留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵金属/ MOFs纳米复合结构材料及其应用进展

郑唯璐 张洪华 江龙发 游奥骐 唐斯琪

郑唯璐, 张洪华, 江龙发, 等. 贵金属/ MOFs纳米复合结构材料及其应用进展[J]. 复合材料学报, 2024, 41(12): 6253-6267.
引用本文: 郑唯璐, 张洪华, 江龙发, 等. 贵金属/ MOFs纳米复合结构材料及其应用进展[J]. 复合材料学报, 2024, 41(12): 6253-6267.
ZHENG Weilu, ZHANG Honghua, JIANG Longfa, et al. Progress in noble metal/ MOFs nanocomposite structure materials and their applications[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6253-6267.
Citation: ZHENG Weilu, ZHANG Honghua, JIANG Longfa, et al. Progress in noble metal/ MOFs nanocomposite structure materials and their applications[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6253-6267.

贵金属/ MOFs纳米复合结构材料及其应用进展

基金项目: 国家自然科学基金(52063015,51861008);江西科技师范大学研究生创新专项资金(YC2023-X23)
详细信息
    通讯作者:

    张洪华,博士,副教授,硕士生导师,研究方向为金属微纳米结构阵列及生化传感应用 E-mail: 15270008537@163.com

  • 中图分类号: TB333

Progress in noble metal/ MOFs nanocomposite structure materials and their applications

Funds: National Natural Science Foundation of China (No.52063015, 51861008); Postgraduate Innovation Fund of Jiangxi Science and Technology Normal University (No.YC2023-X23)
  • 摘要: 金属有机框架(MOFs)由于具有巨大的比表面积、超高的孔隙率、易修饰性和大量的活性位点及多孔结构等特性引起了研究人员的广泛关注,并应用于气体储存、传感器、催化剂等领域。然而,由于其自身固有缺陷,在上述领域实际应用中受到了限制。贵金属纳米材料具有优异的导电性、良好的催化性和独特的LSPR效应等特点,因此,近年来研究人员将贵金属纳米材料与MOFs进行多种形式的精妙组合构筑出纳米复合结构材料,由于二者“协同效应”产生一系列新颖特性,丰富了MOFs材料的应用领域,并显著提高了使用性能。本文综述了近年来Au、Ag、Pt等贵金属/MOFs纳米复合结构材料在催化、传感、生物医学和储氢等领域的应用进展,为制备新的纳米复合结构材料及开拓新的应用提供新思路。

     

  • 图  1  MOFs与贵金属纳米材料催化应用示意图:(a) 光催化HER过程中Au@NH2-UiO-66/CdS的光诱导载流子动力学示意图[39]; (b) Pt(2)/NH2-UiO-68、Pt(1)@NH2-UiO-68、Pt(2)@NH2-UiO-68和Pt(4)-NH2UiO-68混合光催化剂的合成过程示意图[43];(c) Pt和NH2-UiO-68界面电子转移过程示意图[43];(d) 催化剂NPs@ZIF-8的组装和CO2光催化转化示意图[44];(e) ALD反应周期的四个脉冲[46];(f) MOF涂层包覆在银纳米线及杂化催化剂对MB降解机制示意图[47];(g) Ag@MOF-525复合催化剂的合成路线[48];(h) 降解过程示意图[48];(i) Ru@Mo-MOF-tri的机制示意图[50];(j) Pd/ Ti-MOF的合成及NB还原N-甲酰化反应装置示意图[52];(k) 光催化NB在Pd1.5%/Ti-MOF上N-甲酰化的机制[52];(l) HT Au@MOF复合材料电催化NRR的图解[54]

    Figure  1.  Schematic illustration of catalytic applications of MOFs and noble metal nanomaterials: (a) Schematic illustration of the photo-induced carrier dynamics of Au@NH2-UiO-66/CdS in the photocatalytic HER process[39]; (b) Schematic diagram of the synthetic process of Pt(2)/NH2-UiO-68, Pt(1)@NH2-UiO-68, Pt(2)@NH2-UiO-68, and Pt(4)-NH2UiO-68 hybrid photocatalysts[43]; (c) Schematic illustration of electron transfer process at the Pt and NH2-UiO-68 interface[43]; (d) Schematic illustration of the assembly of the catalysts NPs@ZIF-8 and CO2 photocatalytic conversion[44]; (e) The four pulses of an ALD reaction cycle[46]; (f) Schematic diagram of MB degradation mechanism of a hybrid catalyst coated with MOF on silver nanowires[47]; (g) Degradation efficiency under MOF and MOF/Pt-2 in 5 reaction cycles[48]; (h) Diagram of the degradation process[48]; (i) The mechanism diagram of Ru@Mo-MOF-tri[50]; (j) Schematic Illustration of the Synthesis of the Pd/ Ti-MOF and the Reaction Setup Used for the Reductive NFormylation of NB[52]; (k) Mechanism of Photocatalytic N-Formylation of NB over the Pd1.5 %/Ti-MOF[52]; (l) Illustration of the electrocatalytic NRR by HT Au@MOF composite[54]

    图  2  MOFs与贵金属纳米材料生物医学应用示意图:(a) Ag/Co-TCPP NS光动力协同Ag+释放抗菌性能示意图[90];(b) Ag@MOF@PDA的合成路线及其协同抗菌和抗生物膜作用示意图[91];(c) 基于图Pt-MOF@Au@QDs/PDA的合成路线及氢光热治疗机制示意图[92];(d) Pd@ MOF-525@HA的制备和增强光动力和声动力治疗的过程[93];(e) ICG-PtMGs@HGd纳米平台作为H2O2驱动的氧合器,用于FL/MOST/CT/MRI多模式成像引导的实体瘤PDT和PTT协同治疗的示意图[94];(f) 以dYNH靶向肽(BCAMMD)修饰BYL719-顺铂负载双壳纳米粒子(BYL719&Cisplatin@Au@MOF@MS-ICG, BCAMM)的合成工艺方案及BCAMMD在肿瘤细胞中的抗肿瘤机制[95]

    Figure  2.  Schematic diagram of MOFs related to biomedical applications of noble metal nanomaterials: (a) Schematic diagram of the photodynamic synergistic Ag+ release antibacterial performance of Ag/Co-TCPP NSs[90]; (b) Schematic illustration of the synthetic route of the Ag@MOF@PDA and its synergistic antibacterial and anti-biofilm effect[91]; (c) Schematic illustration of the synthesis route and the hydrogen-photothermal treatment therapeutic mechanism based on the Pt-MOF@Au@QDs/PDA[92]; (d) Scheme illustration showing the preparation of Pd@ MOF-525@HA and enhancement of photodynamic and sonodynamic therapy[93]; (e) Schematic illustration of the ICG-PtMGs@HGd nanoplatforms as H2O2-driven oxygenator for FL/MOST/CT/MRI multimodal imaging guided enhanced PDT and PTT synergistic therapy in a solid tumor[94]; (f) The scheme of synthetic procedure for BYL719-cisplatin loaded double shell nanoparticle (BYL719&Cisplatin@Au@MOF@MS-ICG, BCAMM) modified with dYNH targeting peptide (BCAMMD) and antitumor mechanisms of BCAMMD in tumor cell[95]

    表  1  Au纳米颗粒与MOFs复合材料在传感器中应用

    Table  1.   Applications of Au nanoparticles and MOFs composites in sensors

    Material Target analysis Method Linear range Limit of detection (LOD) Ref.
    Au-MOF-5 Nitrite
    Nitrobenzene
    CV
    CV
    5.0 µmol·L−1 ~ 65.0 mmol·L−1
    20 ~ 500 µmol·L−1
    1.0 µmol·L−1;
    15.3 µmol·L−1
    [58]
    Au/SWNTs@MOF-199 Pb2+ CV, DPV 1 pmol·L−1 ~ 10 mmol·L−1 25 pmol·L−1 [59]
    MIP-Au@MOF-235@g-C3N4 Fenamiphos CV, EIS, DPV 0.01 ~ 16.4 μmol·L−1 0.00713 µmol·L−1 [60]
    Au NPs/CoFe LDO/MoS2 NFs Alpha-fetoprotein CV 10−5 ~ 100 ng·mL−1 3.23 fg·mL−1 [61]
    Apt-Au@PEIM/AFM1/MIP-Apt/
    Au NPs/GCE
    Aflatoxin M1 CV, EIS, DPV 0.01 ~ 200 nmol·L−1 0.07 nmol·L−1 [62]
    Au/Ti-MOF/SPE Gallic acid CV, DPV 0.01 ~ 100 µmol·L−1 0.05 µmol·L−1 [63]
    Au/Cu-MOF/SWNH Neutrophil gelatinase-
    associated lipocalin
    SWV, i−t 0.00001 ~ 10 ng·mL−1 0.0074, 0.0405 pg·m L−1 [64]
    Aunano/Fe-MOF/GCE As(Ⅲ) EIS, SWASV 0.0085 ng·L−1 [65]
    Cu2O@Cu-MOF@Au-HRP-Ab2 Carcinoembryonic antigen CV, EIS 50 fg·mL−1 ~ 80 ng·mL−1 17 fg·mL−1 [66]
    Au NPs/Zn MOF miRNA-522 CV, EIS 10−15~ 10−10 mol·L−1 3×10−16 mol·L−1 [67]
    Au NPs/MOF-5 DNA CV 1 ~ 100 nmol·L−1 0.05 pmol·L−1 [68]
    Au NPs/MOF-199 5-Hydroxyindole-3-acetic acid SERS 10−9 ~ 10−5 mol·L−1 6.40×10−11 mol L−1 [82]
    Au/MOF-74 4-Nitrothiophenol SERS 0.10~10 μmol·L−1 69 nmol·L−1 [83]
    Au NPs/Cu-TCPP MOFNs Acrylamide SERS 0.1 nmol·L−1~10 μmol·L−1 0.08 nmol·L−1 [84]
    Si/Au@Ag/ZIF-67 4-Aminothiophenol SERS 10−7 ~ 10−5 mol·L−1 2.0 × 10−9 mol·L−1 [85]
    Ni-MOF-Au@Ag NPs Thiram, Diquat, Paraquat SERS 0.01 ~ 50 mg·L−1 87.1, 188.8, 8.9 μg·L−1 [86]
    Notes: SWV— Square wave voltammetry ; i-t —Current time curve ; SWASV —Square wave anodic stripping voltammetry; MIP—Molecularly imprinted polymers ; GCE —Glassy carbon electrode ; SWNH—Singlewalled carbon nanohorns; PEIM—PEI(Polyethyleneimine)-MIL-101(Cr); Apt—Aptamer; AFM1—Aflatoxin M1; SPE —Screenprinted electrode; Aunano—Gold nanoparticles; HRP—Horseradish peroxidase; Ab2—Secondary antibody; SERS—surface enhancement of Raman scattering; CV—Cyclic voltammetry; EIS—Electrochemical impedance spectroscopy; DPV—Differential pulse voltammetry.
    下载: 导出CSV
  • [1] SIM J, YIM H, KO N, et al. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers[J]. Dalton Transactions, 2014, 43(48): 18017-18024. doi: 10.1039/C4DT02300E
    [2] TATE K L, LI S, YU M, et al. Zeolite adsorbent-MOF layered nanovalves for CH4 storage[J]. Adsorption, 2017, 23: 19-24. doi: 10.1007/s10450-016-9813-x
    [3] KNYAZEVA M K, SOLOVTSOVA O V, TSIVADZE A Y, et al. Methane Adsorption on Cu-BTC110 Metal-Organic Framework[J]. Russian Journal of Inorganic Chemistry, 2019, 64: 1507-1512. doi: 10.1134/S0036023619120064
    [4] QASEM N A A, BEN-MANSOUR R, HABIB M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177[J]. Applied energy, 2018, 210: 317-326. doi: 10.1016/j.apenergy.2017.11.011
    [5] TIAN J Y, LV W C, SHEN A S, et al. Construction of the copper metal-organic framework (MOF)-on-indium MOF Z-scheme heterojunction for efficiently photocatalytic reduction of Cr (VI)[J]. Separation and Purification Technology, 2023, 327: 124903. doi: 10.1016/j.seppur.2023.124903
    [6] LI Y, WANG X, DUAN Z, et al. Zn/Co-ZIFs@ MIL-101(Fe) metal-organic frameworks are effective photo-Fenton catalysts for RhB removal[J]. Separation and Purification Technology, 2022, 293: 121099. doi: 10.1016/j.seppur.2022.121099
    [7] JEYHOON B, SAFARIFARD V. Stable Core-Shell UiO-66-NH2@ Zeolitic Imidazolate Frameworks Composite as a Favorable Photocatalyst for Tetracycline Degradation[J]. ChemistrySelect, 2024, 9(3): e202304515. doi: 10.1002/slct.202304515
    [8] ISHFAQ M, KHAN S A, NAZIR M A, et al. The in situ synthesis of sunlight-driven Chitosan/MnO2@ MOF-801 nanocomposites for photocatalytic reduction of Rhodamine-B[J]. Journal of Molecular Structure, 2024, 1301: 137384. doi: 10.1016/j.molstruc.2023.137384
    [9] YE Z, JIANG Y, LI L, et al. Rational design of MOF-based materials for next-generation rechargeable batteries[J]. Nano-Micro Letters, 2021, 13: 1-37. doi: 10.1007/s40820-020-00525-y
    [10] IQBAL M Z, AZIZ U, AFTAB S, et al. A hydrothermally prepared lithium and copper MOF composite as anode material for hybrid supercapacitor applications[J]. ChemistrySelect, 2023, 8(6): e202204554. doi: 10.1002/slct.202204554
    [11] TRAN V A, DO H H, HA T D C, et al. Metal-organic framework for lithium and sodium-ion batteries: Progress and perspectivez[J]. Fuel, 2022, 319: 123856. doi: 10.1016/j.fuel.2022.123856
    [12] SU Y, WANG W, WANG W, et al. Cerium-based MOF as a separator coating for high-performance lithium-sulfur batteries[J]. Journal of The Electrochemical Society, 2022, 169(3): 030528. doi: 10.1149/1945-7111/ac5b36
    [13] WANG M, HU M, LI Z, et al. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells[J]. Biosensors and Bioelectronics, 2019, 142: 111536. doi: 10.1016/j.bios.2019.111536
    [14] PAL S, YU S S, KUNG C W. Group 4 metal-based metal-organic frameworks for chemical sensors[J]. Chemosensors, 2021, 9(11): 306. doi: 10.3390/chemosensors9110306
    [15] ZHOU Z D, WANG C Y, ZHU G S, et al. Water-stable europium (III) and terbium (III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions[J]. Journal of Molecular Structure, 2022, 1251: 132009. doi: 10.1016/j.molstruc.2021.132009
    [16] ZHOU Z, LI S, WANG W, et al. Two bis-color excited luminescent sensors of two-dimensional Cd (II)-MOFs bearing mixed ligands for detection of ions and pesticides in aqueous solutions[J]. Journal of Molecular Structure, 2023, 1273: 134310. doi: 10.1016/j.molstruc.2022.134310
    [17] XU G W, WU Y P, DONG W W, et al. A multifunctional Tb-MOF for highly discriminative sensing of Eu3+/Dy3+ and as a catalyst support of Ag nanoparticles[J]. Small, 2017, 13(22): 1602996. doi: 10.1002/smll.201602996
    [18] LÓPEZ-R M, BARRIOS Y, PEREZ L D, et al. Metal-Organic Framework (MOFs) tethered to cotton fibers display antimicrobial activity against relevant nosocomial bacteria[J]. Inorganica Chimica Acta, 2022, 537: 120955. doi: 10.1016/j.ica.2022.120955
    [19] ZHANG X, PENG F, WANG D. MOFs and MOF-derived materials for antibacterial application[J]. Journal of Functional Biomaterials, 2022, 13(4): 215. doi: 10.3390/jfb13040215
    [20] TANG J, HUANG C, LIU Y, et al. Metal-organic framework nanoshell structures: preparation and biomedical applications[J]. Coordination Chemistry Reviews, 2023, 490: 215211. doi: 10.1016/j.ccr.2023.215211
    [21] PYREDDY S, PODDAR A, CARRARO F, et al. Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell types[J]. Biomaterials Advances, 2023, 149: 213420. doi: 10.1016/j.bioadv.2023.213420
    [22] WEN B, MA J H, CHEN C C, et al. Supported noble metal nanoparticles as photo/sono-catalysts for synthesis of chemicals and degradation of pollutants[J]. Science China Chemistry, 2011, 54: 887-897. doi: 10.1007/s11426-011-4292-0
    [23] JOHN J, GRAVEL E, NAMBOOTHIRI I N N, et al. Advances in carbon nanotube-noble metal catalyzed organic transformations[J]. Nanotechnology Reviews, 2012, 1(6): 515-539. doi: 10.1515/ntrev-2012-0025
    [24] MARTÍNEZ Figueredo K G, VIRGILIO E M, SEGOBIA D J, et al. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading[J]. Chempluschem, 2021, 86(9): 1342-1346. doi: 10.1002/cplu.202100249
    [25] WU Y P, XU G W, DONG W W, et al. Anionic lanthanide MOFs as a platform for iron-selective sensing, systematic color tuning, and efficient nanoparticle catalysis[J]. Inorganic Chemistry, 2017, 56(3): 1402-1411. doi: 10.1021/acs.inorgchem.6b02476
    [26] ZHU L Y, OU L X, MAO L W, et al. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview[J]. Nano-Micro Letters, 2023, 15(1): 89. doi: 10.1007/s40820-023-01047-z
    [27] EOM W, JANG J S, LEE S H, et al. Effect of metal/metal oxide catalysts on graphene fiber for improved NO2 sensing[J]. Sensors and Actuators B: Chemical, 2021, 344: 130231. doi: 10.1016/j.snb.2021.130231
    [28] KIM T, LEE T H, PARK S Y, et al. Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration[J]. Acs Nano, 2023, 17(5): 4404-4413. doi: 10.1021/acsnano.2c09733
    [29] TONG W, TAO G, WU Y, et al. Aggregation of noble metal nanoparticles: A versatile sensing strategy for food safety monitoring[J]. Trends in Food Science & Technology, 2023: 104243.
    [30] ZHAO R, XIANG J, WANG B, et al. Recent advances in the development of noble metal NPs for cancer therapy[J]. Bioinorganic Chemistry and Applications, 2022, 2444516: 2022.
    [31] MARKOWSKA A, KASPRZAK B, JASZCZYŃSKA-NOWINKA K, et al. Noble metals in oncology[J]. Contemporary Oncology/Współczesna Onkologia, 2015, 19(4): 271-275.
    [32] SHAN J, MA Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials[J]. Microchimica Acta, 2017, 184: 969-979. doi: 10.1007/s00604-017-2146-y
    [33] DOROVSKIKH S I, VIKULOVA E S, SERGEEVICHEV D S, et al. Heterostructures Based on Noble Metal Films with Ag and Au Nanoparticles: Fabrication, Study of In Vivo Biocompatibility and Antibacterial Activity[J]. Coatings, 2023, 13(7): 1269. doi: 10.3390/coatings13071269
    [34] MOON K S, PARK Y B, BAE J M, et al. Visible light-mediated sustainable antibacterial activity and osteogenic functionality of Au and Pt multi-coated TiO2 nanotubes[J]. Materials, 2021, 14(20): 5976. doi: 10.3390/ma14205976
    [35] CAI T, FANG G, TIAN X, et al. Optimization of antibacterial efficacy of noble-metal-based core-shell nanostructures and effect of natural organic matter[J]. ACS nano, 2019, 13(11): 12694-12702. doi: 10.1021/acsnano.9b04366
    [36] SUNG J S, CHOO K Y, KIM T H, et al. A new hydrogen storage system based on efficient reversible catalytic hydrogenation/dehydrogenation of terphenyl[J]. International journal of hydrogen energy, 2008, 33(11): 2721-2728. doi: 10.1016/j.ijhydene.2008.03.037
    [37] ZHU H, YUAN X, YAO Q, et al. Shining photocatalysis by gold-based nanomaterials[J]. Nano Energy, 2021, 88: 106306. doi: 10.1016/j.nanoen.2021.106306
    [38] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用.[J]. 化学进展, 2019, 31 (04): 516-535.

    YAO Guoying, LIU Qinglu, ZHAO Zongyan. Application of local surface plasmon resonance effect in photocatalysis [J] Progress in chemistry, 2019, 31 (04): 516-535 (in Chinese).
    [39] LI Z, ZI J, LUAN X, et al. Localized Surface Plasmon Resonance Promotes Metal-Organic Framework-Based Photocatalytic Hydrogen Evolution[J]. Advanced Functional Materials, 2023: 2303069.
    [40] ZHONG Y, WANG R, WANG X, et al. A Ti-MOF decorated with a Pt nanoparticle cocatalyst for efficient photocatalytic H2 evolution: A Theoretical Study[J]. Frontiers in Chemistry, 2020, 8: 660. doi: 10.3389/fchem.2020.00660
    [41] XING H, TENG S, XING Z, et al. Effect of Pt cocatalyst on visible light driven hydrogen evolution of anthracene-based zirconium metal-organic framework[J]. Applied Surface Science, 2020, 532: 147000. doi: 10.1016/j.apsusc.2020.147000
    [42] WANG Y, LING L, ZHANG W, et al. A Strategy to Boost H2 Generation Ability of Metal-Organic Frameworks: Inside-Outside Decoration for the Separation of Electrons and Holes[J]. ChemSusChem, 2018, 11(4): 666-671. doi: 10.1002/cssc.201702316
    [43] GUO F, WEI Y P, WANG S Q, et al. Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction[J]. Journal of Materials Chemistry A, 2019, 7(46): 26490-26495. doi: 10.1039/C9TA10575A
    [44] SU Y, XU H, WANG J, et al. Nanorattle Au@ PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO[J]. Nano Research, 2019, 12: 625-630. doi: 10.1007/s12274-018-2269-4
    [45] DUFLOT M, MARCHAL C, CAPS V, et al. Optimization of NH2-UiO-66/TiO2/Au composites for enhanced gas-phase CO2 photocatalytic reduction into CH4[J]. Catalysis Today, 2023, 413: 114018.
    [46] PENG S, LI M, YANG X, et al. Atomic layer deposition of Pt nanoparticles on ZrO2 based metal-organic frameworks for increased photocatalytic activity[J]. Ceramics International, 2019, 45(14): 18128-18134. doi: 10.1016/j.ceramint.2019.05.306
    [47] CHEN X, ZHANG Y, KONG X, et al. Photocatalytic performance of the MOF-coating layer on SPR-excited Ag nanowires[J]. ACS omega, 2021, 6(4): 2882-2889. doi: 10.1021/acsomega.0c05229
    [48] GUO A, WANG X, LIU H, et al. Efficient photocatalytic degradation of water contaminants via Ag decorated porphyrin-based organic framework materials[J]. Surfaces and Interfaces, 2023, 38: 102843. doi: 10.1016/j.surfin.2023.102843
    [49] ZHAO Z, WANG C, PING Y, et al. Ru@MOF@ H-C3N4 heterojunction for visibleṇ light photocatalytic nitrogen fixation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 447: 115255. doi: 10.1016/j.jphotochem.2023.115255
    [50] WANG S, ZHANG J J, ZONG M Y, et al. Energy level engineering: Ru single atom anchored on Mo-MOF with a [Mo8O26(im)2]4–structure acts as a biomimetic photocatalyst[J]. ACS Catalysis, 2022, 12(13): 7960-7974. doi: 10.1021/acscatal.2c01756
    [51] WU X Q, HUANG D D, ZHOU Z H, et al. Ag-NPs embedded in two novel Zn3/Zn5-cluster-based metal–organic frameworks for catalytic reduction of 2/3/4-nitrophenol[J]. Dalton Transactions, 2017, 46(8): 2430-2438. doi: 10.1039/C7DT00024C
    [52] KAR A K, BEHERA A, SRIVASTAVA R. Pd-Embedded Ti metal-organic framework nanostructures for photocatalytic reductive N-Formylation of nitroarenes in water[J]. ACS Applied Nano Materials, 2022, 5(1): 464-475. doi: 10.1021/acsanm.1c03310
    [53] FAN C, WANG R, KONG P, et al. Modification of Au nanoparticles electronic state by MOFs defect engineering to realize highly active photocatalytic oxidative esterification of benzyl alcohol with methanol[J]. Catalysis Communications, 2020, 140: 106002. doi: 10.1016/j.catcom.2020.106002
    [54] HE H, ZHU Q Q, YAN Y, et al. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3[J]. Applied Catalysis B: Environmental, 2022, 302: 120840. doi: 10.1016/j.apcatb.2021.120840
    [55] WANG C P, LIAN X, LIN Y X, et al. Ultrafine Pt Nanoparticles Anchored on 2D Metal- Organic Frameworks as Multifunctional Electrocatalysts for Water Electrolysis and Zinc-Air Batteries[J]. Small, 2023: 2305201.
    [56] LI S, WANG R, XIE M, et al. Construction of trifunctional electrode material based on Pt-Coordinated Ce-Based metal organic framework[J]. Journal of Colloid and Interface Science, 2022, 622: 378-389. doi: 10.1016/j.jcis.2022.04.131
    [57] HE Z L, HUANG X, CHEN Q, et al. Pt nanoclusters embedded Fe-based metal-organic framework as a dual-functional electrocatalyst for hydrogen evolution and alcohols oxidation[J]. Journal of Colloid and Interface Science, 2022, 616: 279-286. doi: 10.1016/j.jcis.2022.02.073
    [58] YADAV D K, GANESAN V, SONKAR P K, et al. Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene[J]. Electrochimica Acta, 2016, 200: 276-282. doi: 10.1016/j.electacta.2016.03.092
    [59] BODKHE G A, HEDAU B S, DESHMUKH M A, et al. Selective and sensitive detection of lead Pb (II) ions: Au/SWNT nanocomposite-embedded MOF-199[J]. Journal of Materials Science, 2021, 56: 474-487. doi: 10.1007/s10853-020-05285-z
    [60] MEHMANDOUST M, ERK N, NASER M, et al. Molecularly imprinted polymer film loaded on the metal-organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos[J]. Food Chemistry, 2023, 404: 134627. doi: 10.1016/j.foodchem.2022.134627
    [61] LI J, LAI W, JIANG M, et al. Enhancing Ru (bpy)2+ 3@ TMU-13 electrochemiluminescence for ultrasensitive detection of AFP by a signal amplification strategy based on flower-like Au NPs/CoFe LDO/MoS2 NFs as double coreaction accelerators[J]. Sensors and Actuators B: Chemical, 2023, 393: 134316. doi: 10.1016/j.snb.2023.134316
    [62] YANG D, HUI Y, LIU Y, et al. Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk[J]. Food Chemistry, 2023, 433: 137362.
    [63] KAVYA K V, VARGHEESE S, PATTAPPAN D, et al. Screen-printed electrode modified by Au/NH2-MIL-125 (Ti) composite for electrochemical sensing performance of gallic acid in green tea and urine samples[J]. Chemical Physics Letters, 2022, 807: 140074. doi: 10.1016/j.cplett.2022.140074
    [64] LIANG H, CHEN C, ZENG J, et al. Dual-signal electrochemical biosensor for neutrophil gelatinase-associated lipocalin based on MXene-polyaniline and Cu-MOF/single-walled carbon nanohorn nanostructures[J]. ACS Applied Nano Materials, 2022, 5(11): 16774-16783. doi: 10.1021/acsanm.2c03715
    [65] ZHU X, ZHU G, GE Y, et al. Aunano/Fe-MOF hybrid electrode for highly sensitive determination of trace As (III)[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115642. doi: 10.1016/j.jelechem.2021.115642
    [66] LI W, YANG Y, MA C, et al. A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core-shell Cu2O@ Cu-MOF@ Au NPs nanostructure attached with HRP for triple signal amplification[J]. Journal of Materials Science, 2020, 55: 13980-13994. doi: 10.1007/s10853-020-04904-z
    [67] ZHONG W, ZHANG Y, ZHAO H, et al. High electrochemical active Au-NP/2D zinc-metal organic frameworks heterostructure-based ECL sensor for the miRNA-522 detection in triple negative breast cancer[J]. Talanta, 2023, 265: 124875. doi: 10.1016/j.talanta.2023.124875
    [68] YANG H, HAN L, LIU J, et al. Highly sensitive electrochemical biosensor assembled by Au nanoparticle/MOF-5 composite electrode for DNA detection[J]. International Journal of Electrochemical Science, 2019, 14(6): 5491-5507. doi: 10.20964/2019.06.49
    [69] BODKHE G A, KHANDAGALE D D, MORE M S, et al. Ag@MOF-199 metal organic framework for selective detection of nickel ions in aqueous media[J]. Ceramics International, 2023, 49(4): 6772-6779. doi: 10.1016/j.ceramint.2022.10.135
    [70] KWON D, KIM J. Ag metal organic frameworks nanocomposite modified electrode for simultaneous electrochemical detection of copper (II) and lead (II)[J]. Journal of Applied Electrochemistry, 2021, 51(8): 1207-1216. doi: 10.1007/s10800-021-01569-7
    [71] MENG D, GAN X, TIAN T. An Electrochemical Sensing Method for Aflatoxin B1 Detection Based on Pt-Coordinated Titanium-Based Porphyrin MOF[J]. International Journal of Electrochemical Science, 2022, 17(2): 220247. doi: 10.20964/2022.02.51
    [72] JIANG J, CAI Q, DENG M. Construction of Electrochemical Aptamer Sensor Based on Pt-Coordinated Titanium-Based Porphyrin MOF for Thrombin Detection[J]. Frontiers in Chemistry, 2022, 9: 812983. doi: 10.3389/fchem.2021.812983
    [73] TAY L L, POIRIER S, GHAEMI A, et al. Influences of nanoparticle loading in paper-SERS sensors[C]//Enhanced Spectroscopies and Nanoimaging 2023. SPIE, 2023, 12654: 23-29.
    [74] PANNICO M, MUSTO P. A stable and sensitive 2D SERS sensor for bioanalytical applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 311: 123983. doi: 10.1016/j.saa.2024.123983
    [75] ZHENG J, HE L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive reviews in food science and food safety, 2014, 13(3): 317-328. doi: 10.1111/1541-4337.12062
    [76] ZHOU S, HU Z, ZHANG Y, et al. Differentiation and identification structural similar chemicals using SERS coupled with different chemometric methods: The example of fluoroquinolones[J]. Microchemical Journal, 2022, 183: 108023. doi: 10.1016/j.microc.2022.108023
    [77] ZHANG D, LIANG P, CHEN W, et al. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy[J]. Microchimica Acta, 2021, 188: 1-28. doi: 10.1007/s00604-020-04655-3
    [78] AI Y, LIANG P, WU Y, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)[J]. Food chemistry, 2018, 241: 427-433. doi: 10.1016/j.foodchem.2017.09.019
    [79] TSOUTSI D, SANLES-SOBRIDO M, CABOT A, et al. Common aspects influencing the translocation of SERS to biomedicine[J]. Current Medicinal Chemistry, 2018, 25(35): 4638-4652. doi: 10.2174/0929867325666180105101841
    [80] WANG B, LIU Y, AI C, et al. Highly sensitive SERS detection in a non-volatile liquid-phase system with nanocluster-patterned optical fiber SERS probes[J]. Optics Express, 2022, 30(10): 15846-15857. doi: 10.1364/OE.454409
    [81] LI J, LIU Z, TIAN D, et al. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering[J]. Nanoscale, 2022, 14(14): 5561-5568. doi: 10.1039/D2NR00298A
    [82] ZHOU H, ZHU A, WANG C, et al. Preparation of gold nanoparticles loaded MOF-199 for SERS detection of 5-hydroxyindole-3-acetic acid in serum[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 304: 123280. doi: 10.1016/j.saa.2023.123280
    [83] ZHANG Y, HU Y, LI G, et al. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy[J]. Microchimica Acta, 2019, 186: 1-10. doi: 10.1007/s00604-018-3127-5
    [84] WEI S, LI L, GOU L, et al. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide[J]. Food Chemistry, 2023, 429: 136991. doi: 10.1016/j.foodchem.2023.136991
    [85] YANG R, ZHANG B, WANG Y, et al. Sensitive determination of thiram in apple samples using a ZIF-67 modified Si/Au@ Ag composite as a SERS substrate[J]. Analytical Methods, 2023, 15(37): 4851-4861. doi: 10.1039/D3AY01338C
    [86] LAI H, DAI H, LI G, et al. Rapid determination of pesticide residues in fruit and vegetable using Au@ Ag NPs decorated 2D Ni-MOF nanosheets as efficient surface-enhanced Raman scattering substrate[J]. Sensors and Actuators B: Chemical, 2022, 369: 132360. doi: 10.1016/j.snb.2022.132360
    [87] LAI H, DAI H, LI G, et al. Rapid determination of pesticide residues in fruit and vegetable using Au@ Ag NPs decorated 2D Ni-MOF nanosheets as efficient surface-enhanced Raman scattering substrate[J]. Sensors and Actuators B: Chemical, 2022, 369: 132360. doi: 10.1016/j.snb.2022.132360
    [88] FIROUZJAEI M D, SHAMSABADI A A, SHARIFIAN Gh M, et al. A novel nanocomposite with superior antibacterial activity: a silver-based metal organic framework embellished with graphene oxide[J]. Advanced Materials Interfaces, 2018, 5(11): 1701365. doi: 10.1002/admi.201701365
    [89] WU Y M, ZHAO P C, JIA B, et al. A silver-functionalized metal-organic framework with effective antibacterial activity[J]. New Journal of Chemistry, 2022, 46(13): 5922-5926. doi: 10.1039/D1NJ06183F
    [90] LI X, ZHAO X, CHU D, et al. Silver nanoparticle-decorated 2D Co-TCPP MOF nanosheets for synergistic photodynamic and silver ion antibacterial[J]. Surfaces and Interfaces, 2022, 33: 102247. doi: 10.1016/j.surfin.2022.102247
    [91] HE Y, WANG X, ZHANG C, et al. Near-Infrared Light-Mediated Cyclodextrin Metal-Organic Frameworks for Synergistic Antibacterial and Anti-Biofilm Therapies[J]. Small, 2023, 19(35): 2300199. doi: 10.1002/smll.202300199
    [92] PAN W, LI Z, QIU S, et al. Octahedral Pt-MOF with Au deposition for plasmonic effect and Schottky junction enhanced hydrogenothermal therapy of rheumatoid arthritis[J]. Materials Today Bio, 2022, 13: 100214. doi: 10.1016/j.mtbio.2022.100214
    [93] DUAN W, LI B, ZHANG W, et al. Two-photon responsive porphyrinic metal-organic framework involving Fenton-like reaction for enhanced photodynamic and sonodynamic therapy[J]. Journal of Nanobiotechnology, 2022, 20(1): 217. doi: 10.1186/s12951-022-01436-3
    [94] YOU Q, ZHANG K, LIU J, et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy[J]. Advanced Science, 2020, 7(17): 1903341. doi: 10.1002/advs.201903341
    [95] MA Y, CHEN L, LI X, et al. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors[J]. Biomaterials, 2021, 275: 120917. doi: 10.1016/j.biomaterials.2021.120917
    [96] HUANG J, XU Z, JIANG Y, et al. Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy[J]. Journal of nanobiotechnology, 2021, 19: 1-13. doi: 10.1186/s12951-020-00755-7
    [97] ARSHAD S H M, NGADI N, AZIZ A A, et al. Preparation of activated carbon from empty fruit bunch for hydrogen storage[J]. Journal of Energy Storage, 2016, 8: 257-261. doi: 10.1016/j.est.2016.10.001
    [98] YANG S J, JUNG H, KIM T, et al. Recent advances in hydrogen storage technologies based on nanoporous carbon materials[J]. Progress in Natural Science: Materials International, 2012, 22(6): 631-638. doi: 10.1016/j.pnsc.2012.11.006
    [99] GENG Z, WANG D, ZHANG C, et al. Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure[J]. International journal of hydrogen energy, 2014, 39(25): 13643-13649. doi: 10.1016/j.ijhydene.2014.02.065
    [100] ZHOU H, ZHANG J, ZHANG J, et al. Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method[J]. Inorganic Chemistry Communications, 2015, 54: 54-56. doi: 10.1016/j.inoche.2015.02.001
    [101] THOMAS K M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials[J]. Dalton transactions, 2009, (9): 1487-1505. doi: 10.1039/b815583f
    [102] KANG P C, OU Y S, LI G L, et al. Room-temperature hydrogen adsorption via spillover in Pt nanoparticle-decorated UiO-66 nanoparticles: implications for hydrogen storage[J]. ACS Applied Nano Materials, 2021, 4(10): 11269-11280. doi: 10.1021/acsanm.1c02862
    [103] KIM J, YEO S, JEON J D, et al. Enhancement of hydrogen storage capacity and hydrostability of metal-organic frameworks (MOFs) with surface-loaded platinum nanoparticles and carbon black[J]. Microporous and Mesoporous Materials, 2015, 202: 8-15. doi: 10.1016/j.micromeso.2014.09.025
    [104] LI Z Y, SUN L X, XU F, et al. Modulated noble metal/2D MOF heterostructures for improved hydrogen storage of MgH2[J]. Rare Metals, 2024, 43(4): 1672-1685. doi: 10.1007/s12598-023-02496-6
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  42
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-05-28
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回