留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外部粘贴CFRP-ECC粘结性能的影响因素试验

丛龙宇 张方 钱永久

丛龙宇, 张方, 钱永久. 外部粘贴CFRP-ECC粘结性能的影响因素试验[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 丛龙宇, 张方, 钱永久. 外部粘贴CFRP-ECC粘结性能的影响因素试验[J]. 复合材料学报, 2024, 42(0): 1-17.
CONG Longyu, ZHANG Fang, QIAN Yongjiu. Test of factors affecting bonding performance of externally bonded CFRP-ECC[J]. Acta Materiae Compositae Sinica.
Citation: CONG Longyu, ZHANG Fang, QIAN Yongjiu. Test of factors affecting bonding performance of externally bonded CFRP-ECC[J]. Acta Materiae Compositae Sinica.

外部粘贴CFRP-ECC粘结性能的影响因素试验

基金项目: 国家自然科学基金(51778532);中国工程院重点咨询项目(2015-05-ZD-002)
详细信息
    通讯作者:

    张方,博士,硕士生导师,研究方向为应用工程水泥基复合材料的混凝土桥梁结构性能提升技术 E-mail: fangzhang@home.swjtu.edu.cn

  • 中图分类号: U445.6; TB332

Test of factors affecting bonding performance of externally bonded CFRP-ECC

Funds: National Natural Science Foundation of China (51778532); Key Consultancy Projects of the Chinese Academy of Engineering (2015-05-ZD-002)
  • 摘要: 外部粘贴碳纤维增强聚合物(Carbon fiber reinforced polymer,CFRP)的加固方法常常由于CFRP的过早脱粘而造成加固效果不佳。在CFRP与混凝土之间设置一层工程水泥基复合材料(Engineered cementitious composite,ECC)能够改善这一状况。为研究外部粘贴CFRP-ECC粘结性能的影响因素,对二十个试件进行双剪试验,考虑的因素包括ECC表面是否打磨、ECC拉伸强度、CFRP宽度、厚度、粘贴长度、粘结层剪切模量等。结果表明,ECC表面打磨对粘结关系有显著影响,打磨组试件的极限载荷提高了58.34%至101.44%。增加CFRP的厚度是提高ECC-CFRP粘结性能的一项非常有效的方法,将CFRP的厚度从0.127 mm增加到0.217 mm后,极限载荷提高了54.34%。将ECC的抗拉强度从0.8 MPa提高到2.8 MPa后,极限载荷增加了25.40%。当抗拉强度超过2.8 MPa时,由于ECC的强度较高,ECC中持力长度变短,导致有效粘结长度减少,最终导致极限载荷降低。此外,粘结层剪切模量对粘结关系的影响较小。

     

  • 图  1  典型梁试件的细节(单位:mm)

    Figure  1.  Details of a typical beam specimen (Unit: mm)

    图  2  ECC2材料应力-应变曲线

    Figure  2.  Stress-strain curve of ECC2 material

    图  3  测试设备

    Figure  3.  Test setup

    图  4  CFRP 应变片布置(单位:mm)

    Figure  4.  CFRP strain gauge arrangement (Unit: mm)

    图  5  CFRP-ECC界面破坏模式

    Figure  5.  CFRP-ECC interface destruction model

    图  6  系列I试件CFRP-混凝土的荷载-滑移曲线

    Figure  6.  CFRP-concrete load-slip curves for series I specimens

    图  7  系列II试件CFRP-ECC的荷载-滑移曲线

    Figure  7.  CFRP-ECC load-slip curves for series II specimens

    图  8  系列III试件CFRP-ECC的荷载-滑移曲线

    Figure  8.  CFRP-ECC load-slip curves for series III specimens

    图  9  CFRP-ECC试件和CFRP-混凝土的极限荷载

    Figure  9.  Ultimate load of CFRP-ECC specimens and CFRP-concrete specimens

    图  10  坐标系示意图(单位:mm)

    Figure  10.  Coordinate system schematic (Unit: mm)

    图  11  典型试件的CFRP-ECC界面滑移分布

    Figure  11.  Slip distribution at the CFRP-ECC interface of typical specimens

    图  12  典型试件的CFRP-ECC粘结-滑移曲线

    Figure  12.  CFRP-ECC bond-slip curves for typical specimens

    图  13  ECC、CFRP、钢筋的本构关系

    Figure  13.  Constitutive relationships of ECC, CFRP, and steel reinforcement

    $\sigma _{{\text{tc}}}^{\text{E}}$= ECC tensile cracking strength; $\varepsilon _{{\text{tc}}}^{\text{E}}$= ECC cracking strain; $\varepsilon _{{\text{tu}}}^{\text{E}}$= ECC ultimate tensile strength; $E_{\text{t}}^{\text{S}}$= Young’s modulus of steel; $f_{{\text{ty}}}^{\text{S}}$= yield strength of steel; $\varepsilon _{{\text{ty}}}^{\text{S}}$= yield strain of steel; $\varepsilon _{{\text{tu}}}^{\text{S}}$= ultimate strain of steel; $E_{\text{t}}^{\text{F}}$ = Young’s modulus of CFRP; $\varepsilon _{{\text{tu}}}^{\text{F}}$ = ultimate strain of CFRP. ${t_{\text{n}}}$,${t_{\text{s}}}$,${t_{\text{t}}}$= representing pure type I (open), pure type II (slip-open) and pure type III (tear-open) stresses, respectively; $ \text{ }{t}_{\text{n}}^{\text{A}} $,$t_{\text{s}}^{\text{A}}$,$t_{\text{t}}^{\text{A}}$ = representing pure type I (open), pure type II (slip-open) and pure type III (tear-open) ultimate stresses, respectively

    图  14  CFRP-ECC模型构成和接触定义

    Figure  14.  CFRP-ECC model composition and contact definition

    图  15  CFRP-ECC有限元模型破坏过程

    Figure  15.  CFRP-ECC finite element model destruction process

    图  16  CFRP-ECC模型测试数据与模拟数据的比较

    Figure  16.  Comparison of CFRP-ECC model test data with simulated data

    图  17  单变量的CFRP-ECC荷载-滑移曲线

    Figure  17.  Single variable CFRP-ECC load-slip curve

    图  18  单变量的CFRP-ECC极限载荷和极限滑移

    Figure  18.  Single variable CFRP-ECC ultimate load and ultimate slip

    图  19  单变量下的CFRP有效粘结长度

    Figure  19.  Effective bond length of CFRP in single variable

    图  20  单变量下的CFRP峰值剪应力

    Figure  20.  Peak CFRP shear stress in single variable

    图  21  31~105 双变量模型的CFRP-ECC极限载荷

    Figure  21.  CFRP-ECC ultimate load of 31-105 two variables models

    表  1  试件设计

    Table  1.   Specimens design

    Series Number Specimen ID Material Adhesive
    thickness/mm
    Bonding
    length/mm
    CFRP layers CFRP
    width/mm
    I 1 C30-1 C30 1 350 1 50
    2 C30-2 C30 1 350 2 50
    3 C60-1 C60 1 350 1 50
    4 C60-2 C60 1 350 2 50
    II 5 E1-1 ECC1 1 280 1 50
    6 E1-2 ECC1 1 280 2 50
    7 E2-1 ECC2 1 280 1 50
    8 E2-2 ECC2 1 280 2 50
    9 E2-3 ECC2 1 280 3 50
    10 E2-4 ECC2 1 280 1 75
    11 E2-5 ECC2 1 280 1 100
    12 E2-6 ECC2 1 350 1 50
    13 E2-7 ECC2 2 350 1 50
    14 E3-1 ECC3 1 280 1 50
    III 15 E1-1 m ECC1 1 280 1 50
    16 E1-2 m ECC1 1 280 2 50
    17 E2-1 m ECC2 1 280 1 50
    18 E2-2 m ECC2 1 280 2 50
    19 E2-4 m ECC2 1 280 1 75
    20 E3-1 m ECC3 1 280 1 50
    Note: In specimen ID, Series I uses C30 and C60 grade concrete, while Series II and III use three different ECC materials as E1, E2, E3; The specimens of the harmonized materials are differentiated by numbers; Series III specimen ID ‘m’ stands for polished. In material, ECC1, ECC2, and ECC3 represent the use of ECC materials with different PVA fiber mixing ratios, 19.5, 26, 21.5 kg/m3 respectively.
    下载: 导出CSV

    表  2  ECC配合比(kg/m3)

    Table  2.   Mix proportion of ECC (kg/m3)

    IDWaterCementFly ashFine sandMiddle sandGrit sandPVA fiberWater reducer
    ECC137846793312625212619.51.4
    ECC2378467933126252126261.4
    ECC337846793312625212632.51.4
    下载: 导出CSV

    表  3  ECC 拉伸性能参数

    Table  3.   Tensile property parameters of ECC

    IDCracking strength/MPaUltimate strength/MPaUltimate strain/%
    ECC12.101.942.2
    ECC22.252.753
    ECC32.303.093.4
    下载: 导出CSV

    表  4  CFRP 和粘合剂的性能参数

    Table  4.   Performance parameters of CFRP and adhesive

    Material Tensile
    strength/
    MPa
    Tensile
    modulus of
    elasticity/GPa
    Elongation/
    %
    Bending
    strength/
    MPa
    CFRP 3525 249 1.7 744
    Epoxy resin
    adhesive
    31 2.535 1.55 53
    Normal tensile bond strength of fiber-reinforced composites to concrete under external bonding conditions 3.3 MPa
    下载: 导出CSV

    表  5  Cohesive单元参数设置(单位:MPa)

    Table  5.   Cohesive unit parameter settings (Unit: MPa)

    ${K_{{\text{nn}}}}$${K_{{\text{ss}}}}$${K_{{\text{tt}}}}$$t_{\text{n}}^{\text{A}}$$t_{\text{s}}^{\text{A}}$$t_{\text{t}}^{\text{A}}$
    185056056013.613.713.7
    Notes: ${K_{{\text{nn}}}}$ = Axial stiffness;${K_{{\text{ss}}}}$,${K_{{\text{tt}}}}$=normal stiffness; $t_{\text{n}}^{\text{A}}$, $t_{\text{s}}^{\text{A}}$, $t_{\text{t}}^{\text{A}}$ = representing pure type I (open), pure type II (slip-open) and pure type III (tear-open) ultimate stresses, respectively.
    下载: 导出CSV

    表  6  CFRP-ECC参数分析试件信息

    Table  6.   Parametric analysis specimens information of CFRP-ECC

    Variant ID ECC tensile strength /MPa Adhesive layer shear modulus /MPa CFRP thickness /mm
    Single variable 1-10 3.8 560 0.127-0.217
    11-20 3.8 360-810 0.167
    21-30 0.8-9.8 560 0.167
    Two variables 31-55 7 360-810 0.127-0.227
    56-80 3-12 360-810 0.167
    81-105 3-12 560 0.127-0.227
    下载: 导出CSV
  • [1] 秦权. 桥梁结构的健康监测[J]. 中国公路学报, 2000, (2): 39-44. doi: 10.3321/j.issn:1001-7372.2000.02.010

    Qin Quan. Health monitoring of bridge structures[J]. China Highway Journal, 2000, (2): 39-44(in Chinese). doi: 10.3321/j.issn:1001-7372.2000.02.010
    [2] C Liu, Zou Y-G, Zhao Z. Comparison of Reinforcement Schemes for Hollow Slab Beam Bridge of Tongji Road Overpass[J]. Bridge Construction, 2018, 48118-123.
    [3] M Deng, Zhang J-R, Wang R, et al. Reinforcement of orthotropic steel bridge deck for cable-stayed bridge based on UHPC paving system[J]. Chang'an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang'an University (Natural Science Edition), 2018, 3867-74.
    [4] 邓妃琴. 粘贴钢板法在普通钢筋混凝土连续箱梁加固中的应用[J]. 广东公路交通, 2020, 46(2): 56-60.

    Deng Feiqin. Application of adhesive steel plate method in the reinforcement of ordinary reinforced concrete continuous box girders[J]. Guangdong Highway Traffic, 2020, 46(2): 56-60(in Chinese).
    [5] 艾军, 史丽远. 公路梁桥体外预应力加固设计与施工方法研究[J]. 东南大学学报(自然科学版), 2002, (5): 771-774. doi: 10.3321/j.issn:1001-0505.2002.05.020

    Ai Jun, Shi Liyuan. Research on the design and construction method of extracorporeal prestressing reinforcement for highway girder bridges[J]. Journal of Southeast University (Natural Science Edition), 2002, (5): 771-774(in Chinese). doi: 10.3321/j.issn:1001-0505.2002.05.020
    [6] C-Y Wang, Shin Chien-Chih, Hong S-C, et al. Rehabilitation of Cracked and Corroded Reinforced Concrete Beams with Fiber-Reinforced Plastic Patches[J]. Journal of Composites for Construction, 2004, 8(3): 219-228. doi: 10.1061/(ASCE)1090-0268(2004)8:3(219)
    [7] Msm Ali, Oehlers D-J, Park S-M. Comparison between FRP and steel plating of reinforced concrete beams[J]. Composites Part A Applied Science & Manufacturing, 2001, 32(9): 1319-1328.
    [8] C Gheorghiu, Labossiere Pierre, Raiche Alexandre. Environmental Fatigue and Static Behavior of RC Beams Strengthened with Carbon-Fiber-Reinforced Polymer[J]. Journal of Composites for Construction, 2004, 8(3): 211-218. doi: 10.1061/(ASCE)1090-0268(2004)8:3(211)
    [9] J Aidoo, Harries K-A, Petrou M-F. Fatigue Behavior of Carbon Fiber Reinforced Polymer-Strengthened Reinforced Concrete Bridge Girders[J]. Journal of Composites for Construction, 2004, 8(6): 501-509. doi: 10.1061/(ASCE)1090-0268(2004)8:6(501)
    [10] 张宝新, 朱俊霞. 高速公路桥梁维修加固工程[J]. 青海交通科技, 2005, (5): 29-30.

    Zhang Baoxin, Zhu Junxia. Maintenance and Reinforcement Engineering of Highway Bridges[J]. Qinghai Traffic Science and Technology, 2005, (5): 29-30(in Chinese).
    [11] 李吉胜, 杨铁锋, 杨继禹, 等. 桥梁加固维修技术在井冈山大桥加固维修中的综合应用[J]. 黑龙江交通科技, 2003, (8): 68-69. doi: 10.3969/j.issn.1008-3383.2003.08.043

    LI Jisheng, YANG Tiefeng, YANG Jiyu, et al. Comprehensive application of bridge reinforcement and repair technology in the reinforcement and repair of Jinggangshan Bridge[J]. Heilongjiang Traffic Science and Technology, 2003, (8): 68-69(in Chinese). doi: 10.3969/j.issn.1008-3383.2003.08.043
    [12] 娄逸群, 彭晖, 兰川云, 等. 端部嵌贴CFRP板加固钢筋混凝土结构的斜嵌段粘结性能试验[J]. 复合材料学报, 2024, 41(2): 871-883.

    Lou Yi-Qun, Peng Hui, Lan Chuan-Yun, et al. Bond performance test of diagonally embedded sections of reinforced concrete structures reinforced with end-inserted CFRP panels[J]. Journal of Composite Materials, 2024, 41(2): 871-883(in Chinese).
    [13] Mohammad Abdallah, Al Mahmoud Firas, Khelil Abdelouahab, et al. Efficiency of EB CFRP composites for flexural strengthening of continuous RC beams: A comparative study with NSM CFRP rods[J]. Structures, 2021, 341567-1588.
    [14] Ahmed-H Al-Abdwais, Al-Mahaidi Riadh-S. Experimental and finite element analysis of flexural performance of RC beams retrofitted using near-surface mounted with CFRP composites and cement adhesive[J]. Engineering Structures, 2021, 241112429.
    [15] Md. -Akter Hosen, Jumaat Mohd-Zamin, Alengaram U-Johnson, et al. CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening technique[J]. Construction and Building Materials, 2018, 16528-44.
    [16] T Ozbakkaloglu, Saatcioglu M. Tensile Behavior of FRP Anchors in Concrete[J]. Journal of Composites for Construction, 2009, 13(2): 82-92. doi: 10.1061/(ASCE)1090-0268(2009)13:2(82)
    [17] H-W Zhang, Smith S-T. FRP-to-concrete joint assemblages anchored with multiple FRP anchors[J]. Composite Structures, 2012, 94(2): 403-414. doi: 10.1016/j.compstruct.2011.07.025
    [18] H-W Zhang, Smith S-T. Influence of FRP anchor fan configuration and dowel angle on anchoring FRP plates[J]. Composites Part B: Engineering, 2012, 43(8): 3516-3527. doi: 10.1016/j.compositesb.2011.11.072
    [19] A-A-R Khan, Ayub Tehmina. Effectiveness of U-Shaped CFRP Wraps as End Anchorages in Predominant Flexure and Shear Region. Beijing: CICE, 2010: 533-536.
    [20] 龚爽, 林福宽, 粟淼, 等. 固化与试验温度对环氧树脂及表层嵌贴CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5512-5524.

    Gong Shuang, Lin Fukuan, Su Miao, et al. Effect of curing and test temperature on the bonding performance of epoxy resin and surface-embedded CFRP-concrete interface[J]. Journal of Composite Materials, 2022, 39(11): 5512-5524(in Chinese).
    [21] G Spadea, Swamy R-N, Bencardino F. Strength and Ductility of RC Beams Repaired with Bonded CFRP Laminates[J]. Journal of Bridge Engineering, 2001, 6(5): 349-355. doi: 10.1061/(ASCE)1084-0702(2001)6:5(349)
    [22] A-F Ashour, El-Refaie S-A, Garrity S-W. Flexural strengthening of RC continuous beams using CFRP laminates[J]. Cement and Concrete Composites, 2004, 26(7): 765-775. doi: 10.1016/j.cemconcomp.2003.07.002
    [23] M Maalej, Hashida T, Li VC. Effect of fiber volume fraction on the off-crack-plane fracture energy in strain-hardening engineered cementitious composites[J]. Journal of the American Ceramic Society, 1993, 78(12): 3369-3375.
    [24] V-C Li, Leung Cky. Steady-State and Multiple Cracking of Short Random Fiber Composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [25] LI Victor C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, (4): 531-536. doi: 10.3321/j.issn:0454-5648.2007.04.026

    LI Victor C. Research progress and application of high ductility fibre reinforced cementitious composites[J]. Journal of Silicates, 2007, (4): 531-536(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.04.026
    [26] V-C Li, Wang S, Wu C. Tensile Strain-hardening Behavior of PVA-ECC[A]//2001.
    [27] V-C Li. Engineered Cementitious Composites - Tailored Composites Through Micromechanical Modeling[J]. Journal of Advanced Concrete Technology, 1998, 1(3): 215-230.
    [28] KONG, HyunJoon, BIKE, et al. Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization[J]. Cement & Concrete Composites, 2003, 25(3): 301-309.
    [29] Y-K Yun, Kong H-J, Li V-C. Design of Engineered Cementitious Composite Suitable for Wet-Mixture Shotcreting[J]. ACI Materials Journal, 2003, 100(6): 511-518.
    [30] H Ma, Zhang Z-G, Ding B, et al. Investigation on the adhesive characteristics of Engineered Cementitious Composites (ECC) to steel bridge deck[J]. CONSTRUCTION AND BUILDING MATERIALS, 2018, 191679-691.
    [31] G Yang, Li Z-Y. Experimental Study on Ultra-lightweight Fire-resistive Engineered Cementitious Composite[C]. 2nd Annual International Conference on Advanced Material Engineering (AME): 2016: 146-153.
    [32] V-C Li, Wang S-X. Flexural Behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. ACI MATERIALS JOURNAL, 2002, 99(1): 11-21.
    [33] Yuhong Yan, Lu Yiyan, Zhao Qin, et al. Flexural behavior of pre-damaged and repaired reinforced concrete beams with carbon fiber reinforced polymer grid and engineered cementitious composite[J]. Engineering Structures, 2023, 277115390.
    [34] Fang Yuan, Pan Jinlong, Leung C-K-Y. Flexural Behaviors of ECC and Concrete/ECC Composite Beams Reinforced with Basalt Fiber-Reinforced Polymer[J]. Journal of composites for construction, 2013, 17(5): 591-602. doi: 10.1061/(ASCE)CC.1943-5614.0000381
    [35] U Neubauer, Rostasy F-S. Design aspects of Concrete Structures Strengthened with Externally Bonded CFRP-plates[J]. 1999: 109-118.
    [36] J-F Chen, Teng J-G. Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete[J]. Journal of structural engineering (New York, N. Y. ), 2001, 127(7): 784-791.
    [37] Jianguo Dai, Ueda Tamon, Sato Yasuhiko. Development of the Nonlinear Bond Stress–Slip Model of Fiber Reinforced Plastics Sheet–Concrete Interfaces with a Simple Method[J]. Journal of composites for construction, 2005, 9(1): 52-62. doi: 10.1061/(ASCE)1090-0268(2005)9:1(52)
    [38] X-Z Lu, Teng J-G, Ye L-P, et al. Bond–slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6): 920-937. doi: 10.1016/j.engstruct.2005.01.014
    [39] Ying-Wu Zhou, Wu Yu-Fei, Yun Yanchun. Analytical modeling of the bond–slip relationship at FRP-concrete interfaces for adhesively-bonded joints[J]. Composites. Part B, Engineering, 2010, 41(6): 423-433. doi: 10.1016/j.compositesb.2010.06.004
    [40] 马明, 徐佰顺, 张方, 等. 持续荷载下CFRP-混凝土界面黏结性能试验与分析[J]. 哈尔滨工业大学学报, 2018, 50(3): 128-134,142. doi: 10.11918/j.issn.0367-6234.201703086

    MA Ming, XU Baishun, ZHANG Fang, et al. Test and analysis of adhesion performance of CFRP-concrete interface under continuous loading[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 128-134,142(in Chinese). doi: 10.11918/j.issn.0367-6234.201703086
    [41] 何栋尔, 章子华, 肖云逸, 等. CFRP-火灾后混凝土界面快速剥离试验[J]. 工程力学, 2019, 36(S1): 285-292.

    HE Donger, ZHANG Zihua, XIAO Yunyi, et al. Rapid stripping test of CFRP-concrete interface after fire[J]. Engineering Mechanics, 2019, 36(S1): 285-292(in Chinese).
    [42] 李晓琴, 陈前均, 陈建飞, 等. 中低速荷载下FRP与混凝土界面本构模型开发[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 219-222.

    Li Xiaoqin, Chen Qianjun, Chen Jianfei, et al. Development of an intrinsic model of FRP-concrete interface under low and medium velocity loading[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 219-222(in Chinese).
    [43] 董坤, 郝建文, 李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117-126. doi: 10.6052/j.issn.1000-4750.2019.12.0783

    DONG Kun, HAO Jianwen, LI Peng, et al. Analysis of bonding behaviour of FRP-concrete interface under ambient temperature difference[J]. Engineering Mechanics, 2020, 37(11): 117-126(in Chinese). doi: 10.6052/j.issn.1000-4750.2019.12.0783
    [44] 王志杰, 王新玲, 李可. 基于损伤参数的CFRP布加固混凝土梁界面粘结滑移本构模型研究[J]. 工程抗震与加固改造, 2020, 42(5): 160-166.

    WANG Zhijie, WANG Xinling, LI Ke. Study on interfacial bond-slip principal model of CFRP fabric reinforced concrete beams based on damage parameters[J]. Engineering Seismic Resistance and Reinforcement Retrofitting, 2020, 42(5): 160-166(in Chinese).
    [45] 袁娇娇, 苑溦, 侯新宇, 等. 往复荷载下AFRP-混凝土界面性能研究[J]. 人民长江, 2021, 52(5): 180-184.

    YUAN Jiaojiao, YUAN drizzle, HOU Xinyu, et al. Study on the performance of AFRP-concrete interface under reciprocating load[J]. People's Yangtze River, 2021, 52(5): 180-184(in Chinese).
    [46] 管品武, 尚佳琦, 范家俊, 等. CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究[J]. 复合材料学报, 2022, 39(6): 2810-2820.

    GUAN Pinwu, SHANG Jiaqi, FAN Jiajun, et al. Experimental study on one-sided shear of CFRP sheet-engineered cementitious composite-concrete composite interface[J]. Journal of Composite Materials, 2022, 39(6): 2810-2820.
    [47] Lili Sui, Luo Minshen, Yu Kequan, et al. Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete[J]. Composite Structures, 2018, 184775-788.
    [48] 王娜娜. FRP-ECC-混凝土复合界面粘结性能的试验研究[D]. 深圳大学, 2016.

    Nana Wang. Experimental study on bonding performance of FRP-ECC-concrete composite interface [D]. Shenzhen University, 2016. (in Chinese)
    [49] 陈启壮. 冻融环境下CFRP板-ECC-混凝土复合界面粘结性能试验研究[D]. 郑州大学, 2021.

    Chen Qizhuang. Experimental study on bonding performance of CFRP plate-ECC-concrete composite interface under freeze-thaw environment [D]. Zhengzhou University, 2021. (in Chinese)
    [50] Pu Zhang, Shang Jia-Qi, Fan Jia-Jun, et al. Experimental study on the bond behavior of the CFRP plate-ECC-concrete composite interface under freeze–thaw cycles[J]. Construction and Building Materials, 2022, 316125822.
    [51] Shuang Nie, Guo Aofei, Feng Hu, et al. Bonding properties of composite interface composed of concrete/magnesium phosphate cement-based ECC/CFRP plate[J]. Journal of Building Engineering, 2024, 90109486.
    [52] Yingwu Zhou, Sui Lili, Huang Xiaoxu, et al. Enhancing the EB-FRP strengthening effectiveness by incorporating a cracking-control layer of ECC with different thicknesses[J]. Construction & building materials, 2021, 286122975.
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-05-21
  • 录用日期:  2024-06-11
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回