Process and performance control of 3D printed continuous carbon fiber/poly (ether ketone ketone) composites
-
摘要:
连续纤维在3D打印过程中不仅可以均匀铺设、定向取向,还可以较为大量引入,作为增强体可以大幅提高热塑性3D打印制品的力学性能。但目前的连续纤维3D打印工艺中,以高热性能热塑性树脂作为基体的研究仍然有限。聚醚酮酮(PEKK)是理想的高热性能热塑性3D打印原料,但目前还缺乏以其作基体进行连续纤维3D打印的系统研究,特别是3D打印工艺参数对PEKK基连续纤维复合材料性能的影响尚不明确。本文选择PEKK作为基体,以原位浸渍3D打印工艺制备连续碳纤维/聚醚酮酮(CCF/PEKK)复合材料,系统研究了分层厚度、基体流量、成形温度以及成形方向对复合材料内部结构、基体结晶性能、表面粗糙度及力学性能等的影响。结果显示,未使用任何附加优化手段的情况下,采用0.2 mm的分层厚度、85%的流量比、395℃的打印温度并使用水平成型方向时,3D打印CCF/PEKK复合材料的综合性能最优,其中弯曲强度达302.0 MPa,层间剪切强度达24.1 MPa。CCF/PEKK的弯曲强度较3D打印纯PEKK提升194%,层间剪切强度较工艺调控前提升113%,具备制造复杂结构工程零部件的潜力。 3D打印纯PEKK、CCF/PEKK以及优化工艺后CCF/PEKK的弯曲性能(a)和层间剪切强度(b)对比 Abstract: High thermal performance thermoplastic, poly(ether ketone ketone) (PEKK), was used as the matrix for in-situ impregnation 3D printing with continuous carbon fiber (CCF) to prepare continuous carbon fiber/poly(ether ketone ketone) composites (CCF/PEKK). The effects of layer thickness, flow ratio, print temperature and build orientation in 3D printing process parameters on the internal structure, matrix crystallization, surface quality and mechanical properties of the composites were systematically investigated. The microstructure of 3D printed CCF/PEKK was observed by scanning electron microscopy, the crystallization properties of the matrix were analyzed by X-ray diffraction, the surface morphologies of 3D printed CCF/PEKK was observed and analyzed by ultra-deep field microscopy, and the flexural properties and interlaminar shear strength of CCF/PEKK were also tested. The results shows that with the layer thickness of 0.2 mm, the flow ratio of 85%, the printing temperature of 395°C, and the build orientation of flat, the performance of 3D printed CCF/PEKK is optimal, including the flexural strength of 302.0 MPa and the interlaminar shear strength of 24.1 MPa. The flexural strength of CCF/PEKK is improved by 194% compared with 3D printed pure PEKK, and the interlaminar shear strength is improved by 113% after process optimization. It indicates that 3D printed CCF/PEKK has the potential to manufacture complex structural engineering parts without using any additional optimization. -
图 5 低流量比(a1:F=65%、L=0.2 mm,a2:F=75%、L=0.3 mm)、中流量比(b1:F=75%、L=0.2 mm,b2:F=85%,L=0.3 mm)和高流量比(b1:F=85%、L=0.2 mm,b2:F=95%,L=0.3 mm)CCF/PEKK截面SEM形貌对比
Figure 5. SEM morphologies of cross-sections of CCF/PEKK with low flow ratio (a1: F=65%, L=0.2 mm, a2: F=75%, L=0.3 mm), middle flow ratio (b1:F=85%、L=0.2 mm,b2:F=95%,L=0.3 mm) and high flow ratio (b1: F=85%, L=0.2 mm, b2: F=95%, L=0.3 mm)
图 7 不同流量比(a1:L=0.3 mm,F=95%、a2:L=0.3 mm,F=85%;a3:L=0.3 mm,F=75%和b1:L=0.2 mm,F=85%、b2:L=0.2 mm,F=75%;b3:L=0.2 mm,F=65%)CCF/PEKK表面三维形貌
Figure 7. 3 D morphologies of CCF/PEKK surfaces with different flow ratio (a1: L=0.3 mm, F=95%, a2: L=0.3 mm, F=85%; a3: L=0.3 mm, F=75% and b1: L=0.2 mm, F=85%, b2: L=0.2 mm, F=75%; b3: L=0.2 mm, F=65%)
图 11 打印温度为395℃并采用85%流量比时CCF/PEKK弯曲性能(a1)和层间剪切强度(a2)随分层厚度的变化;打印温度为395℃并采用0.2 mm分层厚度时CCF/PEKK弯曲性能(b1)和层间剪切强度(b2)随流量比的变化
Figure 11. Flexural properties (a1) and interlaminar shear strength (a2) of CCF/PEKK preparing at 395℃ and flow ratio of 85% with different layer thickness; flexural properties (b1) and interlaminar shear strength (b2) of CCF/PEKK preparing at 395℃ and layer thickness of 0.2 mm with different flow ratio
表 1 3 D打印制备连续碳纤维/聚醚酮酮复合材料(CCF/PEKK)工艺参数设定
Table 1. Process parameters setting of 3 D printed continuous carbon fiber/poly(ether ketone ketone) composites (CCF/PEKK)
Process parameters Set value Other values of paraments Layer thickness (L/mm) 0.5, 0.4, 0.3, 0.2 F=85%, T=375℃, B=Flat Flow ratio (F/%) 65, 75, 85, 95 L=0.2/0.3 mm, T=375℃, B=Flat Print temperature (T/℃) 375, 385, 395, 405 L=0.2 mm;F=85%, B=Flat Build orientation (B) Flat, On-edge L=0.2 mm;F=85%, T=395℃ 表 2 不同分层厚度下CCF/PEKK样品的总层数、基体挤出速度(Er)、挤出量(Ea)以及纤维含量(Wf)
Table 2. Number of layers, matrix extrusion rate (Er), extrusion amount (Ea) and fiber content (Wf) of CCF/PEKK with different layer thickness
L/mm Number of layers Er /(mg∙min−1) Ea/mg Wf /wt% 0.5 4 48.1 400.5 14.3 0.4 5 37.3 403.8 17.1 0.3 7 32.2 393.1 20.0 0.2 10 23.0 383.2 25.8 表 3 不同流量比CCF/PEKK的基体挤出速度(Er)与挤出量(Ea)
Table 3. Matrix extrusion rate (Er) and extrusion amount (Ea) of CCF/PEKK with different flow ratio
F/% L/mm Er/(mg∙min−1) Ea/mg 65 0.2 17.9 297.7 75 0.2 20.7 345.5 0.3 27.5 335.7 85 0.2 23.0 383.3 0.3 32.2 393.1 95 0.3 34.2 416.9 表 4 不同打印温度CCF/PEKK的结晶性能
Table 4. Crystallization properties of CCF/PEKK with different print temperature
375℃ 385℃ 395℃ 405℃ Xs/Å 88 97 108 134 Xc/% 6.0 7.5 8.7 10.0 Notes: Xs is the grain size of PEKK matrix in CCF/PEKK, Xc is XRD crystallinity of PEKK matrix in CCF/PEKK 表 5 本研究与3 D打印短切碳纤维/PEEK和常规工艺制备CCF/PEKK力学性能及纤维含量的比较
Table 5. Comparison of mechanical properties and fiber content between 3 D printed short CF/PEEK and CCF/PEKK composites of common processes and this study
Fabrication method Flexural strength/MPa ILSS/MPa Fiber content/wt% Ref. Hot press molding with CCF/PEKK prepreg 687.6 78.2 65 [43] Vacuum molding with dry PEKK powder and CCF 849 59 60 [44] Vacuum molding with CCF/PEKK prepreg - 30.9 66 [45] 3 D printed Short CF/PEEK 147.2 - 15 [20] 3 D printed CCF/PEKK 302.0 24.1 25.8 This work -
[1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3 D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012 [2] 辛艳喜, 蔡高参, 胡彪, 等. 3 D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6):156-164. doi: 10.3969/j.issn.1674-6457.2021.06.022XIN Yanxi, CAI Gaoshen, HU Biao, et ai. Recent development of main process types of 3 D printing technology and application[J]. Journal of Netshape Forming Engineering,2021,13(6):156-164(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.06.022 [3] 杨勇, 郭啸天, 唐杰, 等. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3):267-277.YANG Yong, GUO Xiaotian, TANG Jie, et al. Research progress and prospects of non-oxide ceramic in stereolithography additive manufacturing[J]. Journal of Inorganic Materials,2022,37(3):267-277(in Chinese). [4] SIVADAS B O, ASHCROFT I, KHLOBYSTOV A N, et al. Laser sintering of polymer nanocomposites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):277-300. doi: 10.1016/j.aiepr.2021.07.003 [5] PENUMAKALA P K, SANTO J, THOMAS A. A critical review on the fused deposition modeling of thermoplastic polymer composites[J]. Composites Part B:Engineering,2020,201:108336. doi: 10.1016/j.compositesb.2020.108336 [6] CANO-VICENT A, TAMBUWALA M M, HASSAN S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive Manufacturing,2021,47:102378. doi: 10.1016/j.addma.2021.102378 [7] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386. doi: 10.13801/j.cnki.fhclxb.20201216.002FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201216.002 [8] ZHANG Z, HE H, FU W, et al. Electro-Hydrodynamic Direct-Writing Technology toward Patterned Ultra-Thin Fibers: Advances, Materials and Applications[J]. Nano Today,2020,35:100942. doi: 10.1016/j.nantod.2020.100942 [9] 黄新朵, 张苗苗, 赵新, 等. 3 D打印高分子材料在医疗中的应用与发展趋势[J]. 塑料工业, 2021, 49(S1):1-8.HUANG Xinduo, ZHANG Miaomiao, ZHAO Xin, et al. Application and development trend of 3 D printed polymer materials in medical treatment[J]. China Plastics Industry,2021,49(S1):1-8(in Chinese). [10] ZHANG H, KE F, SHAO J, et al. One-step fabrication of highly sensitive pressure sensor by all FDM printing[J]. Composites Science and Technology,2022,226:109531. doi: 10.1016/j.compscitech.2022.109531 [11] KLIPPSTEIN H, DIAZ DE CERIO SANCHEZ A, HASSANIN H, et al. Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review[J]. Advanced Engineering Materials,2018,20(2):1700552. doi: 10.1002/adem.201700552 [12] LI L, CHEN Y, YU T, et al. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3 D printing via Pickering emulsion approach[J]. Composites Communications,2019,16:162-167. doi: 10.1016/j.coco.2019.10.004 [13] ZHANG X, FAN W, LIU T. Fused deposition modeling 3 D printing of polyamide-based composites and its applications[J]. Composites Communications,2020,21:100413. doi: 10.1016/j.coco.2020.100413 [14] DAWOUD M, TAHA I, EBEID S J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques[J]. Journal of Manufacturing Processes,2016,21:39-45. doi: 10.1016/j.jmapro.2015.11.002 [15] LI Y, LOU Y. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3 D Printing Considering Multi-Factor Coupling[J]. Polymers,2020,12(11):2497. doi: 10.3390/polym12112497 [16] 史长春, 胡镔, 陈定方, 等. 聚醚醚酮3 D打印成形工艺的仿真和实验研究[J]. 中国机械工程, 2018, 29(17):2119-2124+2130. doi: 10.3969/j.issn.1004-132X.2018.17.015SHI Changchun, HU Bin, CHEN Dingfang, et al. Process simulation and experiments for PEEK 3 D printing technology[J]. China Mechanical Engineering,2018,29(17):2119-2124+2130(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.17.015 [17] XU C, CHENG K, LIU Y, et al. Effect of processing parameters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling[J]. Polymer Engineering & Science,2020,61(2):465-476. [18] 刘顶, 李露瑶, 肖洁, 等. 3 D打印PEI成型工艺对制品力学性能的影响[J]. 塑料, 2018, 47(6):94-97+106.LIU Ding, LI Luyao, XIAO Jie, et al. Effect of 3 D printing polyetherimide molding technology on mechanical properties of products[J]. Plastics,2018,47(6):94-97+106(in Chinese). [19] DAS A, CHATHAM C A, FALLON J J, et al. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers[J]. Additive Manufacturing,2020,34:101218. doi: 10.1016/j.addma.2020.101218 [20] WANG P, ZOU B, DING S, et al. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3 D printing[J]. Composites Part B:Engineering,2020,198:108175. doi: 10.1016/j.compositesb.2020.108175 [21] BERRETTA S, DAVIES R, SHYNG Y T, et al. Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites[J]. Polymer Testing,2017,63:251-262. doi: 10.1016/j.polymertesting.2017.08.024 [22] TIAN X, TODOROKI A, LIU T, et al. 3 D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016 [23] 龙昱, 李岩, 付昆昆. 3 D打印纤维增强复合材料工艺和力学性能研究进展[J/OL]. 复合材料学报, (2022-10-02): 1-15.LONG Yu, LI Yan, FU Kunkun, et al. Recent advances in 3 D printed fiber reinforced composites: processing, technique and mechanical performance [J]. Acta Materiae Compositae Sinica, (2022-10-02): 1-15 (in Chinese). [24] CHEN K, YU L, CUI Y, et al. Optimization of printing parameters of 3 D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717 [25] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688 [26] TIAN X, LIU T, YANG C, et al. Interface and performance of 3 D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032 [27] DONG K, KE H, PANAHI-SARMAD M, et al. Mechanical properties and shape memory effect of 4 D printed cellular structure composite with a novel continuous fiber-reinforced printing path[J]. Materials & Design,2021,198:109303. [28] LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3 D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A:Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001 [29] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3 D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020 [30] ZHANG H, ZHOU Z, GAO X, et al. Enhanced mechanical performance of fused filament fabrication copolyester by continuous carbon fiber in-situ reinforcement[J]. Journal of Applied Polymer Science,2022:e53296. [31] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3 D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3 D Printing and mechanical properties optimazation of continuous carbon fiber reinforced polyphenylene sulphide composites[J]. Polymer Materials Science & Engineering,2022,38(7):84-92(in Chinese). [32] LUO M, TIAN X, SHANG J, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3 D printing process[J]. Composites Part A:Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812 [33] KAPLUN B W, ZHOU R, JONES K W, et al. Influence of orientation on mechanical properties for high-performance fused filament fabricated ultem 9085 and electro-statically dissipative polyetherketoneketone[J]. Additive Manufacturing,2020,36:101527. doi: 10.1016/j.addma.2020.101527 [34] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Macromolecular modifications of poly(etherketoneketone) (PEKK) copolymer at the melting state[J]. Polymer Degradation and Stability,2018,155:103-110. doi: 10.1016/j.polymdegradstab.2018.07.005 [35] CHOUPIN T, DEBERTRAND L, FAYOLLE B, et al. Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers[J]. POLYMER CRYSTALLIZATION,2019,2(6):e10086. [36] American Society for Testing and Materials. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials [S]. 2015. [37] 北京玻璃钢研究设计院. 纤维增强塑料 短梁法测定层间剪切强度 [S]. 行业标准-建材. 2010.Beijing FRP Research and Design Institute. Determination of interlaminar shear strength by short beam method for fiber reinforced plastics [S]. Industry standards-Building materials. 2010 (in Chinese). [38] CHOUPIN T, FAYOLLE B, RÉGNIER G, et al. Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer[J]. Polymer,2017,111:73-82. doi: 10.1016/j.polymer.2017.01.033 [39] BASGUL C, YU T, MACDONALD D W, et al. Does annealing improve the interlayer adhesion and structural integrity of FFF 3 D printed PEEK lumbar spinal cages?[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,102:103455. doi: 10.1016/j.jmbbm.2019.103455 [40] QIAO J, LI Y, LI L. Ultrasound-assisted 3 D printing of continuous fiber-reinforced thermoplastic (FRTP) composites[J]. Additive Manufacturing,2019,30:100926. doi: 10.1016/j.addma.2019.100926 [41] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3 D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025 [42] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3 D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038 [43] 王杰. 连续碳纤维增强聚醚酮酮板材的研究 [D]. 山东理工大学, 2019.Wang Jie. Study on continuous carbon fiber reinfoeced poly(ether ketone ketone) sheet [D]. Shandong University of technology, 2019(in Chinese). [44] 陆承志, 赵乐, 杨雪勤, 等. 碳纤维增强聚醚酮酮模压复合材料结构与性能调控[J]. 复合材料学报, 2022, 39(8):3684-3694.LU Chengzhi, ZHAO Le, YANG Xueqin, et al. Study on structure and performance control of carbon fiber reinforced poly(ether ketone ketone) molding composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3684-3694(in Chinese). [45] CHOI I, DOH ROH H, NAM JEONG W, et al. Laser-assisted joining of carbon fiber reinforced polyetherketoneketone thermoplastic composite laminates[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107228. doi: 10.1016/j.compositesa.2022.107228 -

计量
- 文章访问数: 228
- HTML全文浏览量: 138
- 被引次数: 0