Stress-strain spectral response of Eu3+/Tb3+ doped YAG-ZrO2 fiber reinforced aluminum matrix composites
-
摘要: 复合材料的失效通常来自于外加载荷的周期循环过程中应力的积累与释放,因此,应力应变监测在纤维增强铝基复合材料的寿命评估和失效预警等方面具有非常重要的影响,但是复合材料变形区的应力应变很难直观的表征,利用稀土的荧光性能对应力-应变进行检测是一种可行的检测方法,其优点是稀土离子的荧光谱线丰富大多尖锐并且容易观测,而且大多对应力敏感性高。选取Eu3+和Tb3+作为发光中心,通过静电纺丝掺杂到YAG-ZrO2复合纤维中,以下简称(YAG:Eu3+-ZrO2)cf和(YAG:Tb3+-ZrO2)cf。通过热压烧结将(YAG:Eu3+/Tb3+-ZrO2)cf和2024铝粉复合,得到(YAG:Eu3+/Tb3+-ZrO2)cf增强铝基复合材料。利用动态拉伸荧光传感对(YAG:Eu3+/Tb3+-ZrO2)cf增强铝基复合材料在动态拉伸下的发光特性进行了表征,并通过发射光谱重心波长随应力的变化研究内应力的发光传感机制。结果表明,随着拉应力的增加,Eu3+的5D0→7F1跃迁表现出有规律的红移,Tb3+的5D4-7F5跃迁表现出有规律的蓝移,并且Eu3+表现出更高的传感精度。本文为基于Eu3+和Tb3+应力传感器材料的开发提供了思路。Abstract: Composite materials typically fail due to the accumulation and release of stress during the cyclic loading process of external loads. Therefore, stress-strain monitoring plays a crucial role in the assessment of the lifespan and failure prediction of fiber-reinforced aluminum-based composite materials. However, it is challenging to visually characterize stress and strain in the deformation zone of composite materials. Using the fluorescence properties of rare earth ions for stress-strain detection is a feasible approach. The advantage of this method lies in the rich and sharp fluorescence spectra of rare earth ions, which are easy to observe and are highly sensitive to stress. In this study, Eu3+ and Tb3+ were selected as luminescent centers and incorporated into YAG-ZrO2 composite fibers, hereinafter referred to as (YAG:Eu3+/Tb3+-ZrO2)cf These were combined with 2024 aluminum powder through hot pressing and sintering to create (YAG:Eu3+/Tb3+-ZrO2)cf-reinforced aluminum-based composite materials. Dynamic tensile fluorescence sensing was used to characterize the luminescent properties of (YAG:Eu3+/Tb3+-ZrO2)cf -reinforced aluminum-based composite materials under dynamic tensile conditions. Additionally, the change in emission spectrum centroid wavelength with stress was investigated to study the luminescence sensing mechanism of internal stress. The results indicate that with increasing tensile stress, Eu3+ displays a systematic red shift in the 5D0-7F1 transition, Tb3+ exhibits a consistent blue shift in the 5D4-7F5 transition, while with Eu3+ demonstrating higher sensing accuracy. This study provides insights into the development of stress sensor materials based on Eu3+ and Tb3+.
-
Key words:
- Aluminum matrix composites /
- rare earth ions /
- stress luminescence /
- stress-strain /
- spectral response
-
图 3 (a)(b)(YAG:Tb3+/Eu3+-ZrO2)cf的SEM图像;(c)(d)基体和(YAG:Tb3+/Eu3+-ZrO2)cf/Al复合材料断口形貌图;(e)(f)(YAG:Tb3+/Eu3+-ZrO2)cf的EDS能谱图
Figure 3. (a)(b)SEM images of (YAG:Tb3+/Eu3+-ZrO2)cf;(c)(d)matrix and (YAG:Tb3+/Eu3+-ZrO2)cf aluminum matrix composite Fracture morphology;(e)(f)EDS spectra of (YAG:Tb3+/Eu3+-ZrO2)cf
表 1 2024铝合金粉的化学成分
Table 1. Chemical composition of 2024 Al alloy powder
Element Cu Mg Fe Si Mn Zn Others Al Content/wt% 4.5 1.4 0.5 0.5 0.48 0.25 0.25 Bal. 表 2 未掺杂Eu3+的YAG与8%Eu3+掺杂YAG的XRD数据
Table 2. XRD Data of YAG Undoped with Eu3+ and YAG Doped with 8% Eu3+
samplecrystal plane parameter (420) (521) (532) 2θ/(°) d/nm 2θ/(°) d/nm 2θ/(°) d/nm YAG 33.416 1.2021 41.249 1.2024 46.489 1.2024 YAG:Eu3+ (8%) 33.357 1.2048 41.159 1.2045 46.409 1.2037 Notes:2θ is the incident angle of X-ray diffraction of the material; d is the crystal plane spacing. 表 3 Al基(111)晶面的弹性常数和泊松比
Table 3. Elastic constants and Poisson's ratios of Al-based (111) planes
phase crystal plane ν E Al 111 0.19035 44.465 Notes:ν and E are the elastic constants and poisson's ratios of the Al (111) Plane. 表 4 (YAG:Eu3+-ZrO2)cf/Al复合材料内应力计算结果
Table 4. Calculation Results of Internal Stress of (YAG:Eu3+-ZrO2)cf/Al Composites
Tensile stress (MPa) 2θ/(°) Β/(°) b/(°) β/rad εm×10-3 σ/MPa 50 MPa 41.2608 0.7577 0.096 0.0115 7.6689 340.9976 100 MPa 41.0534 0.7660 0.096 0.0117 7.8079 347.1783 150 MPa 40.9941 0.7739 0.096 0.0118 7.9125 351.8293 200 MPa 40.3919 0.7810 0.097 0.0119 8.1134 360.4623 250 MPa 40.3433 0.7993 0.097 0.0122 8.3414 370.9003 Notes:2θ and B are the incident angles and half-width of (YAG:Eu3+ -ZrO2)cf/Al composite X-ray diffraction; b is the width of the instrument slit; β is the result of deducting the slit width; εm and σ are the microscopic strain and internal stress of the composite, respectively. -
[1] 黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12): 4220-4227.HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4220-4227(in Chinese). [2] Li J C, CHEN X W, HUANG F L. FEM analysis on the deformation and failure offiber reinforced metallic glass matrix composite[J]. Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing, 2016, 652: 145-166. [3] CHEN M, XING S L, LIU H B, et al. Determination of Surface Mechanical Property and Residual Stress Stability for ShotPeened SAF2507 Duplex Stainless Steel by In Situ X-Ray Diffraction Stress Analysis,[J]. Journal of Materials Research and Technology, 2020, 9(4): 7644-7654. doi: 10.1016/j.jmrt.2020.05.028 [4] REZENDE A B, FONSECA S T, MINICUCCI D J, et al. Residual Stress Characterization by X-Ray Diffraction and Correlation with Hardness in a Class D Railroad Wheel[J]. Journal of Materials Engineering and Performance, 2020, 29: 6223-6227. doi: 10.1007/s11665-020-05097-x [5] SANTOS D, MACHADO M A, MONTEIRO J, et al. Non-Destructive Inspection of High Temperature Piping Combining Ultrasound and Eddy Current Testing[J]. Sensors, 2023, 23(6): 3348. doi: 10.3390/s23063348 [6] CIECIELEG K, KECIK K, SKOCZYLAS A, et al. Non-destructive detection of real defects in polymer composites by ultrasonic testing and recurrence analysis[J]. Materials, 2022, 15(20): 7335. doi: 10.3390/ma15207335 [7] XU Y, XU K, WANG H, et al. Research progress on magnetic memory nondestructive testing[J]. Journal of Magnetism and Magnetic Materials, 2023, 565: 170245. doi: 10.1016/j.jmmm.2022.170245 [8] REBELO K J, HOFMANN M, GAN W M, et al. Non-destructive Neutron Surface Residual Stress Analysis[J]. Journal of Nondestructive Evaluation, 2019, 38: 1-6. doi: 10.1007/s10921-018-0529-6 [9] HUANG Y, SHANG J, REN L. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. [10] NAZAMI G R, PANDA B K, SAHOO S. Finite element simulation of residual stress in direct metal laser sintering of AlSi10Mg built part: Effect of laser spot overlapping[J]. Materials Today: Proceedings, 2021, 41: 445-450. doi: 10.1016/j.matpr.2020.09.844 [11] JEON M H, CHO H J, SIM C H, et al. Experimental and numerical approach for predicting global buckling load of pressurized unstiffened cylindrical shells using vibration correlation technique[J]. Composite Structures, 2023, 305: 116460. doi: 10.1016/j.compstruct.2022.116460 [12] REID A, MARSHALL M, MARTINZE I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction[J]. Materials & Design, 2020, 190: 108571. [13] LIMA C R C, DOSTA S, GUILEMANY J M, et al. The application of photoluminescence piezospectroscopy for residual stresses measurement in thermally sprayed TBCs[J]. Surface and Coatings Technology, 2017, 318: 147-156. doi: 10.1016/j.surfcoat.2016.07.084 [14] 岳俊昕, 张巍巍. 荧光方法测量应力[J]. 失效分析与预防, 2012, 7(1): 6.YUE J X, ZHANG W W, Fluorescence method for measuring stress[J]. Failure Analysis and Prevention, 2012, 7(1): 6. (in Chinese). [15] QIAO J, MU X, QI L, et al. Construction of fluorescent polymericnano-thermometers for intracellular temperature imaging: A review[J]. Biosensors and Bioelectronics, 2016, 85: 403-413. doi: 10.1016/j.bios.2016.04.070 [16] WITTLIN A, PRZYBYLIŃSKA H, BERKOWSKI M, et al. Ambient and high pressure spectroscopy of Ce3+ doped yttrium gallium garnet[J]. Optical Materials Express, 2015, 5(8): 1868-1880. doi: 10.1364/OME.5.001868 [17] WANG X, Wu R T, ATKINSON A. CHARACTERISATION of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J]. Surface and Coatings Technology, 2010, 204(15): 2472-2482. doi: 10.1016/j.surfcoat.2010.01.035 [18] ZHANG J, CAI G, WANG W, et al. Tuning of emission by Eu3+ concentration in a pyrophosphate: the effect of local symmetry[J]. Inorganic Chemistry, 2019, 59(4): 2241-2247. [19] BARZOWSKA J, SZCZODROWSKI K, KROśNICKI M, et al. Influence of high pressure on Sr2SiO4: Eu2+ luminescence[J]. Optical Materials, 2012, 34(12): 2095-2100. doi: 10.1016/j.optmat.2012.05.020 [20] DONG X, ZHANG H, YANG Y, et al. High pressure luminescence of InNbO4: Eu3+: A crystal-field analysis[J]. Journal of Molecular Structure, 2021, 1229: 129593. doi: 10.1016/j.molstruc.2020.129593 [21] ZHAO S, YAN P, LI M, et al. Residual stress evolution of 8YSZ: Eu coating during thermal cycling studied by Eu3+ photoluminescence piezo-spectroscopy[J]. Journal of Alloys and Compounds, 2022, 913: 165292. doi: 10.1016/j.jallcom.2022.165292 [22] WEI Y, WU Z, JIA Y, et al. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4: Eu2+[J]. Journal of Alloys and Compounds, 2015, 646: 86-89. doi: 10.1016/j.jallcom.2015.05.159 [23] ZHANG W, CHENG Y, LIN H, et al. Ratiometric mechanoluminescence in LiSrPO4: Eu2+/Eu3+ for stress sensing: Dopant concentration dependent sensitivity[J]. Materials Research Bulletin, 2023, 163: 112219. doi: 10.1016/j.materresbull.2023.112219 [24] QIU L, MAO J, ZHAO Z, et al. Temperature sensing properties of self-crystalized Ba2LaF7: Tb3+ glass ceramics[J]. Ceram. Int., 2021, 47(5): 6244. doi: 10.1016/j.ceramint.2020.10.202 [25] HE L, MA C, DONG Q Z, et al. Nondestructive Stress Detection of Aluminum Matrix Composites Based on Luminescence Characteristics of Eu3+ Ions[J]. Journal of Materials Engineering and Performance, 2023, 32(5): 2445-2454. doi: 10.1007/s11665-022-07269-3 [26] CHENG X, YUAN C, SU L, et al. Effects of pressure on the emission of CaWO4: Eu3+ phosphor[J]. Optical Materials, 2014, 37: 214-217. doi: 10.1016/j.optmat.2014.05.030 [27] ZHANG W W, QIN C F, SHI J L, et al. Shear stress response and fluorescence piezo-spectroscopic properties of SrSiAlN3: Eu2+/epoxy composite[J]. Journal of Luminescence, 2019, 206: 240-243. doi: 10.1016/j.jlumin.2018.10.049 [28] HE L, PAN L, LI W, et al. Spectral response characteristics of Eu3+ doped YAG-Al2O3 composite nanofibers reinforced aluminum matrix composites[J]. Optical Materials, 2020, 104: 109845. doi: 10.1016/j.optmat.2020.109845 [29] QIN C F, ZHANG W, SHI J, et al. Fluorescence compressive stress sensing with SrSiAlN3: Eu2+/resin composites[J]. Chinese journal of sensors and actuators, 2019, 32(1): 57-61. [30] 黄继武. 多晶材料X射线衍射: 实验原理, 方法与应用[M]. 冶金工业出版社, 2012.HUANG J W. X-ray diffraction of polycrystalline mate rials: experimental principles, methods and applications[M]. Metallurgical Industry Press, 2012. (in chinese [31] 中华人民共和国国家质量监督检验检疫总局(标准制定单位). 纳米材料晶粒尺寸及微观应变的测定X射线衍射线宽化法: GB/T 23413.159-2009 [S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (standard setting unit). Determination of grain size and microstrain of nanomaterials X-ray diffraction line widening method: GB/T 23413.159-2009 [S]. Beijing: China Standard Press, 2009. (in chinese [32] LI L, MIYAMOTO G, ZHANG Y, et al. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy[J]. Journal of Materials Science & Technology, 2024, 184: 221-234. [33] GUPTA S S, VAN HUIS M A, DIJKSTRA M, et al. Depth dependence of vacancy formation energy at (100), (110), and (111) Al surfaces: A first-principles study[J]. Physical Review B, 2016, 93(8): 085432. doi: 10.1103/PhysRevB.93.085432