留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能

吕丽华 王荣蕊 刘文迪 周兴海 高原

吕丽华, 王荣蕊, 刘文迪, 等. 蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能[J]. 复合材料学报, 2023, 40(3): 1477-1483. doi: 10.13801/j.cnki.fhclxb.20220425.001
引用本文: 吕丽华, 王荣蕊, 刘文迪, 等. 蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能[J]. 复合材料学报, 2023, 40(3): 1477-1483. doi: 10.13801/j.cnki.fhclxb.20220425.001
LYU Lihua, WANG Rongrui, LIU Wendi, et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1477-1483. doi: 10.13801/j.cnki.fhclxb.20220425.001
Citation: LYU Lihua, WANG Rongrui, LIU Wendi, et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1477-1483. doi: 10.13801/j.cnki.fhclxb.20220425.001

蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能

doi: 10.13801/j.cnki.fhclxb.20220425.001
基金项目: 先进纺织复合材料教育部重点实验室基金(MATC-2021-003);辽宁省自然科学基金(1645749635925)
详细信息
    通讯作者:

    吕丽华,博士,教授,博士生导师,研究方向为三维纺织结构与功能一体化材料制备技术 E-mail:lvlh@dlpu.edu.cn

  • 中图分类号: TB332

Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites

Funds: The Open Project Program of Ministry of Education Key Laboratory for Advanced Textile Composite Materials (MATC-2021-003); Natural Science Foundation of Liaoning Province (1645749635925)
  • 摘要: 为了解决蜂窝夹层结构材料的开裂和分层问题,以玄武岩纤维长丝纱和碳纤维长丝纱为原料,在普通织机上,经合理设计,织造了顶层为透波层、中间层为吸波层和底面为反射层的蜂窝状三维整体机织结构型吸波织物;其次,以蜂窝状三维整体机织结构型吸波织物为增强体,双酚A型环氧树脂为基体,羰基铁粉(CIP)和炭黑(CB)为吸波剂,采用真空辅助树脂传递模塑(VARTM)成型工艺,制备了不同结构参数的蜂窝状三维整体机织结构型吸波复合材料;最后,采用矢量网络分析仪和万能试验机分别对蜂窝状三维整体机织结构型吸波复合材料的吸波性能和力学性能进行研究。研究表明,其有良好的整体性能,兼具吸波和承载能力。

     

  • 图  1  蜂窝状三维整体机织结构型吸波织物的截面图

    Figure  1.  Cross section of honeycomb 3D integral woven structure microwave absorbing fabric

    图  2  蜂窝状三维整体机织结构型吸波织物的组织结构:(a) 经向截面图;(b) 纹板图

    Figure  2.  Organization structure of honeycomb 3D integral woven structure microwave absorbing fabric: (a) Warp section; (b) Pattern plate

    d—Thickness; H—Aperture height; L—Length of the bottom side of the aperture

    图  3  蜂窝状三维整体机织结构型吸波织物单胞示意图:(a) 单胞织造流程;(b) 单胞整体和三视图

    Figure  3.  Cell diagram of honeycomb 3D integral woven structure microwave absorbing fabric: (a) Flow chart of single cell weaving; (b) Whole cell and three views

    图  4  蜂窝状三维整体机织结构型吸波复合材料制备工艺

    Figure  4.  Preparation process of honeycomb 3D integral woven structure microwave absorbing composite

    VARTM—Vacuum assisted resin transfer molding; CIP—Carbonyl iron powder; CB—Carbon black; EP—Epoxy resin

    图  5  蜂窝状三维整体机织结构型复合材料实物图:(a) 无吸波剂无碳纤维反射层;(b) 无吸波剂有碳纤维反射层;(c) 有吸波剂有碳纤维反射层

    Figure  5.  Physical drawing of honeycomb 3D woven structure composite: (a) No absorbing agent, no carbon fiber reflection; (b) No absorbing agent, with carbon fiber reflection; (c) With absorbing agent and carbon fiber reflection

    图  6  弓形法测试吸波损耗示意图

    Figure  6.  Schematic diagram of measuring reflection loss by bow method

    图  7  三点弯曲实验示意图

    Figure  7.  Schematic diagram of three-point bending experiment

    图  8  蜂窝状三维整体机织结构型吸波复合材料的弯曲变形过程:(a) 弯曲前的状态;(b) 弯曲中的状态;(c) 弯曲后的状态

    Figure  8.  Bending deformation process of honeycomb 3D woven structure microwave absorbing composite: (a) State before bending; (b) State during bending; (c) State after bending

    图  9  蜂窝状三维整体机织结构型吸波复合材料的吸波损耗曲线

    Figure  9.  Reflection loss curves of honeycomb 3D woven structure microwave absorbing composites

    图  10  蜂窝状三维整体机织结构型吸波复合材料的吸波机制示意图

    Figure  10.  Schematic diagram of microwave absorbing mechanism of honeycomb 3D integral woven structure microwave absorbing composite

    图  11  蜂窝状三维机织结构型吸波复合材料表面SEM图像 (a) 及能谱图 (b)

    Figure  11.  SEM image (a) and energy spectrum (b) of honeycomb 3D woven structure microwave absorbing composite surface

    图  12  蜂窝状三维整体机织结构型吸波复合材料破坏模式:(a) 整体图;(b) 上表面破坏图;(c) 下表面破坏图;(d) 侧面破坏图

    Figure  12.  Morphologies of honeycomb 3D woven structure microwave absorbing composite after bending: (a) Overall photo; (b) Upper surface failure diagram; (c) Lower surface failure diagram; (d) Side failure diagram

    表  1  蜂窝状三维整体机织结构型吸波复合材料最大载荷对比

    Table  1.   Comparison of maximum load of honeycomb 3D integral woven structure microwave absorbing composites

    SampleMaximum load/N
    Sample 1 (No absorbing agent,
    no carbon fiber reflection)
    990.6
    Sample 2 (No absorbing agent,
    with carbon fiber reflection)
    1002.03
    Sample 3 (With absorbing agent
    and carbon fiber reflection)
    846.38
    下载: 导出CSV
  • [1] 李善霖, 段华军, 汪鑫, 等. 镀镍碳纤维-碳纤维-玻璃纤维/乙烯基酯树脂导电复合材料的设计制备及其电磁性能[J]. 复合材料学报, 2018, 35(7):1709-1715.

    LI Shanlin, DUAN Huajun, WANG Xin, et al. Design, preparation and electromagnetic properties of nickel plated carbon fiber carbon fiber glass fiber/vinyl ester resin conductive composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1709-1715(in Chinese).
    [2] SHAO T Q, MA H, WANG J, et al. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J]. Journal of the European Ceramic Society,2020,40(5):2013-2019. doi: 10.1016/j.jeurceramsoc.2020.01.036
    [3] CHUH A, WONG W, LEE A. Electromagnetic wave absorption characteristics of single and double layer absorbers based on trimetallic [emailprotected] metalorganic framework incorporated with MWCNTs[J]. Synthetic Metals,2020,125(4):853-854.
    [4] LIU Y J, YANG Y F. A study on the electromagnetic properties of graphite/bismuth/bismuth oxide-coated composites[J]. Textile Research Journal,2021(12):1-13.
    [5] GI W J, YEONG H N, WON H C, et al. Electromagnetic-mechanical repair patch of radar-absorbing structure with electroless nickel-plated glass fabric damaged by lightning strike[J]. Journal of Composite Materials,2021,55(7):989-1002. doi: 10.1177/0021998320961558
    [6] ZHAO S X, MA H, SHAO T Q, et al. Thermally stable ultra-thin and refractory microwave absorbing coating[J]. Ceramics International,2021,47(7):337-344.
    [7] HUANG L N, CHEN C G, LI Z J, et al. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures[J]. Nanotechnology,2020,31(16):16-32.
    [8] LI R, QING Y C, LI W, et al. The electromagnetic absorbing properties of plasma-sprayed TiC/Al2O3 coatings under oblique incident microwave irradiation[J]. Ceramics International,2021,47(16):22864-22868. doi: 10.1016/j.ceramint.2021.04.306
    [9] ZHANG H Y, CHEN J Y, WANG Y, et al. Study on frequency selective/absorption/reflection multilayer composite flexible electromagnetic wave absorbing fabric[J]. Textile Research Journal,2021,91(15):16-27.
    [10] LONG L, XU J X, LUO H, et al. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites[J]. Journal of the American Ceramic Society,2020,103(12):11-23.
    [11] 李天舒, 王绍凯, 顾轶卓, 等. 碳纳米管膜层间改性碳纤维/双马来酰亚胺复合材料的结构调控及性能[J]. 复合材料学报, 2021, 38(6):1784-1794.

    LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure regulation and properties of carbon fiber /bismaleimide composites modified by carbon nanotube films[J]. Acta Materiae Compositae Sinica,2021,38(6):1784-1794(in Chinese).
    [12] 张荣华, 史可宇, 李硕, 等. 平纹编织碳纤维增强树脂复合材料离散电导率建模方法[J]. 复合材料学报, 2020, 37(12):3119-3127.

    ZHANG Ronghua, SHI Keyu, LI Shuo, et al. Modeling method of discrete conductivity of plain woven carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica,2020,37(12):3119-3127(in Chinese).
    [13] JIAN H, DU Q R, MEN Q Q, et al. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites[J]. Journal of Materials Science & Technology, 2022, 109(20): 105-113.
    [14] TITUS M, YOSHINOBU M, GODWILL M K, et al. Topological defects and unique stacking disorders in honeycomb layered oxide K2Ni2TeO6 nanomaterials: Implications for rechargeable batteries[J]. ACS Applied Nano Materials, 2021(4): 279-287.
    [15] XU F, ZHANG S Y, WANG G G, et al. Lightweight Low〧requency Sound〢bsorbing composites of graphene network reinforced by honeycomb structure[J]. Advanced Materials Interfaces,2021,8(16):183-191.
    [16] BYEONG S K, JEONG G W, CHOI W H, et al. Microwave-absorbing honeycomb core structure with nickel-coated glass fabric prepared by electroless plating[J]. Composite Structures,2021,256(5):113-148.
    [17] LIU Z X, ZHAO W K, YU G C, et al. Fabrication and mechanical behaviors of quartz fiber composite honeycomb with extremely low permittivity[J]. Composite Structures,2021,271(2):129-134.
    [18] ZHAO P, XU Y G, WEI F M, et al. Electromagnetic property of a novel gradient honeycomb composite fabricated by 3D forming[J]. Journal of Magnetism and Magnetic Materials,2020(493):165742-165753.
    [19] LI Z W, MA J X. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and nomex honeycomb[J]. Materials,2020,13(8):1870-1887. doi: 10.3390/ma13081870
    [20] ANOSHKIN A, PISAREV P, ERMAKOV D. Influence of a delamination type defect on the operational life of a sound-absorbing structure with a honeycomb filler[J]. IOP Conference Series Materials Science and Engineering,2020,71(3):12012-12017.
    [21] GE J I, LEE W J, KIM S Y, et al. Electromagnetic damage tolerance for radar absorbing composite structures with impact damage[J]. Composites Science and Technology,2020,199(31):366-373.
    [22] 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8):1997-2004.

    DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1997-2004(in Chinese).
    [23] 樊威, 孟家光, 孙润军, 等. 混杂纤维增强结构隐身复合材料研究进展[J]. 纺织导报, 2017, 11(1):66-68.

    FAN Wei, MENG Jiaguang, SUN Ruijun, et al. Research progress of hybrid fiber reinforced structural stealth composites[J]. China Textile Leader,2017,11(1):66-68(in Chinese).
    [24] CHEN X G, LINDSAY T, WATER T, et al. An overview on fabrication of three-dimensional woven textile preforms for composites[J]. Textile Research Journal,2011,81(9):932-944. doi: 10.1177/0040517510392471
    [25] 刘文迪, 吕丽华. 三维机织吸波复合材料的研究进展[J]. 棉纺织技术, 2020, 48(10):81-84. doi: 10.3969/j.issn.1001-7415.2020.10.019

    LIU Wendi, LYU Lihua. Research progress of three-dimensional woven microwave absorbing composites[J]. Cotton Textile Technology,2020,48(10):81-84(in Chinese). doi: 10.3969/j.issn.1001-7415.2020.10.019
    [26] 国防科学技术工业委员会. 雷达吸波材料反射率测试方法: GJB 2038—94[S]. 北京: 中国标准出版社, 1994.

    Commission of Science, Technology and Industry for National Defense (COSTIND) commission. Methods for measurement of reflectivity of radar absorbing material: GJB 2038—94[S]. Beijing: China Standard Press, 1994(in Chinese).
    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Plastics-Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [28] ZHANG M, WANG X X, LIU S Q, et al. Effects of face sheet structure on mechanical properties of 3D integrated woven spacer composites[J]. Fibers and Polymers,2020,21(7):1594-1604. doi: 10.1007/s12221-020-9908-6
    [29] MA Z Y, ZHANG P Z, ZHU J X. Influence of fabric structure on the tensile and flexural properties of three-dimensional angle-interlock woven composites[J]. Journal of Industrial Textiles,2020,15(17):1-17.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1496
  • HTML全文浏览量:  950
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-04-07
  • 录用日期:  2022-04-16
  • 网络出版日期:  2022-04-25
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回