留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维-碳纳米管多尺度增强聚四氟乙烯复合材料摩擦学性能研究

汤皓 徐颖 程先华

汤皓, 徐颖, 程先华. 碳纤维-碳纳米管多尺度增强聚四氟乙烯复合材料摩擦学性能研究[J]. 复合材料学报, 2022, 40(0): 1-13.
引用本文: 汤皓, 徐颖, 程先华. 碳纤维-碳纳米管多尺度增强聚四氟乙烯复合材料摩擦学性能研究[J]. 复合材料学报, 2022, 40(0): 1-13.
Hao TANG, Ying XU, Xianhua CHENG. Tribological performance study of carbon fibre-carbon nanotube multiscale reinforced polytetrafluoroethylene composites[J]. Acta Materiae Compositae Sinica.
Citation: Hao TANG, Ying XU, Xianhua CHENG. Tribological performance study of carbon fibre-carbon nanotube multiscale reinforced polytetrafluoroethylene composites[J]. Acta Materiae Compositae Sinica.

碳纤维-碳纳米管多尺度增强聚四氟乙烯复合材料摩擦学性能研究

基金项目: 国家自然科学基金 (51975359)
详细信息
    通讯作者:

    程先华,博士,教授,博士生导师,研究方向为纳米表面工程及摩擦学  E-mail: xhcheng@sjtu.edu.cn

  • 中图分类号: TB332

Tribological performance study of carbon fibre-carbon nanotube multiscale reinforced polytetrafluoroethylene composites

  • 摘要: 针对传统化学法易损伤纤维、污染严重的缺点,采用稀土LaCl3表面处理方法合成碳纤维(Carbon Fibre, CF)-碳纳米管(Carbon Nanotube, CNT)微纳多尺度增强体,通过烧结工艺制备CF-CNT多尺度增强聚四氟乙烯(Polytetrafluoroethylene, PTFE)基复合材料。对增强体形貌、表面微晶结构以及复合材料硬度、晶体结构、浸润性等进行了表征,揭示了CF-CNT多尺度增强体对PTFE基复合材料结晶度、表面能的影响机制,在不同往复摩擦学试验参数下测试了复合材料的摩擦系数与磨损率,对摩擦过程各个阶段进行细致分析并提出了相应的摩擦磨损机制,结果表明:稀土LaCl3表面处理方法相对传统方法具有不损伤纤维、无毒害的工艺优势;多尺度增强PTFE基复合材料磨损率降低了75.3%,优于同类研究;CF-CNT多尺度增强复合材料较小的表面能降低了起始摩擦系数;多尺度结构及La(III)提高了CF-CNT增强体与PTFE基体的界面结合性能,使材料在摩擦过程中不易产生大块硬质磨粒,并形成强度与稳定性较高的转移膜;复合材料摩擦学行为受往复频率及载荷影响显著,而且在高往复频率及低载荷下磨损率较低。本研究采用稀土LaCl3表面处理方法合成CF-CNT多尺度增强体并将其用于提高聚四氟乙烯复合材料摩擦学性能,所得结论为高性能树脂基复合材料的设计提供了参考。

     

  • 图  1  超声30 min所得浓度为1.0 g/L的分散系静置不同时刻的沉降结果对比图:碳纳米管(CNT)-乙醇分散系静置1 h (a)及24 h (b),RCNT-乙醇分散系静置1 h (c)及24 h (d)

    Figure  1.  Comparison of the sedimentation results of the dispersion system with a concentration of 1.0 g/L obtained by ultrasonicating for 30 min at different times: Carbon nanotube (CNT)-ethanol dispersion system kept still for 1 h (a) and 24 h (b), RCNT-ethanol dispersion system kept still for 1 h (c) and 24 h (d)

    图  2  (a, b) RCF-RCNT多尺度增强体形貌;(c) CF、RCF、RCF-RCNT的拉曼光谱

    Figure  2.  (a, b) Morphology of RCF-RCNT multiscale reinforcer; (c) Raman spectra of CF, RCF and RCF-RCNT.

    图  3  不同复合材料的X射线衍射光谱及结晶度$ {X}_{\mathrm{c}} $(a)及2θ=16° (b),18.14° (c)处的放大图

    Figure  3.  XRD pattern and crystallinity $ {X}_{\mathrm{c}} $ of different composites (a) and enlarged view at 2θ=16° (b) and 18.14° (c)

    图  4  不同复合材料的表面能

    Figure  4.  Surface energy of different composites

    图  5  不同复合材料的摩擦系数实时变化曲线图:(a) 2 min前(放大图);(b) 2 min后(往复频率6 Hz,载荷16 N)

    Figure  5.  Real-time coefficient of friction curve of different composites: (a) magnified view before 2 min; (b) after 2 min (reciprocating frequency: 6 Hz, load: 16 N)

    图  6  不同复合材料的摩擦系数及磨损率

    Figure  6.  Coefficient of friction and wear rate of different composites

    图  7  复合材料磨损面典型形貌:(a~c) PTFE, (d~f) CF/PTFE, (g~i) RCF/PTFE, (j~l) CF-CNT/PTFE, (m~o) RCF-RCNT/PTFE

    Figure  7.  Typical worn surface morphology of composites: (a~c) PTFE, (d~f) CF/PTFE, (g~i) RCF/PTFE, (j~l) CF-CNT/PTFE, (m~o) RCF-RCNT/PTFE

    图  8  复合材料对磨球典型表面形貌:(a) PTFE, (b) CF/PTFE, (c) RCF/PTFE, (d) CF-CNT/PTFE, (e) RCF-RCNT/PTFE

    Figure  8.  Typical GCr15 ball surface morphology of (a) PTFE, (b) CF/PTFE, (c) RCF/PTFE, (d) CF-CNT/PTFE, (e) RCF-RCNT/PTFE after tribological test

    图  9  不同复合材料摩擦过程各阶段及其摩擦磨损机制简图

    Figure  9.  Diagram of the proposed friction and wear stage and corresponding mechanism of different composites

    图  10  复合材料磨粒脱落过程简图:(a) CF/PTFE, (b) CF-CNT/PTFE, (c) RCF/PTFE, (d) RCF-RCNT/PTFE

    Figure  10.  Schematic illustration of the wear debris generation process of CF/PTFE (a), CF-CNT/PTFE (b), RCF/PTFE (c), RCF-RCNT/PTFE (d) composites

    图  11  不同载荷下的RCF-RCNT/PTFE复合材料摩擦系数、摩擦力、磨损率及磨损量

    Figure  11.  Coefficient of friction, frictional force, wear rate and wear loss of RCF-RCNT/PTFE composites under different load

    图  12  不同往复频率下的RCF-RCNT/PTFE复合材料摩擦系数、磨损率及磨损量

    Figure  12.  Coefficient of friction, wear rate and wear loss of RCF-RCNT/PTFE composites under different reciprocating frequency

    图  13  往复频率为6 Hz (a)、10 Hz (b),载荷为16 N时RCF-RCNT/PTFE复合材料摩擦学试验中的GCr15对磨球典型形貌

    Figure  13.  Typical worn surface morphology of GCr15 grinding ball after the tribological test of RCF-RCNT/Ep under 16 N and 6 Hz (a), 10 Hz (b)

    表  1  不同复合材料的硬度

    Table  1.   Hardness of different composites

    SampleHardness (Shore D)
    PTFE57.0±2.9
    CF/PTFE61.7±1.5
    RCF/PTFE62.3±0.6
    CF-CNT/PTFE61.3±1.4
    RCF-RCNT/PTFE62.7±0.2
    下载: 导出CSV

    表  2  不同复合材料的接触角

    Table  2.   Contact angle of different composites

    SampleContact angle/(°)
    WaterDiiodomethane
    PTFE109.0±4.478.1±5.9
    CF/PTFE120.8±0.576.4±1.8
    RCF/PTFE118.4±2.979.0±1.3
    CF-CNT/PTFE119.1±2.575.8±2.1
    RCF-RCNT/PTFE110.2±4.478.4±0.6
    下载: 导出CSV

    表  3  所用液相的表面能

    Table  3.   Surface tension of the used test liquid

    Wetting
    liquids
    Surface
    tension
    $ {\gamma }_{l} $/(mJ·m−2)
    Dispersion component
    $ {\gamma }_{l}^{d} $/(mJ·m−2)
    Polar
    component
    $ {\gamma }_{l}^{p} $/(mJ·m−2)
    Water72.821.851.0
    Diiodomethane50.848.52.3
    下载: 导出CSV

    表  4  相关研究中PTFE基复合材料摩擦学性能对比

    Table  4.   Tribological performance comparison of PTFE based composites in similar studies

    Ref.CompositesType of frictionTest conditionsWear rate
    /
    (×10−6 mm3·N−1·m−1)
    Decrement of
    wear rate/%
    [41] PTFE Reciprocating sliding Counterface: φ=10 mm steel ball,
    load: 10 N, frequency: 10 Hz
    304.8 −48.1
    30vol.% h-BN/AO/PTFE 158.2
    [42] PTFE/AP Reciprocating sliding Counterface: φ=9 mm Si3N4 ball,
    load: 10 N, frequency: 1 Hz
    3.2 −44.1
    6wt.% modified CF/PTFE/AP 1.79
    [43] PTFE Reciprocating sliding Counterface: φ=5 mm Si3N4 ball,
    load: 3 N, frequency: 2 Hz
    2.5 −44.0
    5wt.% CF/5wt.%BP/PTFE 1.4
    [2] PTFE Continuous sliding Counterface: φ=6 mm steel ball,
    load: 10 N,
    rotational speed: 200 r/min
    390 −29.7
    20wt.%CF/PTFE 274
    [1] PTFE Reciprocating sliding Counterface: 5×5×25 mm steel pin,
    load: 50 N, frequency: 2 Hz
    0.21
    15wt.% AF/PTFE 0.23 +9.5
    15wt.% CF/PTFE 0.24 +14.3
    15wt.% GF/PTFE 0.18 −14.3
    0.5wt.% BF/PTFE 0.15 −28.6
    0.5wt.% BF+
    10wt.%MoS2/PTFE
    0.17 −19.1
    [20] PI Reciprocating sliding Counterface: φ=4 mm steel ball,
    load: 4.5 N, velocity: 0.083 m/s
    6.44 −72.2
    5wt.% CF-CNT reinforcer/PI 1.79
    This study PTFE Reciprocating sliding Counterface: φ=6 mm steel ball, load: 16 N, frequency: 6 Hz 321.6 −75.4
    5wt.% RCF-RCNT reinforcer/PTFE 79.0
    Notes: h-BN—hexagonal boron nitride; AO—alumina particles; AP—aluminum dihydrogen phosphate; BP—black phosphorus; AF—aramid fiber; GF—glass fiber; BF—basalt fiber; PI—polyimide.
    下载: 导出CSV
  • [1] KUMAR R, MALAVAL B, ANTONOV M, et al. Performance of polyimide and PTFE based composites under sliding, erosive and high stress abrasive conditions[J]. Tribology International,2020,147:106282. doi: 10.1016/j.triboint.2020.106282
    [2] WU H, ZHU L, YUE W, et al. Wear-resistant and hydrophobic characteristics of PTFE/CF composite coatings[J]. Progress in Organic Coatings,2019,128:90-98. doi: 10.1016/j.porgcoat.2018.12.013
    [3] LIU P, HUANG T, LU R, et al. Tribological properties of modified carbon fabric/polytetrafluoroethylene composites[J]. Wear,2012,289:17-25. doi: 10.1016/j.wear.2012.04.021
    [4] ZAKARIA M R, MD AKIL H, ABDUL KUDUS M H, et al. Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review[J]. Composites Part B-Engineering,2019,176:107313. doi: 10.1016/j.compositesb.2019.107313
    [5] KARGER-KOCSIS J, MAHMOOD H, PEGORETTI A. All-carbon multi-scale and hierarchical fibers and related structural composites: A review[J]. Composites Science and Technology,2020,186:107932. doi: 10.1016/j.compscitech.2019.107932
    [6] CHEN Q, PENG Q, ZHAO X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon,2020,158:704-710. doi: 10.1016/j.carbon.2019.11.043
    [7] ZHANG R L, WANG C G, LIU L, et al. Polyhedral oligomeric silsesquioxanes/carbon nanotube/carbon fiber multiscale composite: Influence of a novel hierarchical reinforcement on the interfacial properties[J]. Applied Surface Science,2015,353:224-231. doi: 10.1016/j.apsusc.2015.06.156
    [8] CONTE M, IGARTUA A. Study of PTFE composites tribological behavior[J]. Wear,2012,296(1):568-574.
    [9] GATEMAN S M, ALIDOKHT S A, MENA-MORCILLO E, et al. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies[J]. Surface and Coatings Technology,2021,426:127790. doi: 10.1016/j.surfcoat.2021.127790
    [10] WANG Y, YAN F. Tribological properties of transfer films of PTFE-based composites[J]. Wear,2006,261(11):1359-1366.
    [11] JOHANSSON P, MARKLUND P, BJÖRLING M, et al. Effect of humidity and counterface material on the friction and wear of carbon fiber reinforced PTFE composites[J]. Tribology International,2021,157:106869. doi: 10.1016/j.triboint.2021.106869
    [12] AMENTA F, BOLELLI G, PEDRAZZI S, et al. Sliding wear behaviour of fibre-reinforced PTFE composites against coated and uncoated steel[J]. Wear,2021,486-487:204097. doi: 10.1016/j.wear.2021.204097
    [13] SAWAE Y, MORITA T, TAKEDA K, et al. Friction and wear of PTFE composites with different filler in high purity hydrogen gas[J]. Tribology International,2021,157:106884. doi: 10.1016/j.triboint.2021.106884
    [14] TANG H, LI W, ZHOU H, et al. One-pot synthesis of carbon fiber/carbon nanotube hybrid using lanthanum (III) chloride for tensile property enhancement of epoxy composites[J]. Applied Surface Science,2022,571:151319. doi: 10.1016/j.apsusc.2021.151319
    [15] JIANG M R, ZHOU H, CHENG X H. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites[J]. Journal of Materials Science,2019,54(14):10235-10248. doi: 10.1007/s10853-019-03631-4
    [16] WANG L, LIU R, LI X, et al. Tailoring electrochemically active sites in carbon fiber by edge oxygen functionalized strategy for high performance yarn energy storage[J]. Journal of Power Sources,2021,491:229579. doi: 10.1016/j.jpowsour.2021.229579
    [17] JAIN V, BIESINGER M C, LINFORD M R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans[J]. Applied Surface Science,2018,447:548-553. doi: 10.1016/j.apsusc.2018.03.190
    [18] FENG P, SONG G, LI X, et al. Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Colloid and Interface Science,2021,583:13-23. doi: 10.1016/j.jcis.2020.09.005
    [19] WEN Z, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent[J]. Applied Surface Science,2019,486:546-554. doi: 10.1016/j.apsusc.2019.04.248
    [20] CHEN B, LI X, LI X, et al. Friction and wear properties of polyimide-based composites with a multiscale carbon fiber-carbon nanotube hybrid[J]. Tribology Letters,2017,65(3):111. doi: 10.1007/s11249-017-0891-z
    [21] LU Y, WANG J, WANG L, et al. Construction of 3D carbon fiber/carbon nanotube/silicone rubber nanocomposites for stretchable conductors through interface host-guest dendrimers[J]. Composites Science and Technology,2021,205:108692. doi: 10.1016/j.compscitech.2021.108692
    [22] ALROBEI H, PRASHANTH M K, MANJUNATHA C R, et al. Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis[J]. Ceramics International, 2021, 47(7, Part B): 10322-10331.
    [23] QIN J, WANG C, YAO Z, et al. Mechanical property deterioration and defect repair factors of carbon fibers during the continuous growth of carbon nanotubes by chemical vapor deposition[J]. Ceramics International,2021,47(13):19213-19219. doi: 10.1016/j.ceramint.2021.03.269
    [24] ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications[J]. Carbon,2016,96:701-710. doi: 10.1016/j.carbon.2015.10.002
    [25] CHAI L, JIANG H, ZHANG B, et al. Influence of the gamma irradiation dose on tribological property of polytetrafluoroethylene[J]. Tribology International,2020,144:106094. doi: 10.1016/j.triboint.2019.106094
    [26] FENG B, FANG X, WANG H, et al. The Effect of Crystallinity on Compressive Properties of Al-PTFE[J]. Polymers,2016,8(10):356. doi: 10.3390/polym8100356
    [27] ZHANG Y, KOU K, ZHANG S, et al. Effect of fiber diameter on thermal properties of short-glass-fiber-reinforced PTFE-based composites[J]. Journal of Materials Science-Materials in Electronics,2020,31(13):10715-10723. doi: 10.1007/s10854-020-03621-2
    [28] ZHANG X, JIANG X, QIN W, et al. Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene[J]. Journal of Polymer Research,2021,28(4):124. doi: 10.1007/s10965-021-02486-1
    [29] MAO X, DENG Y, LIN J, et al. Effects of rare earth samarium oxide on the properties of polypropylene-graft-cardanol grafted by reactive extrusion[J]. Journal of Applied Polymer Science,2014,131(21):41012.
    [30] SUH J, BAE D. Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing[J]. Composites Part B-Engineering,2016,95:317-323. doi: 10.1016/j.compositesb.2016.03.082
    [31] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747. doi: 10.1002/app.1969.070130815
    [32] KAELBLE D H. Dispersion-Polar Surface Tension Properties of Organic Solids[J]. Journal of Adhesion,1970,2(2):66-81. doi: 10.1080/0021846708544582
    [33] FOWKES F M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces[J]. Journal of Physical Chemistry,1962,66(2):382. doi: 10.1021/j100808a524
    [34] SHIRAKI Y, YOKOYAMA H. Novel hydrophobic and oleophobic surfaces using polyurethane with hydrogenated polyisoprene soft segment[J]. Materials Today Communications,2020,24:101243. doi: 10.1016/j.mtcomm.2020.101243
    [35] UNTERWEGER C, DUCHOSLAV J, STIFTER D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology,2015,108:41-47. doi: 10.1016/j.compscitech.2015.01.004
    [36] WU Q, ZHAO R, XI T, et al. Comparative study on effects of epoxy sizing involving ZrO2 and GO on interfacial shear strength of carbon fiber/epoxy composites through one and two steps dipping routes[J]. Composites Part A-Applied Science and Manufacturing,2020,134:105909. doi: 10.1016/j.compositesa.2020.105909
    [37] SINGH N, SINHA S K. Tribological performances of hybrid composites of Epoxy, UHMWPE and MoS2 with in situ liquid lubrication against steel and itself[J]. Wear,2021,486-487:204072. doi: 10.1016/j.wear.2021.204072
    [38] MINN M, SINHA S K. The frictional behavior of UHMWPE films with different surface energies at low normal loads[J]. Wear,2010,268(7):1030-1036.
    [39] BRADLEY R S. LXXIX. The cohesive force between solid surfaces and the surface energy of solids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1932,13(86):853-862. doi: 10.1080/14786449209461990
    [40] TABOR D. Surface forces and surface interactions[J]. Journal of Colloid and Interface Science,1977,58(1):2-13. doi: 10.1016/0021-9797(77)90366-6
    [41] CHEN H, LI C, YAO Q, et al. Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene via incorporating hexagonal boron nitride and alumina particles[J]. Journal of Applied Polymer Science,2022,139(3):51497. doi: 10.1002/app.51497
    [42] 蒋国强, 郭永信, 刘雅玄, 等. 改性碳纤维的制备及其增强PTFE复合涂层摩擦学性能[J]. 中国表面工程, 2020, 33(5):90-98. doi: 10.11933/j.issn.1007-9289.20200718001

    JIANG G, GUO Y, LIU Y, et al. Preparation of Modified Carbon Fiber and Its Influence on Tribological Properties of PTFE Composite Coating[J]. China Surface Engineering,2020,33(5):90-98(in Chinese). doi: 10.11933/j.issn.1007-9289.20200718001
    [43] LV Y, WANG W, XIE G, et al. Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets[J]. Tribology Letters,2018,66(2):61. doi: 10.1007/s11249-018-1010-5
    [44] YANG Y, WANG H, REN J, et al. Multi-environment adaptability of self-lubricating core/shell PTFE@PR composite: Tribological characteristics and transfer mechanism[J]. Tribology International,2021,154:106718. doi: 10.1016/j.triboint.2020.106718
    [45] CHEN S, WEI L, CHENG B, et al. Dry sliding tribological properties of PI/UHMWPE blends for high speed application[J]. Tribology International,2020,146:106262. doi: 10.1016/j.triboint.2020.106262
    [46] WANG H, QI X, ZHANG W, et al. Tribological properties of PTFE/Kevlar fabric composites under heavy loading[J]. Tribology International,2020,151:106507. doi: 10.1016/j.triboint.2020.106507
    [47] ZHU M, MA J. Basalt fiber modified with lanthanum-ethylenediaminetetraacetic acid as potential reinforcement of cyanate matrix composites[J]. Applied Surface Science,2019,464:636-643. doi: 10.1016/j.apsusc.2018.09.129
    [48] XIE T, SHI Y. Effects of LaF3/CeF3 on the friction transfer of PTFE-based composites[J]. Tribology International,2021,161:107069. doi: 10.1016/j.triboint.2021.107069
    [49] ROBSHAW T, TUKRA S, HAMMOND D B, et al. Highly efficient fluoride extraction from simulant leachate of spent potlining via La-loaded chelating resin. An equilibrium study[J]. Journal of Hazardous Materials,2019,361:200-209. doi: 10.1016/j.jhazmat.2018.07.036
    [50] MARTINEZ-VARGAS D R, RANGEL-MENDEZ J R, CHAZARO-RUIZ L F. Fluoride electrosorption by hybrid La(III)-activated carbon electrodes under the influence of the La(III) content and the polarization profile[J]. Journal of Environmental Chemical Engineering,2022,10(1):106926. doi: 10.1016/j.jece.2021.106926
    [51] POPOV V L. Contact Mechanics and Friction: Physical Principles and Applications[J]. Berlin, Heidelberg:Springer,2017:391.
  • 加载中
计量
  • 文章访问数:  800
  • HTML全文浏览量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-03-03
  • 录用日期:  2022-03-19
  • 网络出版日期:  2022-04-09

目录

    /

    返回文章
    返回