留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击荷载作用下氧化石墨烯改性珊瑚砂浆的动态力学特性与微观机制

陈宾 张涛 张召 袁洋 卢艺伟

陈宾, 张涛, 张召, 等. 冲击荷载作用下氧化石墨烯改性珊瑚砂浆的动态力学特性与微观机制[J]. 复合材料学报, 2023, 40(8): 4682-4693. doi: 10.13801/j.cnki.fhclxb.20230222.003
引用本文: 陈宾, 张涛, 张召, 等. 冲击荷载作用下氧化石墨烯改性珊瑚砂浆的动态力学特性与微观机制[J]. 复合材料学报, 2023, 40(8): 4682-4693. doi: 10.13801/j.cnki.fhclxb.20230222.003
CHEN Bin, ZHANG Tao, ZHANG Zhao, et al. Dynamic mechanical properties and microscopic mechanism of graphene oxide modified coral mortar under impact load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4682-4693. doi: 10.13801/j.cnki.fhclxb.20230222.003
Citation: CHEN Bin, ZHANG Tao, ZHANG Zhao, et al. Dynamic mechanical properties and microscopic mechanism of graphene oxide modified coral mortar under impact load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4682-4693. doi: 10.13801/j.cnki.fhclxb.20230222.003

冲击荷载作用下氧化石墨烯改性珊瑚砂浆的动态力学特性与微观机制

doi: 10.13801/j.cnki.fhclxb.20230222.003
基金项目: 国家自然科学基金(42207227);湖南省自然科学基金(2022JJ40586);湖南省科技创新计划项目(2021RC2004);湖南省创新性省份建设专项(2019RS1059);中国博士后科学基金(2022M713509)
详细信息
    通讯作者:

    张召,博士,助理研究员,研究方向为非饱和环境工程地质 E-mail:zhang_zhao@csu.edu.cn

  • 中图分类号: TU449;TB333

Dynamic mechanical properties and microscopic mechanism of graphene oxide modified coral mortar under impact load

Funds: National Natural Science Foundation of China (42207227); Natural Science Foundation of Hunan Province (2022JJ40586); Science and Technology Innovation Program of Hunan Province (2021RC2004); Hunan Innovative Province Construction Special Project (2019RS1059); China Postdoctoral Science Foundation (2022M713509)
  • 摘要: 珊瑚砂是我国南海岛礁应急工程的首选建筑材料,但因其具有疏松多孔、强度低、易破碎等缺陷,珊瑚砂浆的整体力学性能难以满足设计要求。氧化石墨烯(GO)可有效改善珊瑚砂浆的力学性能,然而,目前关于冲击荷载作用下GO改性珊瑚砂浆的动态力学特性研究少有涉及。本文通过开展改性珊瑚砂浆的冲击压缩试验与微观结构试验,分析了不同氧化石墨烯掺量和不同应变率条件下改性珊瑚砂浆动态力学性能的变化规律及其微观机制。结果表明:(1) 珊瑚砂浆的动态应力-应变曲线近似呈四段式,其变化趋势受GO掺量和应变率影响显著;(2) 在相同应变率条件下,珊瑚砂浆的动态抗压强度随GO掺量的增加均呈先增加后降低的变化特征,且在GO掺量为0.03wt%时达到最大值;(3) 珊瑚砂浆的动态增强因子(DIF)和韧性指数具有明显的应变率效应;(4) GO可定向驱使水化产物充填砂浆裂隙或孔隙,提高结构完整性,增强珊瑚砂浆抗冲击性能。

     

  • 图  1  珊瑚砂粒径级配曲线

    Figure  1.  Particle size distribution curve of coral sand

    图  2  不同GO掺量下的珊瑚砂浆试样

    Figure  2.  Coral mortar samples at various GO contents

    图  3  不同GO掺量(CGO)下改性珊瑚砂浆的应力-应变曲线及其破坏状态

    σmax—Peak stress; εmax—Ultimate strain

    Figure  3.  Stress-strain curves and failure state images of modified coral mortar samples at various GO contents (CGO)

    图  4  不同应变率下GO掺量与改性珊瑚砂浆动态抗压强度的关系

    Figure  4.  Relationship between GO content and dynamic compressive strength of modified coral mortar at different strain rates

    图  5  改性珊瑚砂浆GO掺量、应变率和韧性指数间的变化关系

    R2—Correlation coefficient

    Figure  5.  Relationship between GO content, strain rate and toughness index of modified coral mortar

    图  6  改性珊瑚砂浆动态增强因子(DIF)随GO掺量和应变率的变化关系

    Figure  6.  Variations of dynamic enhancement factor (DIF) with GO content and strain rate for modified coral mortar

    图  7  不同GO掺量下珊瑚砂浆的XRD图谱((a)~(c))和水化产物衍射峰分布图(d)

    C-S-H—Calcium silicate hydrate; AFt—Ettringite; AFm—Ettringite

    Figure  7.  XRD spectra of coral mortar with different GO contents ((a)-(c)) and diffraction peak distributions of hydration products (d)

    图  8  不同GO掺量下珊瑚砂浆的XRD定量分析结果

    Figure  8.  XRD quantitative analysis results of coral mortar with different GO contents

    图  9  不同GO掺量下珊瑚砂浆的微观结构形态

    Figure  9.  Microstructural observations of coral mortar with different GO contents

    表  1  水泥的化学组成

    Table  1.   Chemical composition of cement

    CompositionSiO2Al2O3Fe2O3CaOMgOSO3
    Mass fraction/wt%20.865.903.6156.773.502.43
    下载: 导出CSV

    表  2  水泥的基本物理性质

    Table  2.   Basic physical properties of cement

    Density/
    (g·cm−3)
    Specific surface
    area/(m2·kg−1)
    Loss on ignition/wt%Initial setting time/minFinal setting time/min3 d flexural
    strength/MPa
    3 d compressive strength/MPa
    3.123811.41151846.233.8
    下载: 导出CSV

    表  3  不同氧化石墨烯(GO)掺量下改性珊瑚砂浆(CM)试样的组成

    Table  3.   Composition of graphene oxide (GO) modified coral mortar (CM) samples at different GO contents

    SampleGO fraction/wt%Water cement ratioCement/gCoral sand/gWater/gGO dispersion/g
    CM0.000.511022055.00.0
    0.02%GO/CM0.020.511022052.82.2
    0.03%GO/CM0.030.511022051.73.3
    0.04%GO/CM0.040.511022050.64.4
    0.05%GO/CM0.050.511022049.55.5
    下载: 导出CSV

    表  4  冲击压缩试验参数

    Table  4.   Impact compression test parameters

    Elasticity modulus
    E/GPa
    Wave velocity
    C0/(m·s−1)
    Pressure rod section area
    A0/mm2
    Sample section area
    As/mm2
    Sample thickness
    Ls/mm
    25056671962.51962.525
    下载: 导出CSV

    表  5  GO改性珊瑚砂浆的试验结果

    Table  5.   Test results of GO modified coral mortar

    SampleGO mass
    fraction/wt%
    Static
    compressive
    strength/MPa
    Strain
    rate/s−1
    Dynamic
    compressive
    strength/MPa
    Ultimate
    strain
    DIFToughness
    index
    CM 0 33.8 69.67 34.82 0.018 1.030 0.511
    87.61 43.84 0.013 1.297 0.841
    104.46 53.11 0.027 1.571 1.232
    0.02%GO/CM 0.02 38.3 73.53 40.23 0.019 1.050 0.624
    83.92 51.46 0.022 1.343 0.930
    101.96 62.87 0.027 1.642 1.402
    0.03%GO/CM 0.03 42.5 71.93 45.04 0.019 1.060 0.691
    85.02 57.98 0.022 1.364 1.091
    102.54 73.09 0.027 1.720 1.673
    0.04%GO/CM 0.04 41.4 72.10 43.64 0.019 1.054 0.684
    89.32 54.19 0.024 1.309 0.997
    102.82 67.88 0.027 1.640 1.537
    0.05%GO/CM 0.05 39.7 70.33 41.43 0.019 1.043 0.617
    88.33 52.30 0.023 1.317 1.027
    97.63 64.12 0.025 1.615 1.368
    Notes: DIF is the dynamic strengthening factor, which is the ratio of dynamic compressive strength to static compressive strength; Toughness index is the area enclosed by the stress-strain curve and the horizontal coordinate.
    下载: 导出CSV
  • [1] 汪稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究—从事珊瑚礁研究30年[J]. 工程地质学报, 2019, 27(1):202-207.

    WANG Ren, WU Wenjuan. Exploration and research on engineering geological properties of coral reefs—Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology,2019,27(1):202-207(in Chinese).
    [2] ZHANG B, ZHU H, SHAH K W, et al. Performance evaluation and microstructure characterization of seawater and coral/sea sand alkali-activated mortars[J]. Construction and Building Materials,2020,259:120403. doi: 10.1016/j.conbuildmat.2020.120403
    [3] 吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10):3181-3191.

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics,2020,41(10):3181-3191(in Chinese).
    [4] CHEN B, CHAO D J, WU W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law[J]. Journal of Vibro Engineering,2019,21(4):1201-1214. doi: 10.21595/jve.2019.20625
    [5] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8):1753-1764.

    CAI Xinguang, ZHAO Qing, CHEN Huisu. Research progress in coral concrete[J]. Journal of the Chinese Ceramic Society,2021,49(8):1753-1764(in Chinese).
    [6] 陈宾, 邓坚, 胡杰铭, 等. 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7):1781-1790.

    CHEN Bin, DENG Jian, HU Jieming, et al. Macroscopic and microscopic experimental study on fractal fragmentation characteristics of calcareous sand during one-dimensional compression creep[J]. Rock and Soil Mechanics,2022,43(7):1781-1790(in Chinese).
    [7] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360.

    CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica,2021,38(2):339-360(in Chinese).
    [8] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
    [9] WANG Y H, YANG J W, DONG O Y. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism[J]. Materials,2019,12(22):3753. doi: 10.3390/ma12223753
    [10] YANG F, XIE J, WANG W, et al. Effect of graphene oxide or triethanolamine-modified graphene oxide on the hydration of calcium sulfoaluminate cement[J]. Construction and Building Materials,2022,345:128315. doi: 10.1016/j.conbuildmat.2022.128315
    [11] XU Z F, DAI T, GUI C, et al. Study on properties of graphene oxide modified recycled cement-based compo-sites[J]. Integrated Ferroelectrics,2022,227(1):132-144. doi: 10.1080/10584587.2022.2065580
    [12] LEE S J, JEONG S H, KIM D U, et al. Graphene oxide as an additive to enhance the strength of cementitious compo-sites[J]. Composite Structures,2020,242:112154. doi: 10.1016/j.compstruct.2020.112154
    [13] 吴家文, 马林建, 孔新立, 等. 冲击荷载下全珊瑚混凝土动力特性[J]. 建筑材料学报, 2020, 23(3):581-588.

    WU Jiawen, MA Linjian, KONG Xinli, et al. Dynamic characteristics of coral concrete under impact load[J]. Journal of Building Materials,2020,23(3):581-588(in Chinese).
    [14] 吴文娟, 汪稔, 朱长歧, 等. 珊瑚骨料混凝土动态压缩性能的试验研究[J]. 建筑材料学报, 2019, 22(1):7-14. doi: 10.3969/j.issn.1007-9629.2019.01.002

    WU Wenjuan, WANG Ren, ZHU Changqi, et al. Experimental study on dynamic compression performance of coral aggregate concrete[J]. Journal of Building Materials,2019,22(1):7-14(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.01.002
    [15] 吴彰钰, 余红发, 麻海燕, 等. C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J]. 东南大学学报(自然科学版), 2020, 50(3):488-495.

    WU Zhangyu, YU Hongfa, MA Haiyan, et al. Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete[J]. Journal of Southeast University (Natural Science Edition),2020,50(3):488-495(in Chinese).
    [16] CHEN B, ZHANG J, ZHAO Y, et al. Experimental study on mechanism of graphene oxide-modified coral sand cement mortar to resist sulfate erosion[J]. Geofluids,2022,2022:1905439.
    [17] CHEN B, HE Y, ZHANG Z, et al. Effects of graphene oxide on chloride ion penetration and microstructure of coral-sand cement stones[J]. Marine Georesources & Geotechnology,2022,41(7):743-750.
    [18] WANG L, MEI J, WU J, et al. Mechanical properties and microscopic mechanism of coral sand-cement mortar[J]. Advances in Materials Science and Engineering,2020,2020:4854892.
    [19] QIN Y, XU D, ZHANG S, et al. Dynamic behavior of carbon nanotubes and basalt fiber reinforced coral sand cement mortar at high strain rates[J]. Construction and Building Materials,2022,340:127396. doi: 10.1016/j.conbuildmat.2022.127396
    [20] 中国建筑材料科学研究总院. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    China Building Materials Academy. Test method for cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [21] 高光发, 郭扬波. 高强混凝土动态压缩试验分析[J]. 爆炸与冲击, 2019, 39(3):63-72.

    GAO Guangfa, GUO Yangbo. Analysis of the dynamic compressive test of high strength concrete[J]. Explosion and Shock Waves,2019,39(3):63-72(in Chinese).
    [22] 王礼立, 王永刚. 应力波在用 SHPB 研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25(1):17-25. doi: 10.3321/j.issn:1001-1455.2005.01.004

    WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves,2005,25(1):17-25(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.01.004
    [23] 宋力, 胡时胜. SHPB 数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4):368-373. doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG Li, HU Shisheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves,2005,25(4):368-373(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.04.014
    [24] GUO R Q, REN H Q, ZHANG L, et al. Research of an SHPB device in two-by-two form for impact experiments of concrete-like heterogeneous materials[J]. Acta Mechanica Solida Sinica,2021,34(4):561-581. doi: 10.1007/s10338-021-00218-y
    [25] 刘婷, 麻海燕, 吴彰钰, 等. 碱式硫酸镁水泥混凝土的冲击压缩性能[J]. 建筑材料学报, 2021, 24(3):562-570.

    LIU Ting, MA Haiyan, WU Zhangyu, et al. Impact compres-sive properties of basic magnesium sulfate cement concrete[J]. Journal of Building Materials,2021,24(3):562-570(in Chinese).
    [26] HUANG Y J, WANG X F, SHENG M, et al. Dynamic behavior of microcapsule-based self-healing concrete subjected to impact loading[J]. Construction and Building Materials,2021,301:124322. doi: 10.1016/j.conbuildmat.2021.124322
    [27] 郑志豪, 任辉启, 龙志林, 等. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究[J]. 爆炸与冲击, 2022, 42(7):61-73. doi: 10.11883/bzycj-2021-0297

    ZHENG Zhihao, REN Huiqi, LONG Zhilin, et al. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion and Shock Waves,2022,42(7):61-73(in Chinese). doi: 10.11883/bzycj-2021-0297
    [28] 黄政宇, 王若丁. 应用SHPB试验对超高性能重混凝土动态性能的研究[J]. 铁道科学与工程学报, 2020, 17(11):2798-2806.

    HUANG Zhengyu, WANG Ruoding. Dynamic behavior of ultra-high performance heavy concrete in split hopkinson pressure bar testing[J]. Journal of Railway Science and Engineering,2020,17(11):2798-2806(in Chinese).
    [29] SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics[J]. Journal of Colloid and Interface Science,2008,323(2):349-358. doi: 10.1016/j.jcis.2008.04.023
    [30] ZHU P, LI H, LING Q, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
    [31] 吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240.

    LYU Shenghua, ZHANG Jia, LUO Xiaoqian, et al. Microstructure and properties for composites of graphene oxide/cement[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese).
    [32] 齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2023, 40(3):1598-1610. doi: 10.13801/j.cnki.fhclxb.20220509.003

    QI Meng, PU Yundong, YANG Sen, et al. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica,2023,40(3):1598-1610(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220509.003
    [33] QURESHI T S, PANESAR D K, SIDHUREDDY B, et al. Nano-cement composite with graphene oxide produced from epigenetic graphite deposit[J]. Composites Part B: Engineering,2019,159:248-258. doi: 10.1016/j.compositesb.2018.09.095
    [34] LYU S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials,2013,49:121-127. doi: 10.1016/j.conbuildmat.2013.08.022
    [35] ZENG H Y, QU S, QIN Y H. Microstructure and transport properties of cement-based material enhanced by graphene oxide[J]. Magazine of Concrete Research,2021,73(19):1011-1024. doi: 10.1680/jmacr.19.00558
    [36] BIRENBOIM M, NADIV R, ALATAWNA A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites[J]. Composites Part B: Engineering,2019,161:68-76. doi: 10.1016/j.compositesb.2018.10.030
    [37] WANG Q, WANG J, LU C, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials,2015,30(4):349-356. doi: 10.1016/S1872-5805(15)60194-9
    [38] LI G, YUAN J B, ZHANG Y H, et al. Microstructure and mechanical performance of graphene reinforced cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:188-195. doi: 10.1016/j.compositesa.2018.08.026
    [39] 沈文峰, 王亮, 徐颖, 等. 冲击荷载下聚丙烯纤维水泥砂浆力学特性研究[J]. 煤炭科学技术, 2022, 50(8):68-74.

    SHEN Wenfeng, WANG Liang, XU Ying, et al. Study on mechanical properties of polypropylene fiber cement mortar under impact load[J]. Coal Science and Technology,2022,50(8):68-74(in Chinese).
    [40] BAI Y L, YAN Z W, JIA J F, et al. Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests[J]. Composite Structures,2021,259:113233. doi: 10.1016/j.compstruct.2020.113233
    [41] PHAM T M, LIU J, TRAN P, et al. Dynamic compressive properties of lightweight rubberized geopolymer concrete[J]. Construction and Building Materials,2020,265:120753. doi: 10.1016/j.conbuildmat.2020.120753
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  269
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-01-16
  • 录用日期:  2023-01-29
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回