Adsorption performance and mechanism of polyethyleneimine cross-linked bentonite for Cr (VI) in aqueous solution
-
摘要: 为提高膨润土的吸附容量,通过交联反应将聚乙烯亚胺(PEI)引入3-氨丙基三乙氧基硅烷(APTES)改性膨润土(APTES/Bent)表面制备得到PEI交联膨润土(PEI-APTES/Bent-4),并采用FTIR、XRD和SEM等手段对其进行表征分析。以水中Cr(Ⅵ)为吸附对象,考察了PEI-APTES/Bent-4的吸附性能,探究了吸附机制和回收利用性。结果表明:PEI成功接枝于膨润土表面,其丰富的活性基团极大的促进了六价铬的去除。吸附最佳pH为2,随pH值增加吸附量降低。PEI-APTES/Bent-4对Cr(Ⅵ)的吸附符合Langmuir等温模型和拟二级动力学模型,吸附过程为化学吸附和单层吸附,在313 K时最大理论吸附量达137.50 mg·g−1。热力学研究表明该吸附为自发吸热过程。结合吸附实验、FTIR和XPS分析推测得出PEI-APTES/Bent-4对Cr(Ⅵ)的吸附机制主要为静电作用、还原和螯合。经6次循环后吸附剂仍保持较好的吸附性能。PEI-APTES/Bent-4去除水中Cr(Ⅵ)具有较大的应用前景。Abstract: In order to improve the adsorption capacity of bentonite, polyethyleneimine (PEI) was introduced onto the surface of 3-aminopropyltriethoxysilane (APTES)-modified bentonite (APTES/Bent) by crosslinking reaction to prepare PEI-crosslinked bentonite (PEI-APTES/Bent-4), which was characterised by FTIR, XRD and SEM. Taking Cr(Ⅵ) in water as the adsorption target, the adsorption performance of PEI-APTES/Bent-4 was investigated, and its adsorption mechanism and recyclability were explored. The results showed that PEI was successfully grafted onto the surface of bentonite, and the abundant active groups of PEI dramatically promoted the removal of Cr(VI). The optimum pH for adsorption was 2, and the adsorption capacity decreased with increasing pH. The adsorption of Cr(Ⅵ) by PEI-APTES/Bent-4 conformed to the Langmuir isotherm model and pseudo-second-order kinetic model, and the adsorption process was chemical adsorption and monolayer adsorption. The maximum theoretical adsorption capacity reached 137.50 mg·g−1 at 313 K. Thermodynamic studies indicated that the adsorption was a spontaneous endothermic process. Based on the adsorption experiments, FTIR and XPS analysis, it is speculated that the adsorption mechanism of PEI-APTES/Bent-4 for Cr(VI) is mainly electrostatic interaction, reduction, and chelation. After six cycles, the adsorbent still maintained good adsorption performance. PEI-APTES/Bent-4 has broad application prospects for the removal of Cr(Ⅵ) from water.
-
Key words:
- polyethyleneimine /
- bentonite /
- Cr(Ⅵ) /
- cross-linked /
- adsorption
-
表 1 PEI-APTES/Bent-4与其他改性膨润土的Cr(VI)吸附量比较
Adsorbent qm/mg·g-1 Ref. CTMAB/Bent 27.472 [37] AC-Fe3O4/Bent 29.32 [38] Citric acid/MBent 16.67 [39] polyacrylic acid-Al/Bent 3.125 [40] Fe3O4-PDA-SDBS/Bent 103.6 [41] Chitosan-NaOH/Bent 2.72 [42] Cetylpyridinium chloride/Bent 46.03 [43] Chitosan/Bent 16.40 [44] PEI-APTES/Bent-4 137.50 This study Notes: CTMAB—Cetyltrimethylammonium bromide; MBent—Magnetic Bentonite; AC—Activated Carbon; PDA—Polydopamine; SDBS—Sodium dodecyl benzene sulfonate. 表 1 PEI-APTES/Bent-4对Cr(Ⅵ)的吸附动力学参数
Table 1. Kinetic model fitting parameters for Cr(Ⅵ) adsorption on PEI-APTES/Bent-4
adsorbent Pseudo-first-order Pseudo-second-order qe/(mg·g−1) K1/min−1 R2 qe/(mg·g−1) K2/(g·mg−1·min−1) R2 PEI-APTES/Bent-4 78.39 0.1286 0.9898 131.06 0.0076 0.9997 Notes: qe—Amount of adsorption at equilibrium; K1—Quasi-first-order kinetic model constant; K2—Quasi-second-order kinetic model constant; R—Correlation coefficient. 表 2 Langmuir和Freundlich模型参数
Table 2. Langmuir and Freundlich model parameters
T/K Langmuir Freundlich qm/(mg·g−1) KL/(L·mg−1) RL R2 KF/(mg1-(1/n)·L1/n·g−1) n R2 293 132.02 0.4046 0.0049-0.1099 0.9869 58.98 6.475 0.8479 303 135.68 0.6558 0.0030-0.0708 0.9627 65.12 6.893 0.8711 313 137.50 1.2208 0.0016-0.03935 0.9565 71.11 7.468 0.8835 Notes: qm−Maximum adsorption capacity; KL−Adsorption equilibrium constant of Langmuir model; KF−Adsorption equilibrium constant of Freundlich model; n−Adsorption strength constant in the Freundlich model; RL−Separation constant; R2−linear correlation coefficient. 表 3 PEI-APTES/Bent-4与其他改性膨润土Cr(VI)吸附量比较
Table 3. Comparison of Cr (VI) adsorption capacity between PEI-APTES/Bent-4 and other modified bentonite
Adsorbent Maximum adsorption capacity/(mg·g−1) Ref. CTMAB/Bent 27.472 [37] AC- Fe3O4/Bent 29.32 [38] Citric acid/MBent 16.67 [39] polyacrylic acid-Al/Bent 3.125 [40] Fe3O4-PDA-SDBS/Bent 103.6 [41] Chitosan-NaOH/Bent 2.72 [42] Cetylpyridinium chloride/Bent 46.03 [43] Chitosan/Bent 16.40 [44] PEI-APTES/Bent-4 137.50 This study Notes:CTMAB—Cetyltrimethylammonium bromide; AC—Activated Carbon; PDA—Polydopamine; MBent—Magnetic Bentonite; SDBS—Sodium dodecyl benzene sulfonate. 表 4 吸附Cr(Ⅵ)的热力学参数
Table 4. Thermodynamic parameters for adsorption of Cr(Ⅵ)
T/K ΔG0/(kJ·mol−1) ΔH0/(kJ·mol−1) ΔS0/(J·mol−1) 293 −6.511 303 −7.439 23.73 103.11 313 −8.578 Notes: ∆G0—Gibbs free energy change; ∆H0—Enthalpy change; ∆S0—Entropy change. -
[1] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2023, 40(2): 1037-1049.ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1037-1049(in Chinese). [2] ZHAO C, WANG Z H, LI X, et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(VI) reduction under white light[J]. Chemical Engineering Journal, 2020, 389: 123431. doi: 10.1016/j.cej.2019.123431 [3] SHAW P, MONDAL P, BANDYOPADHYAY A, et al. Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish[J]. Science of the Total Environment, 2020, 703: 135622. doi: 10.1016/j.scitotenv.2019.135622 [4] PAN Z Z, ZHU X M, SATPATHY A, et al. Cr(VI) Adsorption on Engineered Iron Oxide Nanoparticles: Exploring Complexation Processes and Water Chemistry[J]. Environmental Science & Technology, 2019, 53(20): 11913-11921. [5] LI M H, HE J, TANG Y Q, ea al. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon[J]. Chemosphere, 2019, 217: 742-753. doi: 10.1016/j.chemosphere.2018.11.007 [6] KONG Q P, WEI J Y, HU Y, et al. Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI)[J]. Journal of Hazardous Materials, 2019, 363: 161-169. doi: 10.1016/j.jhazmat.2018.09.084 [7] TU B Y, WEN R T, WANG K Q, et al. Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass[J]. Journal of Colloid and Interface Science, 2020, 560: 649-658. doi: 10.1016/j.jcis.2019.10.103 [8] LIM S J, KIM T H. Combined treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor system[J]. Separation and Purification Technology, 2015, 146: 42-49. doi: 10.1016/j.seppur.2015.03.021 [9] SUN J M, SHANG C, HUANG J C. Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater[J]. Environmental Science & Technology, 2003, 37: 4281-4287. [10] LI D, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie-International Edition, 2017, 56: 1825-1829. doi: 10.1002/anie.201609306 [11] LI Y M, GAO Y Y, ZHANG Q, et al. Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(VI) ion removal[J]. Separation and Purification Technology, 2021, 258: 117981. doi: 10.1016/j.seppur.2020.117981 [12] GAO Y, CHEN C L, TAN X L, et al. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI)[J]. Journal of Colloid and Interface Science, 2016, 476: 62-70. doi: 10.1016/j.jcis.2016.05.022 [13] WANG W J, NIU Q Y, ZENG G M, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction[J]. Applied Catalysis B: Environment and Energy, 2020, 273: 119051. doi: 10.1016/j.apcatb.2020.119051 [14] NOROUZIAN R S, LAKOURAJ M M. Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite of hydrophilic thiacalix[4]arene self-doped polyaniline: conductivity, isotherm, and kinetic study[J]. Advances in Polymer Technology, 2017, 36(1): 107-119. doi: 10.1002/adv.21580 [15] SHARIFUL M I, SHARIF S B, LEE J J L et al. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane[J]. Carbohydrate Polymers, 2017, 157: 57-64. doi: 10.1016/j.carbpol.2016.09.063 [16] LI Y X, CHEN Z, SHI Y Y, et al. Function of c-type cytochromes of Shewanella xiamenensis in enhanced anaerobic bioreduction of Cr (VI) by graphene oxide and graphene oxide/polyvinyl alcohol films[J]. Journal of Hazardous Materials, 2020, 387: 122018. doi: 10.1016/j.jhazmat.2020.122018 [17] BIN Y L, LIANG Q W, LUO H J et al. One-step synthesis of nitrogen-functionalized graphene aerogel for efficient removal of hexavalent chromium in water[J]. Environmental Science and Pollution Research, 2023, 30: 6746-6757. doi: 10.1007/s11356-022-22591-y [18] XU Y L, CHEN J Y, CHEN R, et al. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160: 148-157. doi: 10.1016/j.watres.2019.05.055 [19] NOWRUZI R, HEYDARI M, JAVANBAKHT V. Synthesis of a chitosan/polyvinylalcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution[J]. International Journal of Biological Macromolecules, 2020, 147: 209-216. doi: 10.1016/j.ijbiomac.2020.01.044 [20] SULISTIYO C D, CHENG K C, SU'ANDI H J, et al. Removal of hexavalent chromium using durian in the form of rind, cellulose, and activated carbon: Comparison on adsorption performance and economic evaluation[J]. Journal of Cleaner Production, 2022, 380: 135010. doi: 10.1016/j.jclepro.2022.135010 [21] ZHAO J X, HE J, LIU L, et al. Self-cross-linking of metal-organic framework (MOF-801) in nanocellulose aerogel for efficient adsorption of Cr (VI) in water[J]. Separation and Purification Technology, 2023, 327: 124942. doi: 10.1016/j.seppur.2023.124942 [22] LEE J H, PARK J A, KIM H G, et al. Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption[J]. Chemosphere, 2020, 251: 126387. doi: 10.1016/j.chemosphere.2020.126387 [23] FATMA N A T, EVREN Y, CEKYDA O K, et al. Amino-functionalized SiO2 microbeads optimize photosynthetic performance, gene expression, ROS production and antioxidant status in chromium and copper-exposed Zea mays[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111543. doi: 10.1016/j.jece.2023.111543 [24] CHEN Z L, ZHANG Y N, GUO J Z, et al. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar[J]. Environmental Science and Pollution Research, 2023, 30: 94185-94194. doi: 10.1007/s11356-023-29085-5 [25] LIU Y, ZHONG D J, XU Y L, et al. Performance study of phosphate removal from water using synergistic interaction between lanthanum-magnesium bimetallic organic frameworks and polyethyleneimine[J]. Journal of Molecular Liquids, 2024, 396: 124065. doi: 10.1016/j.molliq.2024.124065 [26] 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对 U(VI) 的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153.WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153 (in Chinese). [27] SU S Z, LIU Q, LIU J Y, et al. Polyethyleneimine- functionalized Luffa cylindrica for efficient uranium extraction[J]. Journal of Colloid and Interface Science, 2018, 530: 538-546. doi: 10.1016/j.jcis.2018.03.102 [28] TANG Y L, LI M H, MU C H, et al. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles[J]. Chemosphere, 2019, 229: 570-579. doi: 10.1016/j.chemosphere.2019.05.062 [29] SU J J, QIAN J, ZENG W H, et al. Effective adsorption of salvianolic acids with phenylboronic acid functionalized polyethyleneimine-intercalated montmorillonite[J]. Separation and Purification Technology, 2023, 311: 123304. doi: 10.1016/j.seppur.2023.123304 [30] GUO D M, AN Q D, XIAO Z Y, et al. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels[J]. Carbohydrate Polymers, 2018, 202: 306-314. doi: 10.1016/j.carbpol.2018.08.140 [31] BO S F, LUO J M, AN Q D, et al. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation[J]. Journal of Cleaner Production, 2020, 250: 119585. doi: 10.1016/j.jclepro.2019.119585 [32] YAN Y Z, NAGAPPAN S, YOO J M, et al. Polyethyleneimine-grafted polysilsesquioxane hollow spheres for the highly efficient removal of anionic dyes and selective adsorption of Cr(VI)[J]. Journal of Environmental Chemical Engineering, 2021, 9: 104814. doi: 10.1016/j.jece.2020.104814 [33] BAO S Y, YANG W W, WANG Y J, et al. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms[J]. Chemical Engineering Journal, 2020, 399: 125762. doi: 10.1016/j.cej.2020.125762 [34] YANG C Y, JIANG J W, WU Y, et al. High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine[J]. Journal of Molecular Liquids, 2021, 337: 116418. doi: 10.1016/j.molliq.2021.116418 [35] ZENG H H, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal, 2019, 358: 253-263. doi: 10.1016/j.cej.2018.10.001 [36] HORRI N, SANZPEREZ El S, ARENCIBIA A, et al. Amine grafting of acid-activated bentonite for carbon dioxide capture[J]. Applied Clay Science, 2019, 180: 105195. doi: 10.1016/j.clay.2019.105195 [37] ZHANG S Q, YANG W, CHEN R P, et al. Modified geosynthetic clay liners bentonite for barriers of Cr (VI) in contaminated soil[J]. Environmental technology, 2022, 44(20): 31-39. [38] YAO L, ESMAEILI H, HAGHANI M, et al. Activated Carbon/Bentonite/Fe3O4 as Novel Nanobiocomposite for High Removal of Cr(VI) Ions[J]. Chemical Engineering & Technology, 2021, 44(10): 1908-1918. [39] 王迎亚, 施华珍, 张寒冰, 等. 磁性柠檬酸膨润土对六价铬吸附性能的研究[J]. 高校化学工程学报, 2017, 31(3): 726-732. doi: 10.3969/j.issn.1003-9015.2017.03.030WANG Yingya, SHI Huazhen, ZHANG Hanbing, et al. Research on Cr(VI) Adsorption with Magnetic Citric Acid Bentonite[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 726-732(in Chinese). doi: 10.3969/j.issn.1003-9015.2017.03.030 [40] 王爽, 郭宏飞, 赵斌, 等. 聚丙烯酸复合铝改性膨润土制备及其对Cr(VI)的吸附[J]. 过程工程学报, 2020, 20(1): 44-51. doi: 10.12034/j.issn.1009-606X.219141WANG Shuang, GUO Hongfei, ZHAO Bing, et al. Synthesis of the polyacrylic acid aluminum modified bentonite composite and its adsorption of Cr(VI)[J]. The Chinese Journal of Process Engineering, 2020, 20(1): 44-51(in Chinese). doi: 10.12034/j.issn.1009-606X.219141 [41] 焦林宏, 汪永丽, 王江北, 等. 纳米磁性聚多巴胺-膨润土的制备及吸附Cr(VI)[J]. 水处理技术, 2019, 45(7): 80-84.JIAO Linhong, WANG Yongli, WANG Jiangbei, et al. Preparation of Magnetic Nanophase Polydopamine/Bentonite and Their Adsorption Properties for Cr(VI)[J]. TECHNOLOGY OF WATER TREATMENT, 2019, 45(7): 80-84(in Chinese). [42] 苏建花, 王玉军, 马秀兰, 等. 膨润土改性及对水中Cr(VI) 吸附性能的研究[J]. 华南农业大学学报, 2020, 41(1): 100-107. doi: 10.7671/j.issn.1001-411X.201906010SU Jianhua, WANG Yujun, MA Xiulan, et al. Bentonite modification and adsorption capacity for Cr(VI) in water[J]. Journal of South China Agricultural University, 2020, 41(1): 100-107(in Chinese). doi: 10.7671/j.issn.1001-411X.201906010 [43] SRIKACHA N, SRIUTTHA M, NEERATANAPHAN L, et al. The Improvement of Natural Thai Bentonite Modified with Cationic Surfactants on Hexavalent Chromium Adsorption from an Aqueous Solution[J]. Adsorption Science & Technology, 2022: 4444164. [44] YANG J B, HUANG B, LIN M Z, et al. Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: isotherm, kinetics, and thermodynamics studies[J]. Journal of Chemical & Engineering Data, 2020, 65(5): 2751-2763. [45] ALSHAKHS F A, GIJJAPU D R, ISLAM M A, et al. A promising palm leaves waste-derived biochar for efficient removal of tetracycline from wastewater[J]. Journal of Molecular Structure, 2024, 1296: 136846. doi: 10.1016/j.molstruc.2023.136846 [46] MILONJIC S. A consideration of the correct calculation of thermodynamic parameters of adsorption[J]. Journal of the Serbian Chemical Society, 2007, 72: 1363-1367. doi: 10.2298/JSC0712363M [47] GENG J J, YIN Y W, LIANG Q W, et al. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism[J]. Chemical Engineering Journal, 2019, 361: 1497-1510. doi: 10.1016/j.cej.2018.10.141 [48] HUANG J N, CAO Y H, WEN H J, et al. Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation[J]. Journal of Colloid and Interface Science, 2019, 538: 327-339. doi: 10.1016/j.jcis.2018.12.002 [49] HE K, WANG S C, LIU Y, et al. Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism[J]. Science of the Total Environment, 2023, 857: 159397. doi: 10.1016/j.scitotenv.2022.159397 [50] GUO D M, AN Q D, XIAO Z Y, et al. Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution[J]. RSC Advances, 2017, 7: 54039. doi: 10.1039/C7RA09940A [51] LAI Y X, WANG F , ZHANG Y M, et al. UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water[J]. Chemical Engineering Journal, 2019, 378: 122069. [52] LI Z Y, PAN Z D, WANG Y M, et al. Mechanochemical preparation of ternary polyethyleneimine modified magnetic illite/smectite nanocomposite for removal of Cr(VI) in aqueous solution[J]. Applied Clay Science, 2020, 198: 105832. doi: 10.1016/j.clay.2020.105832
计量
- 文章访问数: 109
- HTML全文浏览量: 62
- 被引次数: 0