留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯吡咯烷酮水性杂化涂剂的制备及其对回收玻璃纤维的上浆处理

沈洋 谢嘉琪 傅雅琴

沈洋, 谢嘉琪, 傅雅琴. 聚乙烯吡咯烷酮水性杂化涂剂的制备及其对回收玻璃纤维的上浆处理[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 沈洋, 谢嘉琪, 傅雅琴. 聚乙烯吡咯烷酮水性杂化涂剂的制备及其对回收玻璃纤维的上浆处理[J]. 复合材料学报, 2024, 42(0): 1-12.
SHEN Yang, XIE Jiaqi, FU Yaqin. Preparation of polyvinylpyrrolidone water-based hybrid coating and its sizing treatment of recycled glass fiber[J]. Acta Materiae Compositae Sinica.
Citation: SHEN Yang, XIE Jiaqi, FU Yaqin. Preparation of polyvinylpyrrolidone water-based hybrid coating and its sizing treatment of recycled glass fiber[J]. Acta Materiae Compositae Sinica.

聚乙烯吡咯烷酮水性杂化涂剂的制备及其对回收玻璃纤维的上浆处理

基金项目: 国家自然科学基金 (U20A20264)
详细信息
    通讯作者:

    傅雅琴,博士,教授,硕士生导师,研究方向为复合材料及界面;纺织材料 功能性复合材料及界面 E-mail: fyq01@zstu.edu.cn

  • 中图分类号: TB332

Preparation of polyvinylpyrrolidone water-based hybrid coating and its sizing treatment of recycled glass fiber

Funds: National Natural Science Foundation of China (U20A20264)
  • 摘要: 为有效利用回收玻璃纤维,以正硅酸乙酯、偶联剂为前驱体,聚乙烯吡咯烷酮为成膜剂,在酸催化和不添加催化剂条件下,合成了两种聚乙烯吡咯烷酮水性杂化涂剂。利用制备的杂化涂剂分别对回收的玻璃纤维进行上浆处理,并对上浆处理后的回收玻璃纤维的性能进行研究。结果表明:与不添加催化剂条件下制备的杂化涂剂相比,经酸催化条件下制备的杂化涂剂上浆处理后的回收玻纤表面粗糙度更大;酸催化条件与不添加催化剂条件制备的杂化涂剂上浆处理后的回收玻璃纤维的单纤维拉伸强度分别为1322.7±98.5 MPa、1093.8±53.8 MPa,相比回收玻璃纤维的单纤维拉伸强度分别提高了39.8%和15.6%。利用单纤维碎断法评价回收玻璃纤维与环氧树脂的界面性能表明,经过酸催化条件与不添加催化条件制备的杂化涂剂上浆处理后的回收玻璃纤维制备的单纤维环氧树脂复合材料的界面剪切强度分别为53.5 MPa、35.7 MPa,比未经过上浆处理的回收玻璃纤维的单纤维环氧树脂复合材料的界面剪切强度分别提高了200.5%与100.8%。显示了在酸催化条件下制备的水性杂化涂剂用于回收玻璃纤维具有可行性。

     

  • 图  1  Sizing agent (Acid)杂化涂剂制备流程

    Figure  1.  Sizing agent (Acid) hybrid coating preparation process

    图  2  Sizing agent (Catalyst-free)杂化涂剂制备流程

    Figure  2.  Sizing agent (Catalyst-free) hybrid coating preparation process

    图  3  回收玻纤(GF)杂化涂剂改性示意图

    Figure  3.  Schematic diagram of modified recycled glass fiber (GF)hybrid coating

    图  4  单纤维复合材料试样图

    Figure  4.  Sample diagram of single fiber composite material

    图  5  单纤维复合材料单丝断裂试验装置

    Figure  5.  Single fiber composite material single fiber fracture test device

    图  6  两种杂化涂剂粒子直径及分布

    Figure  6.  Particle diameter and distribution of two hybrid coatings

    图  7  杂化涂剂固化后SEM图: (a) Sizing agent (Acid) 断面, (b) Sizing agent (Catalyst-free)断面

    Figure  7.  SEM image of hybrid coating cured: (a) Sizing agent (Acid) cross-section, (b) Sizing agent (catalyst free) section

    图  8  杂化涂剂的TEM图:(a-a') Sizing agent (Acid);(b-b') Sizing agent (Catalyst-free)

    Figure  8.  TEM image of hybrid coating: (a-a') Sizing agent (Acid);(b-b') Sizing agent (Catalyst-free)

    图  9  (a)PVP、Sizing agent (Acid)与Sizing agent (Catalyst-free)的红外谱图;(b)为图(a)中蓝色局部区域放大图

    Figure  9.  (a) Infrared spectra of PVP, Sizing agent (Acid) and Sizing agent (Catalyst-free); (b) (b) is an enlarged view of the blue partial area in (a)

    图  10  两种杂化涂剂粉末的热重曲线

    Figure  10.  Thermogravimetric curves of two hybrid coating powders

    图  11  不同玻纤试样的SEM图: (a-a') 回收玻璃纤维(RGF); (b-b') 酸化涂剂处理的回收玻璃纤维(ARGF); (c-c') 无酸涂剂处理的回收玻璃纤维(FRGF)

    Figure  11.  SEM images of different glass fiber samples: (a-a') Recycled glass fiber (RGF); (b-b') Acid-coated recycled glass fibers (ARGF); (c-c') Recycled glass fibers treated with acid-free coatings (FRGF)

    图  12  不同试样EDS元素分布图:(a) RGF, (b) ARGF, (c) FRGF

    Figure  12.  Distribution of EDS elements in different samples: (a) RGF, (b) ARGF, (c) FRGF

    图  13  不同杂化涂剂处理的玻纤表面AFM图: (a) RGF、(b) ARGF和(c) FRGF

    Figure  13.  AFM images of glass fiber surfaces treated with different hybrid coatings: (a) RGF, (b) ARGF and (c)FRGF

    图  14  RGF、ARGF、FRGF的表面粗糙度:(a)平均粗糙度Ra;(b)最大粗糙度Rmax

    Figure  14.  Surface roughness of RGF, ARGF and FRGF: (a) average roughness Ra; (b) maximum roughness Rmax

    图  15  Sizing agent (Acid)、Sizing agent (Catalyst-free)杂化涂剂、RGF及上浆改性玻纤的红外图谱

    Figure  15.  Infrared spectra of Sizing agent (Acid), Sizing agent (Catalyst-free) hybrid coating, RGF and sizing modified glass fiber

    图  16  不同玻纤试样的(a)单丝强度Weibull分布;(b)单丝拉伸强度;(c)代表性应力-应变曲线

    Figure  16.  Different glass fiber samples of (a) single filament strength Weibull distribution; (b) single filament tensile strength; (c) representative stress-strain curve

    图  17  (a)玻纤单丝平均断裂长度计算结果;(b)玻纤环氧树脂单纤维复合材料界面剪切强度计算结果

    Figure  17.  (a) Average breaking length of glass fiber monofilament; (b) Interfacial shear strength of glass fiber epoxy resin single fiber composites

    图  18  RGF (a)、ARGF (b)与FRGF (c)在环氧树脂基体中达到临界断裂强度的代表性偏光显微镜照片

    Figure  18.  Polarized light microscope photos of RGF (a), ARGF (b) and FRGF (c) reaching critical fracture strength in epoxy resin matrix

    图  19  复合材料的拉伸断裂截面SEM图:(a) RGF/EP, (b) ARGF/EP和(c) FRGF/EP

    Figure  19.  SEM images of tensile fracture cross-sections of composite materials: (a) RGF/EP, (b) ARGF/EP, and (c) FRGF/EP

    表  1  不同玻纤试样的单丝拉伸强度、Weibull参数及界面剪切强度评价相关结果

    Table  1.   Results related to the evaluation of monofilament tensile strength, Weibull parameters and interfacial shear strength of different glass fiber specimens

    Sample RGF ARGF FRGF
    $ {\sigma }_{{\mathrm{f}}} $/MPa 946.43 1322.68 1093.84
    $ {d}_{{\mathrm{f}}} $/μm 14 15 15
    m 4.57 4.86 5.67
    $ \stackrel{-}{l} $/μm 594.28 321.32 347.89
    $ {l}_{c} $/μm 792.37 428.43 463.85
    $ {\tau }_{{\mathrm{IFSS}}} $/MPa 17.79 53.46 35.73
    Notes:$ {\sigma }_{{\mathrm{f}}} $ refers to the average tensile strength of glass fiber at gauge length; $ {d}_{{\mathrm{f}}} $ refers to the glass fiber diameter; m refers to the Weibull shape parameters; $ \stackrel{-}{l} $ refers to the average length of glass fiber in fracture test; $ {l}_{{\mathrm{c}}} $ refers to the critical breaking length of glass fiber; $ {\tau }_{{\mathrm{IFSS}}} $ refers to the interface shear strength.
    下载: 导出CSV
  • [1] NASSER J, STEINKE K, SODANO H. Zno nanostructured interphase for multifunctional and lightweight glass fiber reinforced composite materials under various loading conditions[J]. ACS Applied Nano Materials, 2020, 3(2): 1363-1372. doi: 10.1021/acsanm.9b02216
    [2] SUN Q, JIN Q P, GAO Y H, et al. Flexural behavior of PVA-FRC GFRP reinforced concrete beams[J]. Polymer Composites, 2021, 42(7): 3331-3348. doi: 10.1002/pc.26062
    [3] ULU A, TUTAR A I, KURKLU A, et al. Effect of excessive fiber reinforcement on mechanical properties of chopped glass fiber reinforced polymer concretes[J]. Construction and Building Materials, 2022, 359: 129486. doi: 10.1016/j.conbuildmat.2022.129486
    [4] WU Z H, ZHAO Y, YANG K, et al. Enhancing the mechanical performance of fiber-reinforced polymer composites using carbon nanotubes as an effective nano-phase reinforcement[J]. Advanced Materials Interfaces, 2023, 10(3): 17.
    [5] ZHANG Y, DUAN L B, LIU X, et al. Distribution law of strain energy density for stiffness design of GFRP, UT/GFRP, and VRB/GFRP hybrid hat-shaped beams[J]. Polymer Composites, 2023, 44(1): 202-228. doi: 10.1002/pc.27039
    [6] ZHOU P, LI C G, BAI Y B, et al. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications[J]. Construction and Building Materials, 2022, 349: 128694. doi: 10.1016/j.conbuildmat.2022.128694
    [7] YANG L, SAEZ E R, NAGEL U, et al. Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72: 167-174. doi: 10.1016/j.compositesa.2015.01.030
    [8] KESKISAARI A, KARKI T. Raw material potential of recyclable materials for fiber composites: a review study[J]. Journal of Material Cycles and Waste Management, 2017, 19(3): 1136-1143. doi: 10.1007/s10163-016-0511-2
    [9] LIU P, BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management, 2017, 62: 229-240. doi: 10.1016/j.wasman.2017.02.007
    [10] ASOKAN P, OSMANI M, PRICE A D F. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites[J]. Journal of Cleaner Production, 2009, 17(9): 821-829. doi: 10.1016/j.jclepro.2008.12.004
    [11] CASTRO A C M, CARVALHO J P, RIBEIRO M C S, et al. An integrated recycling approach for GFRP pultrusion wastes: recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets[J]. Journal of Cleaner Production, 2014, 66: 420-430. doi: 10.1016/j.jclepro.2013.10.030
    [12] CUNLIFFE A M, WILLIAMS P T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis[J]. Fuel, 2003, 82(18): 2223-2230. doi: 10.1016/S0016-2361(03)00129-7
    [13] MEIRA CASTRO A C, RIBEIRO M C S, SANTOS J, et al. Sustainable waste recycling solution for the glass fibre reinforced polymer composite materials industry[J]. Construction and Building Materials, 2013, 45: 87-94. doi: 10.1016/j.conbuildmat.2013.03.092
    [14] TITTARELLI F, SHAH S P. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. doi: 10.1016/j.conbuildmat.2013.06.043
    [15] GEMERT D V, CZARNECKI L, MAULTZSCH M, et al. Cement concrete and concrete–polymer composites: Two merging worlds. A report from 11th ICPIC Congress in Berlin, 2004[J]. Cement and Concrete Composites, 2005, 27(9): 926-933.
    [16] COOPERMAN A, EBERLE A, LANTZ E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options[J]. Resources, Conservation and Recycling, 2021, 168: 105439. doi: 10.1016/j.resconrec.2021.105439
    [17] OLIVEUX G, DANDY L O, LEEKE G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. doi: 10.1016/j.pmatsci.2015.01.004
    [18] BLAZSÓ M. Management, recycling and reuse of waste composites [M]. Sawston: Woodhead Publishing, 2010: 102-121.
    [19] THOMASON J L, NAGEL U, YANG L, et al. Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxide[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87: 220-227. doi: 10.1016/j.compositesa.2016.05.003
    [20] PATEL K, GUPTA R, GARG M, et al. Development of FRC materials with recycled glass fibers recovered from industrial GFRP-Acrylic waste[J]. Advances in Materials Science and Engineering, 2019, 2019: 4149708
    [21] 林松, 卫彦, 孙蔚, 等. 玻璃纤维增强光固化树脂基齿科生物复合材料的半互穿网络结构界面的形成及力学性能[J]. 复合材料学报, 2009, 26(6): 85-90.

    LIN Song, WEI Yan, SUN Wei, et al. Semi-interpenetrating interfacial formation of glass fiber reinforced dental resin bio-composites and its mechanical properties[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 85-90(in Chinese).
    [22] Chen J, Zhou X R, Ge H Y, et al. Preparation and performance of nano-sio2 stabilized pickering emulsion type sizing agent for glass fiber[J]. Polymer Composites, 2016, 37(2): 334-341. doi: 10.1002/pc.23185
    [23] Li M, Ye Y, Zhou X D. A heat-resistant amic acid sizing and its ability to enhance the adhesion between glass fibers and polymer resins[J]. Composite Interfaces, 2020, 27(11): 1007-1021. doi: 10.1080/09276440.2020.1722521
    [24] 水兴瑶, 刘猛, 朱曜峰, 等. 水性上浆剂对碳纤维表面及碳纤维/环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2016, 33(2): 276-279.

    SHUI Xingyao, LIU Meng, ZHU Yaofeng, et al. Effect of waterborne sizing agent on carbon fiber surface and properties of carbon fiber/epoxy composites interface[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 276-279(in Chinese).
    [25] 岑浩, 杨洪彬, 傅雅琴. 硅溶胶改性碳纤维对碳纤维/环氧树脂复合材料界面性能影响[J]. 复合材料学报, 2012, 29(12): 32-36.

    CEN Hao, YANG Hongbin, FU Yaqin. Effect of surface modiffication by silica sol on interfacial properities of canbon fiber/epoxy composite[J]. Acta Materiae Compositae Sinica, 2012, 29(12): 32-36(in Chinese).
    [26] 徐龙彬. 形状记忆聚氨酯-二氧化硅杂化材料的制备, 表征及应用初探 [D]. 杭州: 浙江理工大学, 2011.

    Xu Longbin. Preparation, characterization and preliminary study for the application of shape memory polyurethane-silica hybrids. [D]. Hangzhou: Zhejiang Sci-Tech University, 2010(in Chinese).
    [27] Chen Y, Zhou S, Yang H, et al. Structure and properties of polyurethane/nanosilica composites[J]. Journal of applied polymer science, 2005, 95(5): 1032-1039. doi: 10.1002/app.21180
    [28] 焦彩彬. 聚乙烯吡咯烷酮/硅溶胶纳米复合材料的制备及其性能研究 [D]. 武汉: 武汉理工大学, 2015.

    JIAO Caibin. Synthesis and properties of polyvinylpyrrolidone/silica sol nanocomposites [D]. Wuhan: Wuhan University of Technology, 2015(in Chinese).
    [29] LIU W, ZHU Y F, QIAN C, et al. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent[J]. Composites Part B:Engineering, 2022, 241: 110029. doi: 10.1016/j.compositesb.2022.110029
    [30] SEOUDI R, FOUDA A A, ELMENSHAWY D A. Synthesis, characterization and vibrational spectroscopic studies of different particle size of gold nanoparticle capped with polyvinylpyrrolidone[J]. Physica B:Condensed Matter, 2010, 405(3): 906-911. doi: 10.1016/j.physb.2009.10.012
    [31] 毋伟, 贾梦秋, 陈建峰, 等. 硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响[J]. 复合材料学报, 2004, 21(02): 70-75. doi: 10.3321/j.issn:1000-3851.2004.02.013

    WU Wei, JIA Mengqiu, CHEN Jianfeng, et al. EFFECT of silane coupling agent on the preparation and application of nano silicon dioxide composite material by sol-gel method[J]. Acta Materiae Compositae Sinica, 2004, 21(02): 70-75(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.02.013
    [32] ZHURAVLEV L T. The surface chemistry of amorphous silica. Zhuravlev model[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2000, 173(1): 1-38.
    [33] DE LANGE P J, MÄDER E, MAI K, et al. Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(3): 331-342.
    [34] 赵永振. 水性杂化涂层对玻璃纤维/环氧树脂复合材料界面性能的影响 [D]. 杭州: 浙江理工大学, 2017.

    ZHAO Yongzhen. Effect of water-based hybrid coating on the interfacial properties of glass fiber/epoxy composites [D]. Hangzhou: Zhejiang Sci-Tech University, 2017(in Chinese).
    [35] ANTHONY D B, SUI X, KELLERSZTEIN I, et al. Continuous carbon nanotube synthesis on charged carbon fibers[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112: 525-538. doi: 10.1016/j.compositesa.2018.05.027
    [36] ARNOLD C L, EYCKENS D J, SERVINIS L, et al. Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: a simple pathway to install passive functionality into composites[J]. Journal of Materials Chemistry A, 2019, 7(22): 13483-13494. doi: 10.1039/C9TA02436K
    [37] DE LUCA F, CLANCY A J, CARRERO N R, et al. Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar" interphase[J]. Materials Horizons, 2018, 5(4): 668-674. doi: 10.1039/C7MH00917H
    [38] DE LUCA F, SERNICOLA G, SHAFFER M S P, et al. "Brick-and-Mortar" nanostructured interphase for glass fiber reinforced polymer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7352-7361.
    [39] EYCKENS D J, SERVINIS L, SCHEFFLER C, et al. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers[J]. Journal of Materials Chemistry A, 2018, 6(10): 4504-4514. doi: 10.1039/C7TA10516A
    [40] LIN F, DU X, LI W, et al. Interfacial properties of high failure strain polyimide fiber/epoxy composites analyzed by a modified single fiber fragmentation test[J]. Applied Surface Science, 2020, 513: 145869. doi: 10.1016/j.apsusc.2020.145869
    [41] LIU F, SHI Z, DONG Y. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112: 337-345. doi: 10.1016/j.compositesa.2018.06.026
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-26
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回