow ratio (a1: F=65%, L=0.2 mm, a2: F=75%, L=0.3 mm), middle flow ratio (b1:F=85%、L=0.2 mm,b2:F=95%,L=0.3 mm) and high flow ratio (b1: F=85%, L=0.2 mm, b2: F=95%, L=0.3 mm)

    图  6  不同流量比CCF/PEKK的弯曲性能(a)和层间剪切强度(b)

    Figure  6.  Flexural properties (a) and interlaminar shear strength (b) of CCF/PEKK with different flow ratio

    图  7  不同流量比(a1:L=0.3 mm,F=95%、a2:L=0.3 mm,F=85%;a3:L=0.3 mm,F=75%和b1:L=0.2 mm,F=85%、b2:L=0.2 mm,F=75%;b3:L=0.2 mm,F=65%)CCF/PEKK表面三维形貌

    Figure  7.  3 D morphologies of CCF/PEKK surfaces with different flow ratio (a1: L=0.3 mm, F=95%, a2: L=0.3 mm, F=85%; a3: L=0.3 mm, F=75% and b1: L=0.2 mm, F=85%, b2: L=0.2 mm, F=75%; b3: L=0.2 mm, F=65%)

    图  8  不同打印温度(a1~a2:375℃;b1~b2:385℃;c1~c2:395℃;d1-d2:405℃)CCF/PEKK截面SEM形貌

    Figure  8.  SEM morphologies of CCF/PEKK cross-sections with different print temperatures (a1~a2: 375°C; b1~b2: 385°C; c1~c2: 395°C; d1-d2: 405°C)

    图  9  不同打印温度CCF/PEKK的XRD曲线

    Figure  9.  XRD curves of CCF/PEKK with different print temperature

    图  10  不同打印温度下CCF/PEKK的弯曲性能(a)和层间剪切强度(b)

    Figure  10.  Flexural properties (a) and interlaminar shear strength (b) of CCF/PEKK with different print temperature

    图  11  打印温度为395℃并采用85%流量比时CCF/PEKK弯曲性能(a1)和层间剪切强度(a2)随分层厚度的变化;打印温度为395℃并采用0.2 mm分层厚度时CCF/PEKK弯曲性能(b1)和层间剪切强度(b2)随流量比的变化

    Figure  11.  Flexural properties (a1) and interlaminar shear strength (a2) of CCF/PEKK preparing at 395℃ and flow ratio of 85% with different layer thickness; flexural properties (b1) and interlaminar shear strength (b2) of CCF/PEKK preparing at 395℃ and layer thickness of 0.2 mm with different flow ratio

    图  12  不同成型方向PEKK及CCF/PEKK的弯曲性能(a)和CCF/PEKK的层间剪切强度(b)

    Figure  12.  Flexural properties (a) and interlaminar shear strength (b) of PEKK and CCF/PEKK with different build orientation

    图  13  不同成型方向CCF/PEKK的三维模型图(a),样品光学照片和载荷施加示意图(b)及弯曲断裂处光学显微镜照片:水平方向(c),垂直方向(d)

    Figure  13.  3 D model of CCF/PEKK with different build orientation (a), optical photo of samples and load application schematic (b), optical microscope photo at flexural fracture position: flat (c), on-edge (d)

    表  1  3 D打印制备连续碳纤维/聚醚酮酮复合材料(CCF/PEKK)工艺参数设定

    Table  1.   Process parameters setting of 3 D printed continuous carbon fiber/poly(ether ketone ketone) composites (CCF/PEKK)

    Process parametersSet valueOther values of paraments
    Layer thickness (L/mm)0.5, 0.4, 0.3, 0.2F=85%, T=375℃, B=Flat
    Flow ratio (F/%)65, 75, 85, 95L=0.2/0.3 mm, T=375℃, B=Flat
    Print temperature (T/℃)375, 385, 395, 405L=0.2 mm;F=85%, B=Flat
    Build orientation (B)Flat, On-edgeL=0.2 mm;F=85%, T=395℃
    下载: 导出CSV

    表  2  不同分层厚度下CCF/PEKK样品的总层数、基体挤出速度(Er)、挤出量(Ea)以及纤维含量(Wf)

    Table  2.   Number of layers, matrix extrusion rate (Er), extrusion amount (Ea) and fiber content (Wf) of CCF/PEKK with different layer thickness

    L/mmNumber of layersEr /(mg∙min−1)Ea/mgWf /wt%
    0.5 448.1400.514.3
    0.4 537.3403.817.1
    0.3 732.2393.120.0
    0.21023.0383.225.8
    下载: 导出CSV

    表  3  不同流量比CCF/PEKK的基体挤出速度(Er)与挤出量(Ea)

    Table  3.   Matrix extrusion rate (Er) and extrusion amount (Ea) of CCF/PEKK with different flow ratio

    F/%L/mmEr/(mg∙min−1)Ea/mg
    650.217.9297.7
    750.220.7345.5
    0.327.5335.7
    850.223.0383.3
    0.332.2393.1
    950.334.2416.9
    下载: 导出CSV

    表  4  不同打印温度CCF/PEKK的结晶性能

    Table  4.   Crystallization properties of CCF/PEKK with different print temperature

    375℃385℃395℃405℃
    Xs8897108134
    Xc/%6.07.58.710.0
    Notes: Xs is the grain size of PEKK matrix in CCF/PEKK, Xc is XRD crystallinity of PEKK matrix in CCF/PEKK
    下载: 导出CSV

    表  5  本研究与3 D打印短切碳纤维/PEEK和常规工艺制备CCF/PEKK力学性能及纤维含量的比较

    Table  5.   Comparison of mechanical properties and fiber content between 3 D printed short CF/PEEK and CCF/PEKK composites of common processes and this study

    Fabrication methodFlexural strength/MPaILSS/MPaFiber content/wt%Ref.
    Hot press molding with CCF/PEKK prepreg687.678.265[43]
    Vacuum molding with dry PEKK powder and CCF8495960[44]
    Vacuum molding with CCF/PEKK prepreg-30.966[45]
    3 D printed Short CF/PEEK147.2-15[20]
    3 D printed CCF/PEKK302.024.125.8This work
    下载: 导出CSV
  • [1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3 D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2] 辛艳喜, 蔡高参, 胡彪, 等. 3 D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6):156-164. doi: 10.3969/j.issn.1674-6457.2021.06.022

    XIN Yanxi, CAI Gaoshen, HU Biao, et ai. Recent development of main process types of 3 D printing technology and application[J]. Journal of Netshape Forming Engineering,2021,13(6):156-164(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.06.022
    [3] 杨勇, 郭啸天, 唐杰, 等. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3):267-277.

    YANG Yong, GUO Xiaotian, TANG Jie, et al. Research progress and prospects of non-oxide ceramic in stereolithography additive manufacturing[J]. Journal of Inorganic Materials,2022,37(3):267-277(in Chinese).
    [4] SIVADAS B O, ASHCROFT I, KHLOBYSTOV A N, et al. Laser sintering of polymer nanocomposites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):277-300. doi: 10.1016/j.aiepr.2021.07.003
    [5] PENUMAKALA P K, SANTO J, THOMAS A. A critical review on the fused deposition modeling of thermoplastic polymer composites[J]. Composites Part B:Engineering,2020,201:108336. doi: 10.1016/j.compositesb.2020.108336
    [6] CANO-VICENT A, TAMBUWALA M M, HASSAN S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive Manufacturing,2021,47:102378. doi: 10.1016/j.addma.2021.102378
    [7] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201216.002
    [8] ZHANG Z, HE H, FU W, et al. Electro-Hydrodynamic Direct-Writing Technology toward Patterned Ultra-Thin Fibers: Advances, Materials and Applications[J]. Nano Today,2020,35:100942. doi: 10.1016/j.nantod.2020.100942
    [9] 黄新朵, 张苗苗, 赵新, 等. 3 D打印高分子材料在医疗中的应用与发展趋势[J]. 塑料工业, 2021, 49(S1):1-8.

    HUANG Xinduo, ZHANG Miaomiao, ZHAO Xin, et al. Application and development trend of 3 D printed polymer materials in medical treatment[J]. China Plastics Industry,2021,49(S1):1-8(in Chinese).
    [10] ZHANG H, KE F, SHAO J, et al. One-step fabrication of highly sensitive pressure sensor by all FDM printing[J]. Composites Science and Technology,2022,226:109531. doi: 10.1016/j.compscitech.2022.109531
    [11] KLIPPSTEIN H, DIAZ DE CERIO SANCHEZ A, HASSANIN H, et al. Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review[J]. Advanced Engineering Materials,2018,20(2):1700552. doi: 10.1002/adem.201700552
    [12] LI L, CHEN Y, YU T, et al. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3 D printing via Pickering emulsion approach[J]. Composites Communications,2019,16:162-167. doi: 10.1016/j.coco.2019.10.004
    [13] ZHANG X, FAN W, LIU T. Fused deposition modeling 3 D printing of polyamide-based composites and its applications[J]. Composites Communications,2020,21:100413. doi: 10.1016/j.coco.2020.100413
    [14] DAWOUD M, TAHA I, EBEID S J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques[J]. Journal of Manufacturing Processes,2016,21:39-45. doi: 10.1016/j.jmapro.2015.11.002
    [15] LI Y, LOU Y. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3 D Printing Considering Multi-Factor Coupling[J]. Polymers,2020,12(11):2497. doi: 10.3390/polym12112497
    [16] 史长春, 胡镔, 陈定方, 等. 聚醚醚酮3 D打印成形工艺的仿真和实验研究[J]. 中国机械工程, 2018, 29(17):2119-2124+2130. doi: 10.3969/j.issn.1004-132X.2018.17.015

    SHI Changchun, HU Bin, CHEN Dingfang, et al. Process simulation and experiments for PEEK 3 D printing technology[J]. China Mechanical Engineering,2018,29(17):2119-2124+2130(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.17.015
    [17] XU C, CHENG K, LIU Y, et al. Effect of processing parameters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling[J]. Polymer Engineering & Science,2020,61(2):465-476.
    [18] 刘顶, 李露瑶, 肖洁, 等. 3 D打印PEI成型工艺对制品力学性能的影响[J]. 塑料, 2018, 47(6):94-97+106.

    LIU Ding, LI Luyao, XIAO Jie, et al. Effect of 3 D printing polyetherimide molding technology on mechanical properties of products[J]. Plastics,2018,47(6):94-97+106(in Chinese).
    [19] DAS A, CHATHAM C A, FALLON J J, et al. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers[J]. Additive Manufacturing,2020,34:101218. doi: 10.1016/j.addma.2020.101218
    [20] WANG P, ZOU B, DING S, et al. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3 D printing[J]. Composites Part B:Engineering,2020,198:108175. doi: 10.1016/j.compositesb.2020.108175
    [21] BERRETTA S, DAVIES R, SHYNG Y T, et al. Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites[J]. Polymer Testing,2017,63:251-262. doi: 10.1016/j.polymertesting.2017.08.024
    [22] TIAN X, TODOROKI A, LIU T, et al. 3 D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016
    [23] 龙昱, 李岩, 付昆昆. 3 D打印纤维增强复合材料工艺和力学性能研究进展[J/OL]. 复合材料学报, (2022-10-02): 1-15.

    LONG Yu, LI Yan, FU Kunkun, et al. Recent advances in 3 D printed fiber reinforced composites: processing, technique and mechanical performance [J]. Acta Materiae Compositae Sinica, (2022-10-02): 1-15 (in Chinese).
    [24] CHEN K, YU L, CUI Y, et al. Optimization of printing parameters of 3 D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717
    [25] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688
    [26] TIAN X, LIU T, YANG C, et al. Interface and performance of 3 D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [27] DONG K, KE H, PANAHI-SARMAD M, et al. Mechanical properties and shape memory effect of 4 D printed cellular structure composite with a novel continuous fiber-reinforced printing path[J]. Materials & Design,2021,198:109303.
    [28] LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3 D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A:Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001
    [29] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3 D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    [30] ZHANG H, ZHOU Z, GAO X, et al. Enhanced mechanical performance of fused filament fabrication copolyester by continuous carbon fiber in-situ reinforcement[J]. Journal of Applied Polymer Science,2022:e53296.
    [31] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3 D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.

    XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3 D Printing and mechanical properties optimazation of continuous carbon fiber reinforced polyphenylene sulphide composites[J]. Polymer Materials Science & Engineering,2022,38(7):84-92(in Chinese).
    [32] LUO M, TIAN X, SHANG J, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3 D printing process[J]. Composites Part A:Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812
    [33] KAPLUN B W, ZHOU R, JONES K W, et al. Influence of orientation on mechanical properties for high-performance fused filament fabricated ultem 9085 and electro-statically dissipative polyetherketoneketone[J]. Additive Manufacturing,2020,36:101527. doi: 10.1016/j.addma.2020.101527
    [34] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Macromolecular modifications of poly(etherketoneketone) (PEKK) copolymer at the melting state[J]. Polymer Degradation and Stability,2018,155:103-110. doi: 10.1016/j.polymdegradstab.2018.07.005
    [35] CHOUPIN T, DEBERTRAND L, FAYOLLE B, et al. Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers[J]. POLYMER CRYSTALLIZATION,2019,2(6):e10086.
    [36] American Society for Testing and Materials. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials [S]. 2015.
    [37] 北京玻璃钢研究设计院. 纤维增强塑料 短梁法测定层间剪切强度 [S]. 行业标准-建材. 2010.

    Beijing FRP Research and Design Institute. Determination of interlaminar shear strength by short beam method for fiber reinforced plastics [S]. Industry standards-Building materials. 2010 (in Chinese).
    [38] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer[J]. Polymer,2017,111:73-82. doi: 10.1016/j.polymer.2017.01.033
    [39] BASGUL C, YU T, MACDONALD D W, et al. Does annealing improve the interlayer adhesion and structural integrity of FFF 3 D printed PEEK lumbar spinal cages?[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,102:103455. doi: 10.1016/j.jmbbm.2019.103455
    [40] QIAO J, LI Y, LI L. Ultrasound-assisted 3 D printing of continuous fiber-reinforced thermoplastic (FRTP) composites[J]. Additive Manufacturing,2019,30:100926. doi: 10.1016/j.addma.2019.100926
    [41] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3 D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [42] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3 D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [43] 王杰. 连续碳纤维增强聚醚酮酮板材的研究 [D]. 山东理工大学, 2019.

    Wang Jie. Study on continuous carbon fiber reinfoeced poly(ether ketone ketone) sheet [D]. Shandong University of technology, 2019(in Chinese).
    [44] 陆承志, 赵乐, 杨雪勤, 等. 碳纤维增强聚醚酮酮模压复合材料结构与性能调控[J]. 复合材料学报, 2022, 39(8):3684-3694.

    LU Chengzhi, ZHAO Le, YANG Xueqin, et al. Study on structure and performance control of carbon fiber reinforced poly(ether ketone ketone) molding composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3684-3694(in Chinese).
    [45] CHOI I, DOH ROH H, NAM JEONG W, et al. Laser-assisted joining of carbon fiber reinforced polyetherketoneketone thermoplastic composite laminates[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107228. doi: 10.1016/j.compositesa.2022.107228
  • 加载中
计量
  • 文章访问数:  228
  • HTML全文浏览量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-11-21
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回