留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4-羟基香豆素-Ag复合材料的协同抑菌性能

梁犇 吴娟娟 郑锦丽 宋凤敏 徐进 乔艳明 郭少波 史娟

梁犇, 吴娟娟, 郑锦丽, 等. 4-羟基香豆素-Ag复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(8): 4779-4791. doi: 10.13801/j.cnki.fhclxb.20221019.003
引用本文: 梁犇, 吴娟娟, 郑锦丽, 等. 4-羟基香豆素-Ag复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(8): 4779-4791. doi: 10.13801/j.cnki.fhclxb.20221019.003
LIANG Ben, WU Juanjuan, ZHENG Jinli, et al. Synergistic bacteriostatic properties of 4-hydroxycoumarin-Ag composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4779-4791. doi: 10.13801/j.cnki.fhclxb.20221019.003
Citation: LIANG Ben, WU Juanjuan, ZHENG Jinli, et al. Synergistic bacteriostatic properties of 4-hydroxycoumarin-Ag composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4779-4791. doi: 10.13801/j.cnki.fhclxb.20221019.003

4-羟基香豆素-Ag复合材料的协同抑菌性能

doi: 10.13801/j.cnki.fhclxb.20221019.003
基金项目: 陕西省科技厅项目(2020 ZDLGY11-02;2021 SF-382;2021 JQ-752);陕西理工大学秦巴生物资源与生态环境省部共建国家重点实验室项目(SXJ-2106);陕西省教育厅项目(22 JK0320);陕西理工大学科研一般项目(SLGKYXM2208)
详细信息
    通讯作者:

    郭少波,硕士,讲师,研究方向为生物材料 E-mail: 1403699360@qq.com;

    史娟,博士,教授,硕士生导师,研究方向为天然产物提取和有机合成 E-mail: 446269824@qq.com

  • 中图分类号: O62;TB333

Synergistic bacteriostatic properties of 4-hydroxycoumarin-Ag composite

Funds: Project of Science and Technology Department of Shaanxi Province (2020 ZDLGY11-02; 2021 SF-382; 2021 JQ-752); State Key Laboratory Project of Qinba Biological Resources and Ecological Environment, Shaanxi University of Technology (SXJ-2106); Project of Shaanxi Education Department (22 JK0320); General Scientific Research Project of Shaanxi University of Technology (SLGKYXM2208)
  • 摘要: 抗生素的滥用导致大量耐药菌出现,对卫生健康和社会经济造成严重威胁,因此,迫切需要开发新型抗菌剂来解决细菌耐药问题。本文以三氟醋酸银(CF3COOAg)为原料,采用化学还原法制备纳米银(Ag NPs)颗粒,并通过超声波辅助法结合4-羟基香豆素制备4-羟基香豆素-Ag NPs新型复合抑菌材料。利用TEM、XRD、XPS、UV-Vis、FTIR、Zeta电位及理论计算化学等进行表征。以革兰氏阴性菌大肠杆菌(E.coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)为模式菌,研究4-羟基香豆素-Ag的协同抑菌活性及抑菌机制。抑菌性能结果显示:相比Ag NPs,复合材料对E.coli的抑菌效率提高了62.5%,对S. aureus提高了37.5%,对T-Salmonella提高了44.4%。复合材料在浓度为150 μg/mL时,60 min内时对测试菌的抑菌率均可达99.9%。抑菌机制表明:复合材料可显著破坏细菌细胞壁,并进入细菌内部抑制细菌呼吸系统。该材料不仅具备单独无机抗菌剂和有机抗菌剂特有杀菌特性,两者协同且具备更强的抑菌活性,同时还可解决细菌耐药性问题,这可为抗生素的改性和新型抑菌剂的开发提供科学依据。

     

  • 图  1  纳米银颗粒(Ag NPs)及 4-羟基香豆素-Ag复合材料的TEM图像和粒径分布图((a), (b));(c) Ag NPs和复合材料的XRD图谱;(d) Ag NPs的XPS图谱;(e) Ag NPs、4-羟基香豆素及复合材料的UV-Vis吸收光谱;(f) Ag NPs、4-羟基香豆素及复合材料的FTIR图谱;(g) Ag NPs与4-羟基香豆素结合理论计算分析图

    Figure  1.  TEM images and particle size distribution map of Ag NPs and 4-hydroxycoumarin-Ag composite ((a), (b)); (c) XRD patterns of Ag NPs and composite materials; (d) XPS spectra of Ag NPs; (e) UV-Vis absorption spectra of Ag NPs, 4-hydroxycoumarin and composite materials; (f) FTIR spectra of Ag NPs, 4-hydroxycoumarin and composite materials; (g) Theoretical calculation and analysis diagram of Ag NPs combined with 4-hydroxycoumarin

    图  2  不同材料对E.coli (a)、S.aureus (b)和T-Salmonella (c)的滤纸片扩散照片:浓度为35.5、75、150、300 μg/mL的不同抑菌材料(4-羟基香豆素负载量为5wt%)对E.coli ((a1)~(a4))、S.aureus ((b1)~(b4))及T-Salmonella的抑菌结果((c1)~(c4));E.coli (d)、S.aureus (e)、T-Salmonella (f)的抑菌圈直径随浓度变化曲线

    A, B, C and D—Dimethyl sulfoxide, Ag NPs, 4-hydroxycoumarin and composite materials, respectively

    Figure  2.  Different materials for E.coli (a), S.aureus (b) and T-Salmonella (c) filter paper spread photos: Bacteriostatic results of E.coli of different bacteriostatic materials (The loading of 4-hydroxycoumarin was 5wt%) ((a1)-(a4)), S.aureus ((b1)-(b4) and T-Salmonella ((c1)-(c4)) with concentrations of 35.5, 75, 150 and 300 μg/mL; E.coli (d), S.aureus (e) and T-Salmonella (f) bacteriostatic rings diameter changes with concentration, respectively

    图  3  4-羟基香豆素-Ag复合材料对E.coli (a)、S.aureus (b)及T-Salmonella (c)的菌落计数分布图;(d)复合材料的时间-杀菌曲线图;(e) 3种测试菌在不同时间的抑菌率比较

    Figure  3.  Photo of colony count of 4-hydroxycoumarin-Ag composite for E.coli (a), S.aureus (b) and T-Salmonella (c); (d) Time-germicidal curves of the composite; (e) Comparison of the bacteriostatic rates of the three tested bacteria at different time

    图  4  4-羟基香豆素-Ag复合材料与E.coliS.aureusT-Salmonella作用不同时间的Zeta电位值

    Figure  4.  Zeta potential diagrams of the 4-hydroxycoumarin-Ag composite reacted with E.coli, S.aureus and T-Salmonella for different time

    图  5  4-羟基香豆素-Ag复合材料对E.coli (b)、S.aureus (d)及T-Salmonella (f)的碘化丙啶(PI)染色照片;((a), (c), (e))对应的纯菌对照效果图

    Figure  5.  Color propyl iodide (PI) photos of 4-hydroxycoumarin-Ag composite for E.coli (b), S.aureus (d) and T-Salmonella (f); ((a), (c), (e)) Corresponding pure bacteria control renderings

    图  6  4-羟基香豆素-Ag复合材料对E.coli (a)、S.aureus (b)、T-Salmonella (c)的微量热分析及复合材料毒理性实验结果分析(d)

    GDC-0941—Pictilisib; IC50—Half-inhibitory concentration

    Figure  6.  Microthermal analysis of 4-hydroxycoumarin-Ag composite for E.coli (a), S.aureus (b) and T-Salmonella (c) and analysis of toxicity test results of composites (d)

    图  7  4-羟基香豆素-Ag复合材料抑菌机制

    Figure  7.  Diagram of antibacterial mechanism of 4-hydroxycoumarin-Ag composite

    表  1  溶剂、Ag NPs、4-羟基香豆素、4-羟基香豆素-Ag对E.coliS.aureusT-Salmonella的抑菌圈尺寸

    Table  1.   Size of bacteriostasis circles for E.coli, S.aureus and T-Salmonella of solvent, Ag NPs, 4-hydroxycoumarin and 4-hydroxycoumarin-Ag

    BacterialConcentration/(μg·mL−1)Inhibition zone/cm
    Dimethyl sulfoxideAg4-hydroxycoumarin4-hydroxycoumarin-Ag
    E. coli35.50.60.600.600.70
    75.00.60.700.601.00
    150.00.60.900.651.50
    300.00.61.200.701.95
    S. aureus35.50.60.600.600.65
    75.00.60.650.600.90
    150.00.60.750.651.25
    300.00.61.200.851.62
    T-Salmonella35.50.60.600.600.60
    75.00.60.650.650.80
    150.00.60.700.651.10
    300.00.60.900.701.30
    下载: 导出CSV
  • [1] 刘姝瑞, 谭艳君, 张明宇, 等. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2022, 39(1):90-98. doi: 10.3969/j.issn.2096-5184.2022.01.017

    LIU Shurui, TAN Yanjun, ZHANG Mingyu, et al. Research progress of antibacterial materials[J]. Journal of Textile Science and Engineering,2022,39(1):90-98(in Chinese). doi: 10.3969/j.issn.2096-5184.2022.01.017
    [2] HAN S T, YANG L, WANG Y, et al. Preliminary studies on the antibacterial mechanism of a new plant-derived compound, 7-methoxycoumarin, against ralstonia solanacearum[J]. Frontiers in Microbiology,2021,12:697911. doi: 10.3389/fmicb.2021.697911
    [3] 杨亮, 姚晓远, 丁伟. 香豆素类化合物的抑菌活性研究[J]. 天然产物研究与开发, 2018, 30(2):332-338. doi: 10.16333/j.1001-6880.2018.2.026

    YANG Liang, YAO Xiaoyuan, DING Wei. The advances on antibacterial activity of coumarins [J]. Natural Product Research and Development,2018,30(2):332-338(in Chinese). doi: 10.16333/j.1001-6880.2018.2.026
    [4] SANGHANI Y J, KORADIYA S B, PATEL A S. Synthesis of substituted 4-(4-((3-nitro-2-oxo-2H-chromene-4-yl) amino)phenyl)morpholine-3-one coumarin derivatives[J]. Asian Journal of Chemistry, 2019, 31(7): 1461-1464.
    [5] 李星星, 陶亮. 艰难梭菌感染—抗生素滥用引发的全球公共健康威胁[J]. 科学, 2021, 73(3):40-42, 49.

    LI Xingxing, TAO Liang. Clostridium difficile infection a global public health threat due to antibiotic overuse[J]. Science,2021,73(3):40-42, 49(in Chinese).
    [6] XU L, WANG Y Y, HUANG J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety[J]. Theranostics, 2020, 10(20): 8996-9031.
    [7] 薛文强, 于世平. 纳米银的抗菌机制及临床应用研究[J]. 中国微生态学杂志, 2022, 34(1):117-120. doi: 10.13381/j.cnki.cjm.202201023

    XUE Wenqiang, YU Shiping. Antibacterial mechanism and clinical application of silver nanoparticles[J]. Chinese Journal of Microecology,2022,34(1):117-120(in Chinese). doi: 10.13381/j.cnki.cjm.202201023
    [8] NEWASE S, BANKAR A V. Synthesis of bio-inspired Ag-Au nanocomposite and its anti-biofilm efficacy[J]. Bulletin of Materials Science,2017,40(1):157-162. doi: 10.1007/s12034-017-1363-7
    [9] 郭少波, 梁艳莉, 刘智峰, 等. 四环素-Ag复合材料的协同抑菌性能[J]. 应用化学, 2021, 38(11):1462-1468. doi: 10.19894/j.issn.1000-0518.210006

    GUO Shaobo, LIANG Yanli, LIU Zhifeng, et al. Synergistic antibacterial activity of tetracycline combined with silver nanoparticles[J]. Chinese Journal of Applied Chemistry,2021,38(11):1462-1468(in Chinese). doi: 10.19894/j.issn.1000-0518.210006
    [10] KHURANA C, SHARMA P, PANDEY O P, et al. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes[J]. Journal of Materials Science & Technology,2016,32(6):524-532.
    [11] KORA A J, RASTOGI L. Enhancement of antibacterial acti-vity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria[J]. Bioinorganic Chemistry and Applications,2013,2013:871097.
    [12] WANG Y, ZHENG Y Q, HUANG C Z, et al. Synthesis of Ag nanocubes 18-32 nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility[J]. Journal of the American Chemical Society, 2013, 135(5):1941-1951.
    [13] 解修超, 兰阿峰, 刘二奴, 等. PDA@Ag纳米复合材料的制备及抑菌性能研究[J]. 贵金属, 2021, 42(1): 34-40.

    XIE Xiuchao, LAN Afeng, LIU Ernu, et al. Study on preparation and antibacterial property of PDA@Ag composite nanomaterials[J]. Precious Metals, 2021, 42(1): 34-40(in Chinese).
    [14] FRISCH M J, TRUCKS G W, POPLE J A, et al. Gaussian 09, Version D. 01[CP]. Gaussian Inc: Pittsburgh, 2009.
    [15] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
    [16] YANG X, HUANG E, YOUSEF A E. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus[J]. Microbiological Research,2017,195:18-23. doi: 10.1016/j.micres.2016.11.002
    [17] SUN S B, TANG S K, CHANG X T, et al. A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications[J]. Applied Surface Science,2019,473(15):1049-1061.
    [18] CIRNSHI K, COETZEE J, HERRMANN J, et al. Metabolic profiling to determine bactericidal or bacteriostatic effects of new natural products using isothermal microcalorimetry[J]. Journal of Visualized Experiments,2020,164:e61703.
    [19] WANG X J, MEI L N, JIN M C, et al. Composite coating of graphene oxide/TiO2 nanotubes/HHC-36 antibacterial peptide construction and an exploration of its bacteriostat and osteogenesis effects[J]. Journal of Biomedical Nanotechnology, 2021, 17(4): 662-676.
    [20] HALDER S, AHMED A N, GAFUR M A, et al. Size-controlled facile synthesis of silver nanoparticles by chemical reduction method and analysis of their antibacterial performance[J]. Chemistry Select,2021,22(13):7202.
    [21] FANG Y, HONG C Q, CHEN F R, et al. Green synthesis of nano silver by tea extract with high antimicrobial activity[J]. Inorganic Chemistry Communications,2021,132:108808. doi: 10.1016/j.inoche.2021.108808
    [22] 姚圣楠, 徐冉, 王安琪, 等. 树莓果渣多酚纳米银的制备、表征及抗菌活性研究[J]. 食品科技, 2022, 47(6):290-297.

    YAO Shengnan, XU Ran, WANG Anqi, et al. Preparation, characterization and antibacterialactivity of raspberry residue polyphenol silver nanoparticles[J]. Food Science and Technology,2022,47(6):290-297(in Chinese).
    [23] CHENG J, LIN X T, WU X L, et al. Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract[J]. International Journal of Biological Macromolecules,2021,188(1):678-688.
    [24] MA Z F, JIANG X Y, JIN Y H, et al. Preparation of nano-silver nanoparticles for conductive ink and the correlations with its conductivity[J]. Applied Nanoscience,2022,12(5):1657-1665.
    [25] 邢世雄, 王建宇, 董春法. 单分散银纳米粒子的制备与表征[J]. 信阳师范学院学报(自然科学版), 2017, 30(3):440-444.

    XING Shixiong, WANG Jianyu, DONG Chunfa. Synthesis and characterion of monodisperse silver nanoparticles[J]. Journal of Xinyang Normal University (Natural Science Edition),2017,30(3):440-444(in Chinese).
    [26] KAUR A, GOYAL D, KUMAR R. Surfactant mediated interaction of vancomycin with silver nanoparticles[J]. Applied Surface Science,2018,449(15):23-30.
    [27] KAUR A, PREET S, KUMAR V, et al. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity[J]. Colloids and Surfaces B: Biointerfaces,2019,176(1):62-69.
    [28] OBASEKI A O, PORTER W R, TRAGER W F. 4-hydroxycoumarin/2-hydroxychromone tautomerism: Infrared spectra of 213 c and 3D labeled 4-hydroxycoumarin and its anion[J]. Journal of Heterocyclic Chemistry,2010,19(2):385-390.
    [29] WANG M, YUE L, NIAZI S, et al. Synthesis and characterization of cinnamic acid conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride derivatives: A hybrid flocculant with antibacterial activity[J]. International Journal of Biological Macromolecules,2022,206(1):886-895.
    [30] 鲁曦泽, 姜宇凡, 李英华, 等. 新型湿法纳米银制备技术及其毒性行为[J]. 功能材料, 2022, 53(2):2094-2100.

    LU Xize, JIANG Yufan, LI Yinghua, et al. A new wet preparation method of nano-silver nanoparticles by wet process and its toxic behavior[J]. Journal of Functional Materials,2022,53(2):2094-2100(in Chinese).
    [31] WANG X L, LI Y, HUANG J, et al. Efficiency and mecha-nism of adsorption of low concentration uranium in water by extracellular polymeric substances[J]. Journal of Envi-ronmental Radioactivity,2019,197:81-89. doi: 10.1016/j.jenvrad.2018.12.002
    [32] KIRCHHOFF C, CYPIONKA H. Propidium ion enters viable cells with high membrane potential during live-dead staining[J]. Journal of Microbiological Methods,2017,142:79-82. doi: 10.1016/j.mimet.2017.09.011
    [33] HEIDE L. New aminocoumarin antibiotics as gyrase inhibitors[J]. International Journal of Medical Microbiology,2014,304(1):31-36. doi: 10.1016/j.ijmm.2013.08.013
    [34] LI Z P, LI J, QU D, et al. Synthesis and pharmacological evaluations of 4-hydroxycoumarin derivatives as a new class of anti-staphylococcus aureus agents[J]. Journal of Pharmacy and Pharmacology,2015,67(4):573-582. doi: 10.1111/jphp.12343
    [35] PARMAR S, KAUR H, SINGH J, et al. Recent advances in green synthesis of Ag NPs for extenuating antimicrobial resistance[J]. Nanomaterials,2022,12(7):1115. doi: 10.3390/nano12071115
    [36] 吴宗山, 胡海洋, 任艺, 等. 纳米银的抗菌机理研究进展[J]. 化工进展, 2015, 34(5):1349-1356, 1370. doi: 10.16085/j.issn.1000-6613.2015.05.028

    WU Zongshan, HU Haiyang, REN Yi, et al. Research progress on antibacterial mechanism of silver nanoparticles[J]. Chemical Industry and Engineering Progress,2015,34(5):1349-1356, 1370(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.05.028
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  235
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-09-19
  • 录用日期:  2022-09-25
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回