留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性氮掺杂石墨烯改性柿单宁材料对四环素的吸附行为

刘松林 王仲民 钱熹 王童 冉兆晋 黄志民 吴晨曦 李桂银

刘松林, 王仲民, 钱熹, 等. 磁性氮掺杂石墨烯改性柿单宁材料对四环素的吸附行为[J]. 复合材料学报, 2023, 40(7): 4045-4056
引用本文: 刘松林, 王仲民, 钱熹, 等. 磁性氮掺杂石墨烯改性柿单宁材料对四环素的吸附行为[J]. 复合材料学报, 2023, 40(7): 4045-4056
LIU Songlin, WANG Zhongmin, QIAN Xi, WANG Tong, RAN Zhaojin, HUANG Zhimin, WU Chenxi, LI Guiyin. Adsorption behaviors of magnetic nitrogen-doped graphene-modified persimmon tannins for tetracycline[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4045-4056.
Citation: LIU Songlin, WANG Zhongmin, QIAN Xi, WANG Tong, RAN Zhaojin, HUANG Zhimin, WU Chenxi, LI Guiyin. Adsorption behaviors of magnetic nitrogen-doped graphene-modified persimmon tannins for tetracycline[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4045-4056.

磁性氮掺杂石墨烯改性柿单宁材料对四环素的吸附行为

基金项目: 国家自然科学基金(批准号:51961010);广西农业资源化学与生物技术重点实验室开放基金(批准号:2020KF07,2020KF05);广西重点研发项目(批准号:GuikeAB18281013,GuikeAB16380278)资助
详细信息
    通讯作者:

    王仲民,博士,教授,从事生物质功能材料、氢能源材料研究; E-mail:zmwang@guet.edu.cn

    李桂银,博士,教授,从事生物质功能材料研究; E-mail:liguiyin01@163.com

  • 中图分类号: X703

Adsorption behaviors of magnetic nitrogen-doped graphene-modified persimmon tannins for tetracycline

Funds: This work was supported Project supported by the National Natural Science Foundation of China (No. 51961010), the Open Fund of GuangxiKey Laboratory of Agricultural Resources Chemistry and Biotechnology(Nos. 2020 KF07 and 2020 KF05),.the Guangxi Key Research and Development Program (Nos. Guike AB18281013 and Guike AB16380278).
  • 摘要: 磁性氮掺杂石墨烯改性柿单宁材料对四环素的吸附行为研究柿单宁材料以其比表面积大、表面官能团丰富、成本低廉、环保等优点,在吸附领域吸引了越来越多的研究。但由于其具有亲水性,导致其在吸附过程的分离较差,回收困难,阻碍了其吸附领域的应用。以柿单宁(PT)为基体,通过氮掺杂石墨烯(NG)对其改性,并以四氧化三铁(Fe3O4)作为磁性功能,采用水热法制得磁性复合材料(Fe3O4-NG/PT)。氮掺杂石墨烯以其疏水性和比表面积大的优势,弥补了柿单宁在吸附上的不足,四氧化三铁解决了吸附剂难以回收的问题。针对此复合材料在吸附四环素方面的应用进行研究,通过SEM、EDS、FTIR、XPS、BET表明其机制主要是静电作用、孔填充、氢键作用和π-π相互作用;通过XRD与磁强计表明Fe3O4-NG/PT 的成功引入以及其高效回收性能。并对吸附条件优化,在Fe3O4:PT为4 :1,PH为7,投加量为0.6 g/L,吸附180min吸附效果最佳。研究其磁性复合材料对四环素的吸附过程符合拟二级动力学模型和Freundlich模型,其主要为化学吸附为主的多层吸附,308K时吸附的饱和容量达到315.65 mg/g,吸附效率达到94.5%。(A)NG、PT、Fe3O4-NG/PT以及Fe3O4-NG/PT吸附TC之后的红外图谱(B)Fe3O4-NG/PT和Fe3O4-NG/PT吸附TC之后的XPS图谱(C)C1s峰(D)N1s峰(E)O1s峰(F)Fe2p峰(A) FTIR profiles of NG, PT, Fe3O4-NG/PT and Fe3O4-NG/PT after TC adsorption (B) XPS profiles of Fe3O4-NG/PT and Fe3O4-NG/PT after TC adsorption (C) C1s peak (D) N1s peak (E) O1s peak (F) Fe2p

     

  • 图  1  Fe3O4-氮掺杂石墨烯(NG)/柿单宁(PT)制备示意图

    Figure  1.  Schematic diagram of Fe3O4-nitrogen-doped graphene (NG)/persimmon tannin (PT) preparation.

    图  2  Fe3O4-NG/PT吸附TC初始条件优化: (a) 不同Fe3O4∶PT质量比对于吸附效果的影响;(b)不同吸附时间对吸附的影响; (c) pH对于吸附效果的影响; (d) 吸附剂投放量对吸附效果的影响

    Figure  2.  Optimization of the initial conditions for Fe3O4-NG/PT adsorption of TC: (a) Effect of different Fe3O4∶PT mass ratios on the adsorption effect; (b) Effect of different adsorption times on the adsorption; (c) pH The influence of the adsorption effect; (d) effect of adsorbent dosing on adsorption effectiveness

    图  3  (a) NG/PT的SEM图;(b)Fe3O4-NG/PT的SEM图;(c) Fe3O4-NG/PT吸附前的SEM图;(d)Fe3O4-NG/PT吸附TC后的SEM图;(e) C元素吸附前元素分布图;(f) O元素吸附前元素分布图;(g) N元素吸附前元素分布图;(h) Fe元素吸附前元素分布图;(i) C元素吸附后元素分布图;(j) N元素吸附后元素分布图;(k) N元素吸附后元素分布图;(l) N元素吸附后元素分布图

    Figure  3.  (a) SEM image of NG/PT; (b) SEM image of Fe3O4-NG/PT; (c) SEM image ofFe3O4-NG/PT before TC adsorption; (d) SEM image of Fe3O4-NG/PT after TC adsorption;(e) Elemental distribution before adsorption of element C; (f) Elemental distribution before adsorption of element O; (g) Elemental distribution before adsorption of element N; (h) Elemental distribution before adsorption of element Fe; (i) Elemental distribution after adsorption of element C; (j) Elemental distribution after adsorption of element N; (k) Elemental distribution after adsorption of element N; (l) Elemental distribution after adsorption of element N

    图  4  (a)NG、PT、Fe3O4-NG/PT以及Fe3O4-NG/PT吸附TC之后的红外图谱(b)Fe3O4-NG/PT和Fe3O4-NG/PT吸附TC之后的XPS图谱(c)C1 s峰(d)N1 s峰(e)O1 s峰(f)Fe2 p峰

    Figure  4.  (a) FTIR profiles of NG, PT, Fe3O4-NG/PT and Fe3O4-NG/PT after TC adsorption (b) XPS profiles of Fe3O4-NG/PT and Fe3O4-NG/PT after TC adsorption (c) C1 s peak (d) N1 s peak (e) O1 s peak (f) Fe2 p peak

    图  5  (a) Fe3O4-NG/PT和Fe3O4-NG/PT吸附TC之后的孔径分布图; (b) N2吸脱附曲线

    Figure  5.  Pore size distribution diagram of Fe3O4-NG/PT andFe3O4-NG/PT after TC adsorption Adsorption; (b) Absorption and desorption curves of N2

    图  6  (a)NG/PT、Fe3O4-NG/PT、Fe3O4-NG/PT吸附TC之后的XRD图; (b)Fe3O4-NG/PT和Fe3O4-NG/PT吸附TC之后的磁滞回归线图谱

    Figure  6.  (a)XRD patterns of NG/PT, Fe3O4-NG/PT, Fe3O4-NG/PT after adsorbing TC;(b) The hysteresis regression line graph of Fe3O4-NG/PT and Fe3O4-NG/PT after TC adsorption.

    图  7  e3O4-NG/PT吸附TC的等温拟合:(a)温度对吸附效果的影响;(b) Langmuir 拟合;(c) Freundlich 拟合(d) Temkin拟合。Fig.7 Isothermal fitting ofFe3O4-NG/PT adsorption TC :(a) the influence of temperature on the adsorption effect; (b) Langmuir fitting; (c) Freundlich fitting; (d) Temkin fitting.

    图  8  Fe3O4-NG/PT吸附TC的动力学拟合:(a) 不同TC浓度相同时间下对吸附量的影响;(b) Fe3O4-NG/PT吸附TC的拟一级动力学拟合图;(c) Fe3O4-NG/PT吸附TC的拟二级动力学拟合图;(d)Fe3O4-NG/PT吸附TC的内扩散拟合图。

    Figure  8.  Kinetic fitting of TC adsorption by Fe3O4-NG/PT: (a) Effect of different TC concentrations for the same time on the amount of adsorption; (b) Proposed primary kinetic fitting plot of TC adsorption by Fe3O4-NG/PT; (c) Proposed secondary kinetic fitting plot of TC adsorption byFe3O4-NG/PT; (d) Fitting of internal diffusion of TC adsorbed by Fe3O4-NG/PT.

    图  9  e3O4-NG/PT吸附TC的吸附机制图

    Figure  9.  Adsorption mechanism diagram for TC adsorption by Fe3O4-NG/PT

  • [1] 高艳林, 景红霞, 李龙祥, 等. 溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用[J]. 复合材料学报, 2022, 39(2):677-684.

    GAO Yanlin, JING Hongxia, LI Longxiang, et al. Preparation of Bi2O3/BiOI composite photocatalytic material by solvothermal method and its application to the degradation of tetracycline[J]. Acta Materiae Compositae Sinica,2022,39(2):677-684(in Chinese).
    [2] LI X, LIU C, CHEN Y, et al. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China[J]. Environmental science and pollution research,2018,25(12):11565-11575. doi: 10.1007/s11356-018-1339-1
    [3] EKAMBARAM S P, PERUMALPE S S, BALAKRISHNAN A. Scope of hydrolysable tannins as possible antimicrobial agent[J]. Phytotherapy Research,2016,30(7):1035-1045. doi: 10.1002/ptr.5616
    [4] XU Y, GUO C, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution,2016,213:833-840. doi: 10.1016/j.envpol.2016.03.054
    [5] GRENDA K, AMOLD J, GAMELAS A F, et al. Up-scaling of tannin-based coagulants for wastewater treatment: performance in a water treatment plant[J]. Environmental Science and Pollution Research,2020,27(2):1202-1213. doi: 10.1007/s11356-018-2570-5
    [6] ARBENZ A, AV´EROUS L. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures[J]. Green Chemistry,2015,17(5):2626-2646. doi: 10.1039/C5GC00282F
    [7] GEORGIE V G, GONSALVES L, TAVLIEVA M P. Tavlieva. Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells[J]. Journal of Molecular Liquids,2020:312.
    [8] 袁帅, 赵雪松, 王丽, 等. 磁性松塔/松针基活性炭的制备及对Pb~(2+)吸附性能研究[J]. 应用化工, 2022, 51(6):1675-1680. doi: 10.3969/j.issn.1671-3206.2022.06.028

    YUAN Shuai, ZHAO Xuesong, WANG Li, et al. Study on preparation of activated carbon based on magnetic pine cone/pine needle and adsorption properties of Pb~(2+)[J]. Applied chemical industry,2022,51(6):1675-1680(in Chinese). doi: 10.3969/j.issn.1671-3206.2022.06.028
    [9] GRENDA K, ARNOLD J, GAMELS A F, et al. Up-scaling of tannin-based coagulants for wastewater treatment: performance in a water treatment plant[J]. Environmental Science and Pollution Research,2020,27(2):1202-1213. doi: 10.1007/s11356-018-2570-5
    [10] WANG Z M, GAO M M, LI X J, et al. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins[J]. Materials Science & Engineering C-Materials for Biological Applications,2020,108:110196-110205.
    [11] GAO L, WANG Z M, QIN C K, et al. Preparation and application of iron oxide/persimmon tannin/graphene oxide nanocomposites for efficient adsorption of erbium from aqueous solution[J]. Journal of Rare Earths,2020,38(12):1344-1353. doi: 10.1016/j.jre.2020.02.003
    [12] ZhANG Y P, ZHANG C Q, PARKER D B, et al. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons[J]. Science of the Total Environment,2013,463:631-638.
    [13] AZANU D, STYRISHAVE B, DARKO G, et al. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana[J]. Science of the Total Environment,2018,622:293-305.
    [14] BOXALL A B, FOGG L, BACKWELL P, et al. Veterinary Medicines in the Environment[J]. Reviews of Environmental Contamination And Toxicology,2004,199:1-91.
    [15] CABELLO F C, GODFREY H P, TOMOVA A, et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health[J]. Environmental Microbiology,2013,15(7):1917-1942. doi: 10.1111/1462-2920.12134
    [16] LI S Z, GONG Y B, YANG Y C, et al. Recyclable CNTs/Fe3 O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration[J]. Chemical Engineering Journal,2015,26:231-239.
    [17] ZHOU Z, HUANG Y, LIANG J, et al. Extraction, purification and anti-radiation activity of persimmon tannin from Diospyros kaki L. f.[J]. Journal of environmental radioactivity,2016,162:182-188.
    [18] TENKORANG A, YEBOAH A M, BUAMAH R, et al. Promoting sustainable sanitation through wastewater-fed aquaculture: a case study from Ghana[J]. Water International,2012,37(7):831-842. doi: 10.1080/02508060.2012.733669
    [19] 叶林静, 关卫省, 卢勋, 等. 改性纳米Fe3O4去除水溶液中四环素的研究[J]. 安全与环境学报, 2014, 14(1):202-207.

    YE Linjing, GUAN Weisheng, LU Xun et al. Study on the removal of tetracycline from aqueous solution by modified Fe3O4 nanoparticles[J]. Journal of Safety and Environment,2014,14(1):202-207(in Chinese).
    [20] HARNISZ M, KORZENIEWSKA E, GOLAS I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere,2015,128:134-141. doi: 10.1016/j.chemosphere.2015.01.035
    [21] GUPTA V K, FAKHRI A, AGARWAL S, et al. Synthesis and characterization of MnO2/NiO nanocomposites for photocatalysis of tetracycline antibiotic and modification with guanidine for carriers of Caffeic acid phenethyl ester-an anticancer drug[J]. Journal of Photochemistry and Photobiology B-Biology,2017,174:235-242. doi: 10.1016/j.jphotobiol.2017.08.006
    [22] ZHANG L, ZHANG T, DONG L, et al. Assessment of halogenated POPs and PAHs in three cities in the Yangtze River Delta using high-volume samplers[J]. Science of the Total Environment,2013,454:619-626.
    [23] LU Y, LI S Z, Preparation of Hierarchically Interconnected Porous Banana Peel Activated Carbon for Methylene Blue Adsorption[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2019, 34(2): 472-480.
    [24] LUNDSTROM S V, OSTAMN M, BENGTSSON P J, et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms[J]. Science of the Total Environment,2016,553:587-595. doi: 10.1016/j.scitotenv.2016.02.103
    [25] TORRES M A, PERERIA J F B, FREIRE M G, et al. Economic evaluation of the primary recovery of Tetracycline with traditional and novel aqueous two-phase systems[J]. Separation and Purification Technology,2018,203:178-184. doi: 10.1016/j.seppur.2018.04.041
    [26] MIN Z, SHENG Y L, LIANG J Z, et al. Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems[J]. Science of the Total Environment,2018,639:142-148.
    [27] DU Z J, ZHANG Y, LI Z J, et al. Facile one-pot fabrication of nano-Fe3 O4/carboxyl-functionalized baker's yeast composites and their application in methylene blue dye adsorption[J]. Applied Surface Science,2017,392:312-320. doi: 10.1016/j.apsusc.2016.09.050
    [28] ZHANG X, LIN Q, ZHANG X, et al. A novel 3 D conductive network-based polyaniline/graphitic mesoporous carbon composite electrode with excellent electrochemical performance[J]. Journal of Power Sources,2018,401:278-286. doi: 10.1016/j.jpowsour.2018.08.091
    [29] LI T, LI M, ZHANG M, et al. Immobilization of Fe3 N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air battery[J]. Carbon,2019,153:364-371. doi: 10.1016/j.carbon.2019.07.044
    [30] DENG W J, LI N, YING G G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong[J]. Environmental Geochemistry & Health,2018,40(5):2191-2203.
    [31] XIE A, DAI J, CHEN X, et al. Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation[J]. Chemical Engineering Journal,2016,304:609-620. doi: 10.1016/j.cej.2016.06.138
    [32] YANG J, DAI J, WANG L, et al. Ultrahigh adsorption of tetracycline on willow branche-derived porous carbons with tunable pore structure: Isotherm, kinetics, thermodynamic and new mechanism study[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96:473-482. doi: 10.1016/j.jtice.2018.12.017
    [33] TANG J, WANG S, FAN J, et al. Predicting distribution coefficients for antibiotics in a river water sediment using quantitative models based on their spatiotemporal variations[J]. Science of the Total Environment,2019,65:1301-1310.
    [34] 赵丹华, 张少丽, 陈作义, 等. CaC2O4-直接枣红B/壳聚糖复合材料的制备及对乙基紫的吸附性能[J]. 复合材料学报, 2022, 39(2):736-745.

    ZHAO Danhua, ZHANG Shaoli, CHEN Zuoyi, et al. Preparation of CaC2O4-direct claret B/chitosan composite materials and adsorption properties for ethyl violet[J]. Acta Materiae Compositae Sinica,2022,39(2):736-745(in Chinese).
    [35] 范甲, 胡世琴, 魏柏, 等. 磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能[J]. 复合材料学报, 2022, 39(10):1-10.

    FAN Jia, HU Shiqin, WEI Bai, et al. Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater[J]. Acta Materiae Compositae Sinica,2022,39(10):1-10(in Chinese).
    [36] LIN Y, Xu S, LI J. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles[J]. Chemical Engineering Journal,2013,225:679-85. doi: 10.1016/j.cej.2013.03.104
    [37] Torres M A, PEREIRA J F B, FREIRE M G, et al. Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systemsy[J]. Separation and Purification Technology,2018,203:178-184. doi: 10.1016/j.seppur.2018.04.041
  • 加载中
图(9)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  176
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-09-04
  • 录用日期:  2022-09-24
  • 网络出版日期:  2022-10-28
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回