Synergistic bacteriostatic properties of 4-hydroxycoumarin-Ag composite
-
摘要:
抗生素的滥用导致大量耐药菌的出现,这对卫生健康和社会经济造成严重威胁,因此,迫切需要开发新型抗菌剂来解决细菌耐药问题。当今现有的抗菌剂大致可分为有机抗菌剂和无机抗菌剂,有机抗菌剂因易产生耐药性而限制了其发展,无机抗菌剂Ag NPs因其具有抑菌活性强、杀菌持久、广谱抑菌、且不产生耐药等特性被应用于生物和医用材料等领域。研究表明,Ag NPs粒径越小,比表面积越大,抑菌活性越强,但粒径越小,表面能越高,Ag NPs越易团聚,从而降低其抑菌活性。且目前相关研究多集中于复合材料的基础抑菌活性,而对于两者的结合方式和初步的抑菌机制探究的较少。本研究以软硬酸碱理论为基础,将4-羟基香豆素和Ag NPs配位制备4-羟基香豆素-Ag复合抑菌材料,以革兰氏阴性菌E.coli、革兰氏阳性菌S.aureus和耐药菌T-Salmonella为模型菌研究协同抑菌活性,并讨论其抑菌机制。所制备得到的复合材料不仅具备单独无机抗菌剂和有机抗菌剂的杀菌特性,且协同作用可明显提高其抑菌性能。本论文旨在得到性能更加优异的抗菌材料,并探讨其抑菌机制,其不仅可以解决细菌耐药性问题,还可以为抗生素的改性和研发新型抗生素提供实验依据。 4-羟基香豆素-Ag复合材料抑菌机制图 Abstract: The abuse of antibiotics leads to the emergence of a large number of drug-resistant bacteria, which poses a serious threat to health and social economy. Therefore, it is urgent to develop new antibacterial agents to solve the problem of bacterial drug resistance.In this paper, silver trifluoroacetate (CF3COOAg) as raw material, using chemical reduction method to prepare nano-silver (Ag NPs) particles, and ultrasonic assisted coordination with 4-hydroxycoumarin to prepare 4-hydroxycoumarin-Ag NPs new composite antibacterial material. Transmission electron microscopy (TEM), X-ray diffrotometer (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible absorption spectroscopy (UV-Vis), infrared spectroscopy (FTIR), Zeta potential and theoretical calculation were used for characterization. Gram-negative bacteria E.coli, Gram-positive bacteria S. aureus and drug-resistant bacteria T-Salmonella were used as model bacteria to study the synergistic bacteriostatic activity and bacteriostatic mechanism of 4-hydroxycoumarin-Ag.Compared with Ag NPs, the antibacterial efficiency of the composite material for E.coli, S. aureus and T-Salmonella has been improved 62.5%, 37.5% and 44.4% respectively. When the concentration of the composite mat- erial was 150 μg/mL, the bacteriostatic rate of the tested bacteria could reach 99.9% within 60min.The inhibition mechanism showed that the composite material could significantly destroy the bacterial cell wall and enter the bacterial interior to inhibit the bacterial respiratory system.The material not only has the unique bactericidal properties of inorganic antibacterial agent and organic antibacterial agent, but also has stronger antibacterial activity and can solve the problem of bacterial resistance, which can provide scientific basis for the modification of antibiotics and the development of new antibacterial agent.-
Key words:
- Synergistic antibacterial /
- Ag NPs /
- 4-hydroxycoumarin /
- antibacterial mechanism /
- coordination
-
图 1 Ag NPs以及 4-羟基香豆素-Ag复合材料表征(a、b)Ag NPs的透射电镜图像和粒径分布图;(c)Ag NPs和复合材料的XRD谱图;(d)Ag NPs的XPS谱图;(e)Ag NPs、4-羟基香豆素以及复合材料的UV-Vis吸收光谱;(f)Ag NPs、4-羟基香豆素以及复合材料的FT-IR光谱;(g)Ag NPs与4-羟基香豆素结合理论计算分析图
Figure 1. Ag NPs and 4-hydroxycoumarin-Ag composite characterization (a, b) Transmission electron microscope image and particle size distribution map of Ag NPs; (c) XRD spectra of Ag NPs and composite materials; (d) XPS spectra of Ag NPs; (e) UV-Vis absorption spectra of Ag NPs, 4-hydroxycoumarin and composite materials; (f) FT-IR spectra of Ag NPs, 4-hydroxycoumarin and composite materials; (g) Theoretical calculation and analysis diagram of Ag NPs combined with 4-hydroxycoumarin
图 2 不同材料对E.coli 、S.aureus 和T-Salmonella的滤纸片扩散照片(注:A、B、C、D分别对应溶剂二甲基亚砜、Ag NPs、4-羟基香豆素以及复合材料。图中(a1-a4)代表浓度为35.5、75、150、300 μg/mL的不同抑菌材料(4-羟基香豆素负载量为5%)对E.coli的抑菌结果照片。(b1-b4)、(c1-c4)为S.aureus以及T-Salmonella的抑菌结果照片。(d)、(e)、(f)分别为E.coli、S.aureus、T-Salmonella的抑菌圈直径随浓度变化曲线)
Figure 2. Different materials for E.coli、S.aureus and T-Salmonella filter paper spread photos (Note: A, B, C and D correspond to dimethyl sulfoxide, Ag NPs, 4-hydroxycoumarin and composite materials respectively. In the figure, (a1-a4) represents the bacteriostatic results of E.coli of different bacteriostatic materials(The loading of 4-hydroxycouma- rin was 5%)with concentrations of 35.5, 75, 150 and 300 μg/mL.(b1-b4) and (c1-c4) show the antibacterial results against S.aure- us and T-Salmonella. (d)、(e)and (f) show E.coli, S.aureus and T-Salmonella bacteriostatic rings diameter changes with concentr- ation, respectively)
图 3 4-羟基香豆素-Ag复合材料菌落计数照片E.coli(a)、S.aureus(b)以及T-Salmonella(c)的菌落计数分布图。(d)为复合材料的时间-杀菌曲线图。(e)图为三种测试菌的在不同时间的抑菌率比较图
Figure 3. Photo of colony count of 4-hydroxycoumarin-Ag composite E.coli(a), S.aureus(b) and T-Salmonella(c) colony count diagrams. Figure (d) is the time-germicidal curve of the composite. Figure (e) shows the comparison of the bacteriostatic rates of the three tested bacteria at different times
表 1 溶剂、Ag NPs、4-羟基香豆素、4-羟基香豆素-Ag对E.coli 、S.aureus 和T-Salmonella的抑菌圈尺寸
Table 1. The size of bacteriostasis circles for E.coli, S.aureus and T-Salmonella of solvent, Ag NPs, 4-hydroxycoumarin and 4-hydroxycoumarin -Ag
Bacterial Concentration/ (μg·mL−1) Inhibition zones/cm DMSO Ag 4-hydroxycoumarin 4-hydroxycoumarin-Ag E. coli 35.5 0.6 0.6 0.6 0.7 75 0.6 0.7 0.6 1.0 150 0.6 0.9 0.65 1.5 300 0.6 1.2 0.7 1.95 S. aureus 35.5 0.6 0.6 0.6 0.65 75 0.6 0.65 0.6 0.9 150 0.6 0.75 0.65 1.25 300 0.6 1.2 0.85 1.62 T-Salmonella 35.5 0.6 0.6 0.6 0.6 75 0.6 0.65 0.65 0.8 150 0.6 0.7 0.65 1.1 300 0.6 0.9 0.7 1.3 -
[1] 刘姝瑞, 谭艳君, 张明宇, 等. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2022, 39(1):90-98(in. doi: 10.3969/j.issn.2096-5184.2022.01.017LIU Shurui, TAN Yanjun, ZHANG Mingyu, et al. Rese- arch progress of antibacterial materials[J]. Journal of Te- xtile Science and Engineering,2022,39(1):90-98(in(in Chinese). doi: 10.3969/j.issn.2096-5184.2022.01.017 [2] HAN Songting, YANG Liang, WANG Yao, et al. Preli- minary Studies on the Antibacterial Mechanism of a Ne- w Plant-Derived Compound, 7-Meth-oxycoumarin, Aga- inst Ralstonia solanacearum[J]. Frontiers in Microbiolo- gy,2021,12:697911. doi: 10.3389/fmicb.2021.697911 [3] 杨亮, 姚晓远, 丁伟. 香豆素类化合物的抑菌活性研究[J]. 天然产物研究与开发, 2018, 30(2):332-33. doi: 10.16333/j.1001-6880.2018.2.026YANG Liang, YAO Xiaoyuan, DING Wei. Studyon ant- ibacterial activity of coumarin compounds[J]. Natural P- roduct Research and Development,2018,30(2):332-33(in Chinese). doi: 10.16333/j.1001-6880.2018.2.026 [4] YOGESH J, SANGHANI, SURESH B, et al. Synthesis of Substitute4-(4-((3-Nitro-2-oxo-2-Hchromene-4-yl)a- mino) phenyl) MorpHoline-3-one Coumarin Derivative- s[J]. Asian Journal of Chemistry, 2019, 31(7): 1461-146- 4. [5] 李星星, 陶亮. 艰难梭菌感染——抗生素滥用引发的全球公共健康威胁[J]. 科学, 2021, 73(3):40-42+49.LI Xingxing, TAO Liang. Clostridium difficileinfectio- na global public health threat due to antibiotic overuse[J]. Science,2021,73(3):40-42+49(in Chinese). [6] XU Li, WANG YiYi, HUANG Jie, et al. Silver nanopa- rticles: Synthesis, medical applications and biosafety[J]. Theranostics, 2020, 20(10): 8996-9031. [7] 薛文强, 于世平. 纳米银的抗菌机制及临床应用研究[J]. 中国微生态学杂志, 2022, 34(1):117-120-120. doi: 10.13381/j.cnki.cjm.202201023XUE Wenqiang, YU Shiping. Study on antibacterial me- chanism and clinical application of silver nanoparticles[J]. Chinese Journal of Microecology,2022,34(1):117-120-120(in Chinese). doi: 10.13381/j.cnki.cjm.202201023 [8] NEWASE S, BANKAR AV. Synthesis of bioinspired Ag -Au nanocomposite and its anti-biofilm efficacy[J]. Bu- lletin of Materials Science,2017,40(1):157-162. doi: 10.1007/s12034-017-1363-7 [9] 郭少波, 梁艳莉, 刘智峰, 等. 四环素-Ag复合材料的协同抑菌性能[J]. 应用化学, 2021, 38(11):38-1468. doi: 10.19894/j.issn.1000-0518.210006GUO Shaobo, LIANG Yanli, LIU Zhifeng, et al. Synerg- istic antibacterial properties of tetracycline -Ag compo- sites[J]. Chinese Journal of Applied Chemistry,2021,38(11):38-1468(in Chinese). doi: 10.19894/j.issn.1000-0518.210006 [10] KHURANA C, SHARMA P, PANDEY OP, et al. Syne- rgistic Effect of Metal Nanoparticles on the Antimicro- bial Activities of Antibiotics against Biorecycling Mic- robes[J]. Journal of Materials Science & Technology,2016,32(6):524-532. [11] KORA AJ, RASTOGI L. Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combinati- on with Antibiotics, on Model Gram-Negative and Gra- m-Positive Bacteria[J]. Bioinorganic Chemistry & Ap- plications,2013,2013:871097. [12] WANG Yi, ZHENG Yiqun, HUANG Chengzhi, et al. Synthesis of Ag Nanocubes 18−32 nm in edge length: t- he effects of polyol on reduction kinetics, size control, and reproducibility[J]. Journal of the American Chemi- cal Society, 2013, 5(135): 1941–1951. [13] 解修超, 兰阿峰, 刘二奴, 等. PDA@Ag纳米复合材料的制备及抑菌性能研究[J]. 贵金属, 2021, 42(01): e).34-40. XIE Xiuchao, LAN Afeng, LIU Ernu. Preparation and antibacterial properties of PDA@Ag nanocomposi- tes[J]. Precious Metals, 2021, 42(01): 34-40(in Chines- [14] FRISCH MJ, TRUCKS GW, POPLE JA, et al. Gaussi- an 09, Version D. 01[CP]; Gaussian Inc: Pittsburgh, PA, 2009. [15] LU Tian , CHEN Feiwu , Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational C- hemistry, 2012, 33(5): 580-592. [16] YANG Xu, HUANG En, YOUSEFAE. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staph- ylococcus aureus[J]. Microbiological Research,2017,195:18-23. doi: 10.1016/j.micres.2016.11.002 [17] SUN Shibin, TANG Sikai, CHANG Xueting, et al. A b- ifunctional melamine sponge decorated with silver-red- uced graphene oxide nanocomposite for oil-water sepa- ration and antibacterial applications[J]. Applied Surfa- ce Science,2019,473(15):1049-1061. [18] CIRNSHI K, COETZEE J, HERRMANN J, et al. Met- abolic Profiling to Determine Bactericidal or Bacterios- tatic Effects of New Natural Products using Isothermal Microcalorimetry[J]. Journal of Visualized Experimen- ts,2020,164:e61703. [19] WANG Xiaojun, MEI Lina, JIN Mingchao, et al. Com- posite Coating of Graphene Oxide/TiO2 Nanotubes/H- HC-36 Antibacterial Peptide Construction and an Exp- loration of Its Bacteriostat and Osteogenesis Effects[J]. Journal of Biomedical Nanotechnology, 2021, 17(4): 6- 62-676. [20] CHANDNI, KHURANA, PURNIMA, et al. Synergist- ic effect of metal nanoparticles on the antimicrobial ac- tivities of antibiotics against biorecycling microbes[J]. Journal of Materials Science and Technology,2016,6:524-532. [21] FANG Yun, HONG Ciqing, Chen FR, et al. Green synt- hesis of nano silver by tea extract with high antimicro- bial activity[J]. Inorganic Chemistry Communications,2021,132:108808. doi: 10.1016/j.inoche.2021.108808 [22] 姚圣楠, 徐冉, 王安琪, 等. 树莓果渣多酚纳米银的制备、表征及抗菌活性研究[J]. 食品科技, 2022, 47(6):290-297.YAO Shengnan, XU Ran, WANG Anqi, et al. Preparat- ion, characterization and antibacterialactivity of raspb- erry residue polyphenol silver nanoparticles[J]. Food Science and Technology,2022,47(6):290-297(in Chinese). [23] CHENG Jun, LIN Xiaotong, WU Xialing, et al. Prepar- ation of a multifunctional silver nanoparticles polylact- ic acid food packaging film using mango peel extract[J]. International Journal of Biological Macromolecules,2021,188(1):678-688. [24] MA Zhenfang, JIANG Xiaying, JIN Yuhua, et al. Prep- aration of nano-silver nanoparticles for conductive ink and the correlations with its conductivity[J]. Applied Nanoscience,2022,12:1657-1665. [25] 邢世雄, 王建宇, 董春法. 单分散银纳米粒子的制备与表征[J]. 信阳师范学院学报(自然科学版), 2017, 30(3):440-444.XING Shixiong, WANG Jianyu, DONG Chunfa. Prepa- ration and characterization of monodisperse silver nan- oparticles[J]. Journal of Xinyang Normal University(N atural Science Edition),2017,30(3):440-444(in Chinese). [26] AMRITPAL Kaur, DIVYA Goyal, RAJESH Kumar, et al. Surfactant mediated interaction of vancomycin with silver nanoparticles[J]. Applied Surface Science.,2018,449(15):23-30. [27] AMRITPAL Kaur, SIMRAN Preet, VIVEK Kumar, et al. Synergetic effect of vancomycin loaded silver nano- particles for enhanced antibacterial activity[J]. Colloids and Surfaces B:Biointerfaces,2019,176(1):62-69. [28] OBASEKI AO, PORTER WR, TRAGER WF. 4-Hydr-oxycoumarin/2-hydroxychromone tautomerism: Infrar-ed spectra of 2-13 c and 3-D labeled 4-hydroxycoumar-In and its anion[J]. Journal of Heterocyclic Chemistry,2010,19(2):385-390. [29] WANG Min, YUE Lin, NIAZI Sobia, et al. Synthesis and characterization of cinnamic acid conjugated N- (2-hydroxy)-Propyl-3-trimethylammonium chitosan c- hloride derivatives: A hybrid flocculant with antibacte- rial activity[J]. International Journal of Biological Ma- cromolecules,2022,206(1):886-895. [30] 鲁曦泽, 姜宇凡, 李英华, 等. 新型湿法纳米银制备技术及其毒性行为[J]. 功能材料, 2022, 53(2):2094-2100.LU Xize, JIANG Yufan, LI Yinghua, et al. A novel pre- paration of silver nanoparticles by wet process and its toxic behavior[J]. Journal of Functional Materials,2022,53(2):2094-2100(in Chinese). [31] WANG Xiaoli, LI Ye, HUANG Jing, et al. Efficiency and mechanism of adsorption of low concentration ur- anium in water by extracellular polymeric substances[J]. Journal of Environmental Radioactivity,2019,197:81-89. doi: 10.1016/j.jenvrad.2018.12.002 [32] KIRCHHOFF C, CYPIONKA H. Propidiumion enters viable cells with high membrane potential during live- dead staining[J]. Journal of Microbiological Methods,2017,142:79-82. doi: 10.1016/j.mimet.2017.09.011 [33] HEIDE L. New aminocoumarin antibiotics as gyrase inhibitors[J]. International Journal of Medical Microbi- ology,2014,304(1):31-36. doi: 10.1016/j.ijmm.2013.08.013 [34] LI Zhoupeng, LI Jing, QU Di, et al. Synthesis and pha- rmacological evaluations of 4-hydrox-ycoumarin deriv- atives as a new class of anti-Staphylococcus aureus ag- ents[J]. Journal of Pharmacy and Pharmacology,2015,67(4):573-582. doi: 10.1111/jphp.12343 [35] PARMAR S, KAUR H, SINGH J, et al. Recent Advan- ces in Green Synthesis of Ag NPs for Extenuating Ant- imicrobial Resistance[J]. Nanomaterials,2022,12(7):1115. doi: 10.3390/nano12071115 [36] 吴宗山, 胡海洋, 任艺, 等. 纳米银的抗菌机理研究进展[J]. 化工进展, 2015, 34(5):1349-1356+1370. doi: 10.16085/j.issn.1000-6613.2015.05.028WU Zongshan, HU Haiyang, REN Yi, et al. Research progress on antibacterial mechanism of silver nanopar- ticles[J]. Chemical Industry and Engineering Progress,2015,34(5):1349-1356+1370(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.05.028 -