留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺交联膨润土对水中Cr(Ⅵ)的吸附性能与机制

孙志勇 张宇辰 吴喜军

孙志勇, 张宇辰, 吴喜军. 聚乙烯亚胺交联膨润土对水中Cr(Ⅵ)的吸附性能与机制[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 孙志勇, 张宇辰, 吴喜军. 聚乙烯亚胺交联膨润土对水中Cr(Ⅵ)的吸附性能与机制[J]. 复合材料学报, 2024, 42(0): 1-12.
SUN Zhiyong, ZHANG Yuchen, WU Xijun. Adsorption performance and mechanism of polyethyleneimine cross-linked bentonite for Cr (VI) in aqueous solution[J]. Acta Materiae Compositae Sinica.
Citation: SUN Zhiyong, ZHANG Yuchen, WU Xijun. Adsorption performance and mechanism of polyethyleneimine cross-linked bentonite for Cr (VI) in aqueous solution[J]. Acta Materiae Compositae Sinica.

聚乙烯亚胺交联膨润土对水中Cr(Ⅵ)的吸附性能与机制

基金项目: 国家自然科学基金资助项目(52064048);陕西省科技创新团队(2022TD-08)
详细信息
    通讯作者:

    孙志勇,硕士,教授,硕士生导师,研究方向为功能材料、环境污染治理技术 E-mail:sunzy11@126.com

  • 中图分类号: X703

Adsorption performance and mechanism of polyethyleneimine cross-linked bentonite for Cr (VI) in aqueous solution

Funds: National Natural Science Foundation of China (52064048); Shaanxi Provincial Science and Technology Innovation Team (2022TD-08)
  • 摘要: 为提高膨润土的吸附容量,通过交联反应将聚乙烯亚胺(PEI)引入3-氨丙基三乙氧基硅烷(APTES)改性膨润土(APTES/Bent)表面制备得到PEI交联膨润土(PEI-APTES/Bent-4),并采用FTIR、XRD和SEM等手段对其进行表征分析。以水中Cr(Ⅵ)为吸附对象,考察了PEI-APTES/Bent-4的吸附性能,探究了吸附机制和回收利用性。结果表明:PEI成功接枝于膨润土表面,其丰富的活性基团极大的促进了六价铬的去除。吸附最佳pH为2,随pH值增加吸附量降低。PEI-APTES/Bent-4对Cr(Ⅵ)的吸附符合Langmuir等温模型和拟二级动力学模型,吸附过程为化学吸附和单层吸附,在313 K时最大理论吸附量达137.50 mg·g−1。热力学研究表明该吸附为自发吸热过程。结合吸附实验、FTIR和XPS分析推测得出PEI-APTES/Bent-4对Cr(Ⅵ)的吸附机制主要为静电作用、还原和螯合。经6次循环后吸附剂仍保持较好的吸附性能。PEI-APTES/Bent-4去除水中Cr(Ⅵ)具有较大的应用前景。

     

  • 图  1  聚乙烯亚胺交联膨润土(PEI-APTES/Bent)的制备过程

    Figure  1.  Preparation process of polyethyleneimine cross-linked bentonite (PEI-APTES/Bent)

    图  2  Bent、APTES/Bent和PEI-APTES/Bent-4的FTIR图谱(a)、XRD图谱(b)和TGA曲线(c)

    Figure  2.  FTIR spectra(a), XRD pattern(b) and TGA curves (c) of Bent, APTES/Bent and PEI-APTES/Bent-4

    图  3  Ben、APTES/Bent和PEI-APTES/Bent-4的SEM-EDS图像

    Figure  3.  SEM-EDS images of Ben, APTES/Bent, PEI-APTES/Bent-4

    图  4  不同样品对Cr(Ⅵ)的吸附量

    Figure  4.  The adsorption capacity of different samples for Cr(Ⅵ)

    图  5  pH对吸附Cr(Ⅵ)的影响(a)与PEI-APTES/Bent-4的Zeta电位曲线(b)

    Figure  5.  Effect of pH on the adsorption of Cr (VI) (a) and the Zeta potential curves of Bent and PEI-APTES/Bent-4(b)

    图  6  吸附时间对Cr(Ⅵ)吸附量的影响(a)与动力学模型拟合:(b)准一级动力学模型拟合;(c)准二级动力学模型拟合

    Figure  6.  Effect of adsorption time on the adsorption capacity of Cr (Ⅵ)(a) and kinetics model fitting: (b)Pseudo-first-order kinetic model; (c) pseudo-second-order kinetic model

    图  7  PEI-APTES/Bent-4吸附Cr(Ⅵ)等温吸附模型拟合

    Figure  7.  Isothermal adsorption model fitting of Cr (Ⅵ) adsorption by PEI-APTES/Bent-4

    图  8  PEI-APTES/Bent-4吸附Cr(Ⅵ)前后的红外光谱图

    Figure  8.  FTIR spectra of PEI-APTES/Bent-4 before and after adsorption of Cr (Ⅵ)

    图  9  PEI-APTES/Bent-4吸附Cr(Ⅵ)前后的XPS图谱:全图谱(a);Cr 2 p图谱(b)

    Figure  9.  XPS spectra of PEI-APTES/Bent-4 before and after adsorption of Cr(Ⅵ): full spectrum (a), Cr 2 p spectrum (b)

    图  10  PEI-APTES/Bent-4吸附Cr(Ⅵ)的机制

    Figure  10.  Mechanism diagram of PEI-APTES/Bent-4 adsorption of Cr (Ⅵ)

    图  11  循环次数对PEI-APTES/Bent-4吸附Cr((Ⅵ)的影响

    Figure  11.  The Effect of Cycle Times on the Adsorption of Cr (Ⅵ) by PEI-APTES/Bent-4

    表  1  PEI-APTES/Bent-4与其他改性膨润土的Cr(VI)吸附量比较

    Adsorbentqm/mg·g-1Ref.
    CTMAB/Bent27.472[37]
    AC-Fe3O4/Bent29.32[38]
    Citric acid/MBent16.67[39]
    polyacrylic acid-Al/Bent3.125[40]
    Fe3O4-PDA-SDBS/Bent103.6[41]
    Chitosan-NaOH/Bent2.72[42]
    Cetylpyridinium chloride/Bent46.03[43]
    Chitosan/Bent16.40[44]
    PEI-APTES/Bent-4137.50This study
    Notes: CTMAB—Cetyltrimethylammonium bromide; MBent—Magnetic Bentonite; AC—Activated Carbon; PDA—Polydopamine; SDBS—Sodium dodecyl benzene sulfonate.
    下载: 导出CSV

    表  1  PEI-APTES/Bent-4对Cr(Ⅵ)的吸附动力学参数

    Table  1.   Kinetic model fitting parameters for Cr(Ⅵ) adsorption on PEI-APTES/Bent-4

    adsorbent Pseudo-first-order Pseudo-second-order
    qe/(mg·g−1) K1/min−1 R2 qe/(mg·g−1) K2/(g·mg−1·min−1) R2
    PEI-APTES/Bent-4 78.39 0.1286 0.9898 131.06 0.0076 0.9997
    Notes: qe—Amount of adsorption at equilibrium; K1—Quasi-first-order kinetic model constant; K2—Quasi-second-order kinetic model constant; R—Correlation coefficient.
    下载: 导出CSV

    表  2  Langmuir和Freundlich模型参数

    Table  2.   Langmuir and Freundlich model parameters

    T/K Langmuir Freundlich
    qm/(mg·g−1) KL/(L·mg−1) RL R2 KF/(mg1-(1/n)·L1/n·g−1) n R2
    293 132.02 0.4046 0.0049-0.1099 0.9869 58.98 6.475 0.8479
    303 135.68 0.6558 0.0030-0.0708 0.9627 65.12 6.893 0.8711
    313 137.50 1.2208 0.0016-0.03935 0.9565 71.11 7.468 0.8835
    Notes: qm−Maximum adsorption capacity; KL−Adsorption equilibrium constant of Langmuir model; KF−Adsorption equilibrium constant of Freundlich model; n−Adsorption strength constant in the Freundlich model; RL−Separation constant; R2−linear correlation coefficient.
    下载: 导出CSV

    表  3  PEI-APTES/Bent-4与其他改性膨润土Cr(VI)吸附量比较

    Table  3.   Comparison of Cr (VI) adsorption capacity between PEI-APTES/Bent-4 and other modified bentonite

    Adsorbent Maximum adsorption capacity/(mg·g−1) Ref.
    CTMAB/Bent 27.472 [37]
    AC- Fe3O4/Bent 29.32 [38]
    Citric acid/MBent 16.67 [39]
    polyacrylic acid-Al/Bent 3.125 [40]
    Fe3O4-PDA-SDBS/Bent 103.6 [41]
    Chitosan-NaOH/Bent 2.72 [42]
    Cetylpyridinium chloride/Bent 46.03 [43]
    Chitosan/Bent 16.40 [44]
    PEI-APTES/Bent-4 137.50 This study
    Notes:CTMAB—Cetyltrimethylammonium bromide; AC—Activated Carbon; PDA—Polydopamine; MBent—Magnetic Bentonite; SDBS—Sodium dodecyl benzene sulfonate.
    下载: 导出CSV

    表  4  吸附Cr(Ⅵ)的热力学参数

    Table  4.   Thermodynamic parameters for adsorption of Cr(Ⅵ)

    T/K ΔG0/(kJ·mol−1) ΔH0/(kJ·mol−1) ΔS0/(J·mol−1)
    293 −6.511
    303 −7.439 23.73 103.11
    313 −8.578
    Notes: ∆G0—Gibbs free energy change; ∆H0—Enthalpy change; ∆S0—Entropy change.
    下载: 导出CSV
  • [1] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2023, 40(2): 1037-1049.

    ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1037-1049(in Chinese).
    [2] ZHAO C, WANG Z H, LI X, et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(VI) reduction under white light[J]. Chemical Engineering Journal, 2020, 389: 123431. doi: 10.1016/j.cej.2019.123431
    [3] SHAW P, MONDAL P, BANDYOPADHYAY A, et al. Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish[J]. Science of the Total Environment, 2020, 703: 135622. doi: 10.1016/j.scitotenv.2019.135622
    [4] PAN Z Z, ZHU X M, SATPATHY A, et al. Cr(VI) Adsorption on Engineered Iron Oxide Nanoparticles: Exploring Complexation Processes and Water Chemistry[J]. Environmental Science & Technology, 2019, 53(20): 11913-11921.
    [5] LI M H, HE J, TANG Y Q, ea al. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon[J]. Chemosphere, 2019, 217: 742-753. doi: 10.1016/j.chemosphere.2018.11.007
    [6] KONG Q P, WEI J Y, HU Y, et al. Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI)[J]. Journal of Hazardous Materials, 2019, 363: 161-169. doi: 10.1016/j.jhazmat.2018.09.084
    [7] TU B Y, WEN R T, WANG K Q, et al. Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass[J]. Journal of Colloid and Interface Science, 2020, 560: 649-658. doi: 10.1016/j.jcis.2019.10.103
    [8] LIM S J, KIM T H. Combined treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor system[J]. Separation and Purification Technology, 2015, 146: 42-49. doi: 10.1016/j.seppur.2015.03.021
    [9] SUN J M, SHANG C, HUANG J C. Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater[J]. Environmental Science & Technology, 2003, 37: 4281-4287.
    [10] LI D, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie-International Edition, 2017, 56: 1825-1829. doi: 10.1002/anie.201609306
    [11] LI Y M, GAO Y Y, ZHANG Q, et al. Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(VI) ion removal[J]. Separation and Purification Technology, 2021, 258: 117981. doi: 10.1016/j.seppur.2020.117981
    [12] GAO Y, CHEN C L, TAN X L, et al. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI)[J]. Journal of Colloid and Interface Science, 2016, 476: 62-70. doi: 10.1016/j.jcis.2016.05.022
    [13] WANG W J, NIU Q Y, ZENG G M, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction[J]. Applied Catalysis B: Environment and Energy, 2020, 273: 119051. doi: 10.1016/j.apcatb.2020.119051
    [14] NOROUZIAN R S, LAKOURAJ M M. Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite of hydrophilic thiacalix[4]arene self-doped polyaniline: conductivity, isotherm, and kinetic study[J]. Advances in Polymer Technology, 2017, 36(1): 107-119. doi: 10.1002/adv.21580
    [15] SHARIFUL M I, SHARIF S B, LEE J J L et al. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane[J]. Carbohydrate Polymers, 2017, 157: 57-64. doi: 10.1016/j.carbpol.2016.09.063
    [16] LI Y X, CHEN Z, SHI Y Y, et al. Function of c-type cytochromes of Shewanella xiamenensis in enhanced anaerobic bioreduction of Cr (VI) by graphene oxide and graphene oxide/polyvinyl alcohol films[J]. Journal of Hazardous Materials, 2020, 387: 122018. doi: 10.1016/j.jhazmat.2020.122018
    [17] BIN Y L, LIANG Q W, LUO H J et al. One-step synthesis of nitrogen-functionalized graphene aerogel for efficient removal of hexavalent chromium in water[J]. Environmental Science and Pollution Research, 2023, 30: 6746-6757. doi: 10.1007/s11356-022-22591-y
    [18] XU Y L, CHEN J Y, CHEN R, et al. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160: 148-157. doi: 10.1016/j.watres.2019.05.055
    [19] NOWRUZI R, HEYDARI M, JAVANBAKHT V. Synthesis of a chitosan/polyvinylalcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution[J]. International Journal of Biological Macromolecules, 2020, 147: 209-216. doi: 10.1016/j.ijbiomac.2020.01.044
    [20] SULISTIYO C D, CHENG K C, SU'ANDI H J, et al. Removal of hexavalent chromium using durian in the form of rind, cellulose, and activated carbon: Comparison on adsorption performance and economic evaluation[J]. Journal of Cleaner Production, 2022, 380: 135010. doi: 10.1016/j.jclepro.2022.135010
    [21] ZHAO J X, HE J, LIU L, et al. Self-cross-linking of metal-organic framework (MOF-801) in nanocellulose aerogel for efficient adsorption of Cr (VI) in water[J]. Separation and Purification Technology, 2023, 327: 124942. doi: 10.1016/j.seppur.2023.124942
    [22] LEE J H, PARK J A, KIM H G, et al. Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption[J]. Chemosphere, 2020, 251: 126387. doi: 10.1016/j.chemosphere.2020.126387
    [23] FATMA N A T, EVREN Y, CEKYDA O K, et al. Amino-functionalized SiO2 microbeads optimize photosynthetic performance, gene expression, ROS production and antioxidant status in chromium and copper-exposed Zea mays[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111543. doi: 10.1016/j.jece.2023.111543
    [24] CHEN Z L, ZHANG Y N, GUO J Z, et al. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar[J]. Environmental Science and Pollution Research, 2023, 30: 94185-94194. doi: 10.1007/s11356-023-29085-5
    [25] LIU Y, ZHONG D J, XU Y L, et al. Performance study of phosphate removal from water using synergistic interaction between lanthanum-magnesium bimetallic organic frameworks and polyethyleneimine[J]. Journal of Molecular Liquids, 2024, 396: 124065. doi: 10.1016/j.molliq.2024.124065
    [26] 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对 U(VI) 的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153.

    WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153 (in Chinese).
    [27] SU S Z, LIU Q, LIU J Y, et al. Polyethyleneimine- functionalized Luffa cylindrica for efficient uranium extraction[J]. Journal of Colloid and Interface Science, 2018, 530: 538-546. doi: 10.1016/j.jcis.2018.03.102
    [28] TANG Y L, LI M H, MU C H, et al. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles[J]. Chemosphere, 2019, 229: 570-579. doi: 10.1016/j.chemosphere.2019.05.062
    [29] SU J J, QIAN J, ZENG W H, et al. Effective adsorption of salvianolic acids with phenylboronic acid functionalized polyethyleneimine-intercalated montmorillonite[J]. Separation and Purification Technology, 2023, 311: 123304. doi: 10.1016/j.seppur.2023.123304
    [30] GUO D M, AN Q D, XIAO Z Y, et al. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels[J]. Carbohydrate Polymers, 2018, 202: 306-314. doi: 10.1016/j.carbpol.2018.08.140
    [31] BO S F, LUO J M, AN Q D, et al. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation[J]. Journal of Cleaner Production, 2020, 250: 119585. doi: 10.1016/j.jclepro.2019.119585
    [32] YAN Y Z, NAGAPPAN S, YOO J M, et al. Polyethyleneimine-grafted polysilsesquioxane hollow spheres for the highly efficient removal of anionic dyes and selective adsorption of Cr(VI)[J]. Journal of Environmental Chemical Engineering, 2021, 9: 104814. doi: 10.1016/j.jece.2020.104814
    [33] BAO S Y, YANG W W, WANG Y J, et al. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms[J]. Chemical Engineering Journal, 2020, 399: 125762. doi: 10.1016/j.cej.2020.125762
    [34] YANG C Y, JIANG J W, WU Y, et al. High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine[J]. Journal of Molecular Liquids, 2021, 337: 116418. doi: 10.1016/j.molliq.2021.116418
    [35] ZENG H H, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal, 2019, 358: 253-263. doi: 10.1016/j.cej.2018.10.001
    [36] HORRI N, SANZPEREZ El S, ARENCIBIA A, et al. Amine grafting of acid-activated bentonite for carbon dioxide capture[J]. Applied Clay Science, 2019, 180: 105195. doi: 10.1016/j.clay.2019.105195
    [37] ZHANG S Q, YANG W, CHEN R P, et al. Modified geosynthetic clay liners bentonite for barriers of Cr (VI) in contaminated soil[J]. Environmental technology, 2022, 44(20): 31-39.
    [38] YAO L, ESMAEILI H, HAGHANI M, et al. Activated Carbon/Bentonite/Fe3O4 as Novel Nanobiocomposite for High Removal of Cr(VI) Ions[J]. Chemical Engineering & Technology, 2021, 44(10): 1908-1918.
    [39] 王迎亚, 施华珍, 张寒冰, 等. 磁性柠檬酸膨润土对六价铬吸附性能的研究[J]. 高校化学工程学报, 2017, 31(3): 726-732. doi: 10.3969/j.issn.1003-9015.2017.03.030

    WANG Yingya, SHI Huazhen, ZHANG Hanbing, et al. Research on Cr(VI) Adsorption with Magnetic Citric Acid Bentonite[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 726-732(in Chinese). doi: 10.3969/j.issn.1003-9015.2017.03.030
    [40] 王爽, 郭宏飞, 赵斌, 等. 聚丙烯酸复合铝改性膨润土制备及其对Cr(VI)的吸附[J]. 过程工程学报, 2020, 20(1): 44-51. doi: 10.12034/j.issn.1009-606X.219141

    WANG Shuang, GUO Hongfei, ZHAO Bing, et al. Synthesis of the polyacrylic acid aluminum modified bentonite composite and its adsorption of Cr(VI)[J]. The Chinese Journal of Process Engineering, 2020, 20(1): 44-51(in Chinese). doi: 10.12034/j.issn.1009-606X.219141
    [41] 焦林宏, 汪永丽, 王江北, 等. 纳米磁性聚多巴胺-膨润土的制备及吸附Cr(VI)[J]. 水处理技术, 2019, 45(7): 80-84.

    JIAO Linhong, WANG Yongli, WANG Jiangbei, et al. Preparation of Magnetic Nanophase Polydopamine/Bentonite and Their Adsorption Properties for Cr(VI)[J]. TECHNOLOGY OF WATER TREATMENT, 2019, 45(7): 80-84(in Chinese).
    [42] 苏建花, 王玉军, 马秀兰, 等. 膨润土改性及对水中Cr(VI) 吸附性能的研究[J]. 华南农业大学学报, 2020, 41(1): 100-107. doi: 10.7671/j.issn.1001-411X.201906010

    SU Jianhua, WANG Yujun, MA Xiulan, et al. Bentonite modification and adsorption capacity for Cr(VI) in water[J]. Journal of South China Agricultural University, 2020, 41(1): 100-107(in Chinese). doi: 10.7671/j.issn.1001-411X.201906010
    [43] SRIKACHA N, SRIUTTHA M, NEERATANAPHAN L, et al. The Improvement of Natural Thai Bentonite Modified with Cationic Surfactants on Hexavalent Chromium Adsorption from an Aqueous Solution[J]. Adsorption Science & Technology, 2022: 4444164.
    [44] YANG J B, HUANG B, LIN M Z, et al. Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: isotherm, kinetics, and thermodynamics studies[J]. Journal of Chemical & Engineering Data, 2020, 65(5): 2751-2763.
    [45] ALSHAKHS F A, GIJJAPU D R, ISLAM M A, et al. A promising palm leaves waste-derived biochar for efficient removal of tetracycline from wastewater[J]. Journal of Molecular Structure, 2024, 1296: 136846. doi: 10.1016/j.molstruc.2023.136846
    [46] MILONJIC S. A consideration of the correct calculation of thermodynamic parameters of adsorption[J]. Journal of the Serbian Chemical Society, 2007, 72: 1363-1367. doi: 10.2298/JSC0712363M
    [47] GENG J J, YIN Y W, LIANG Q W, et al. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism[J]. Chemical Engineering Journal, 2019, 361: 1497-1510. doi: 10.1016/j.cej.2018.10.141
    [48] HUANG J N, CAO Y H, WEN H J, et al. Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation[J]. Journal of Colloid and Interface Science, 2019, 538: 327-339. doi: 10.1016/j.jcis.2018.12.002
    [49] HE K, WANG S C, LIU Y, et al. Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism[J]. Science of the Total Environment, 2023, 857: 159397. doi: 10.1016/j.scitotenv.2022.159397
    [50] GUO D M, AN Q D, XIAO Z Y, et al. Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution[J]. RSC Advances, 2017, 7: 54039. doi: 10.1039/C7RA09940A
    [51] LAI Y X, WANG F , ZHANG Y M, et al. UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water[J]. Chemical Engineering Journal, 2019, 378: 122069.
    [52] LI Z Y, PAN Z D, WANG Y M, et al. Mechanochemical preparation of ternary polyethyleneimine modified magnetic illite/smectite nanocomposite for removal of Cr(VI) in aqueous solution[J]. Applied Clay Science, 2020, 198: 105832. doi: 10.1016/j.clay.2020.105832
  • 加载中
计量
  • 文章访问数:  65
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-04-15
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回