Processing math: 5%

B4C-SiC复合陶瓷力学性能的研究进展

张巍

张巍. B4C-SiC复合陶瓷力学性能的研究进展[J]. 复合材料学报, 2025, 42(1): 88-103. DOI: 10.13801/j.cnki.fhclxb.20240516.001
引用本文: 张巍. B4C-SiC复合陶瓷力学性能的研究进展[J]. 复合材料学报, 2025, 42(1): 88-103. DOI: 10.13801/j.cnki.fhclxb.20240516.001
ZHANG Wei. Advance in investigation on mechanical properties of B4C-SiC composite ceramics[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 88-103. DOI: 10.13801/j.cnki.fhclxb.20240516.001
Citation: ZHANG Wei. Advance in investigation on mechanical properties of B4C-SiC composite ceramics[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 88-103. DOI: 10.13801/j.cnki.fhclxb.20240516.001

B4C-SiC复合陶瓷力学性能的研究进展

基金项目: 辽宁省自然科学基金(2022-MS-013);中国科学院金属研究所自主部署项目(E255L401);沈阳材料科学国家研究中心青年人才项目(E21SL412)
详细信息
    通讯作者:

    张巍,博士,副研究员,硕士生导师,研究方向为无机非金属材料结构和物性 E-mail: cnzhangwei2008@126.com

  • 中图分类号: TB321;TB332

Advance in investigation on mechanical properties of B4C-SiC composite ceramics

Funds: Natural Science Foundation of Liaoning Province of China (2022-MS-013); Starting Grants of Institute of Metal Research, Chinese Academy of Science (E255L401); Youth Talent Project of Shenyang National Laboratory for Materials Science (E21SL412)
  • 摘要:

    B4C-SiC复合陶瓷结合了碳化硼(B4C)和碳化硅(SiC)的性能,具有良好的物理和力学性能。与单相B4C陶瓷相比,B4C-SiC复合陶瓷具有更高的断裂韧性;与单相SiC陶瓷相比,B4C-SiC复合陶瓷具有更大的硬度。B4C-SiC复合陶瓷有望替代单相B4C陶瓷和单相SiC陶瓷广泛应用于工程领域。B4C-SiC复合陶瓷的力学性能与B4C-SiC复合粉体的颗粒分散均匀性有关。同时,B4C-SiC复合陶瓷的力学性能还受微观结构和相组成的影响。为了降低B4C-SiC复合陶瓷的烧结温度,常在原料中添加烧结助剂,常用的烧结助剂主要有碳、氧化物、硼化物、碳化物、金属单质、非金属单质(除碳外)。不同烧结助剂促进B4C-SiC复合陶瓷烧结的机制各不相同;同时,这些烧结助剂通过影响B4C-SiC复合陶瓷的微观结构进而影响其力学性能。本文根据B4C-SiC复合陶瓷力学性能的研究结果,从B4C-SiC复合粉体、微观结构、相组成和烧结助剂等方面详细阐述了B4C-SiC复合陶瓷力学性能的影响因素,以期为B4C-SiC复合陶瓷的设计和研究提供依据。

    Abstract:

    B4C-SiC composite ceramics combine the properties of boron carbide (B4C) and silicon carbide (SiC) and have good physical and mechanical properties. Compared with monolithic B4C ceramics, B4C-SiC composite ceramics have improved fracture toughness. Compared with monolithic SiC ceramics, B4C-SiC composite ceramics possess increased hardness. B4C-SiC composite ceramics are expected to replace monolithic B4C ceramics and monolithic SiC ceramics to be widely used in engineering fields. The mechanical properties of B4C-SiC composite ceramics are related to the particle dispersion uniformity of B4C-SiC composite powders. Meanwhile, the mechanical properties of B4C-SiC composite ceramics are also influenced by their microstructure and phase composition. In order to reduce the sintering temperature of B4C-SiC composite ceramics, sintering additives are often added to the raw materials. The commonly used sintering additives include carbon, oxides, borides, carbides, metallic elements, and non-metallic elements (excluding carbon). The mechanisms by which different sintering additives promote the sintering of B4C-SiC composite ceramics vary. At the same time, these sintering additives affect the microstructure of B4C-SiC composite ceramics, which in turn affects their mechanical properties. Based on the research results of mechanical properties of B4C-SiC composite ceramics in recent years, the influencing factors of mechanical properties of B4C-SiC composite ceramics are summarized in this review from the aspects of B4C-SiC composite powders, microstructure, phase composition, and sintering additives, so as to provide a basis for the design and investigation of B4C-SiC composite ceramics.

  • 树脂基纤维增强复合材料(简称“复材”)具有轻质、高强、耐腐蚀等突出优点,被广泛应用于建筑、交通、能源、航空航天及体育等行业[1]。全球复合材料市场规模预计将从2019年的906亿美元增长至2024年的1316亿美元[2]。随着复合材料应用日益广泛,制造期间产生的废料、测试样品以及退役产品等复合材料固体废弃物(复材固废)总量也逐年攀升[3-4]。以风电领域为例,根据我国现有风电装机容量和未来总体规划预测,2010至2024期间年我国风力发电叶片废弃物累计总量为1~1.3万吨,其后5年将增至19.7万吨,预计到2040年累计总量将达到240万吨左右[5]。这些复材废弃物不可降解,其数量的快速增长将对环境造成巨大压力[6]

    传统复材固废的处理方法包括直接填埋和焚烧。前者简单便捷、应用最广,但占用大量土地,并对填埋地的自然环境造成持久性污染[6]。各国日益收紧的固废填埋政策也导致固废填埋费用逐步攀升[7-8]。焚烧处理成本同样较高,且会产生有毒有害气体,而原固废体积一半左右的残余灰烬仍需填埋处理[9-11]

    常见复材固废回收再利用方法主要有化学回收法、热解回收法以及机械回收法[6, 11-13]。化学回收法采用不同溶剂使聚合物的化学键断裂,从而将树脂基体与纤维分离[14]。化学法成本高、耗时长,目前处于实验室研究阶段,尚未推广应用[6]。热解法一般指采用450℃以上的高温将复材固废进行裂解,从而将纤维从复材固废中分离出来[11]。该法适用于化学性能稳定且产品附加值较高的碳纤维复材固废(碳纤固废)的再生利用[15-16],已成功商业化,采用此法对碳纤固废进行再生利用的公司包括英国ELG Carbon Fiber Ltd.、意大利Karborek Spa、美国Material Innovation Technology和国内的复源新材料科技有限公司等[11, 17]。然而,热解法对回收利用占总体复材市场规模95%以上的玻璃纤维(玻纤)复材固废并不经济适用[6]。其原因为玻璃纤维附加值低,且力学性能在回收处理后显著降低[8, 11]

    机械回收法指通过破碎、粉碎、研磨等工序将复材固废处理成不同形状的回收产物,并作为填充材料[12, 18-20]或抗裂增强材料[21-23]用于制备水泥基产品或其他产品。有学者将复材固废处理成不同尺寸的块体、颗粒以及粉末,用于部分替代砂石骨料以制备混凝土[12, 18-20]。相比砂石骨料,玻纤固废粉碎料的弹性模量小、与包裹基体的粘结性能弱,从而导致混凝土强度相对较低[12, 18-20]。将复材固废处理成短条状或细纤维,作为抗裂增强材料制备纤维混凝土,所获混凝土的力学性能要优于基于粗、细骨料替代法制备的混凝土[21-24]。综上所述,机械回收法可能是解决玻纤固废回收利用难题的有效方法之一。

    本研究团队此前已经提出了一种新的玻纤复材固废回收利用方法:通过机械切割及铣削将玻纤复材固废加工成长度30~100 mm,宽度3~5 mm,厚度0.5~1.5 mm的粗纤维,并用于制备玻纤复材固废粗纤维混凝土(Macro fibre reinforced concrete,MFRC)[25]。目前,关于MFRC的研究还处于起步探索阶段,仅有少数文献对MFRC材料开展了试配试验研究和基本力学性能测试[25-30]。结果表明,玻纤复材固废粗纤维具有作为混凝土中抗裂增强材料的潜力,然而关于粗纤维对混凝土力学性能的影响规律尚未有系统的研究成果。鉴于此,本文通过一系列轴压、劈拉试验,研究了粗纤维体积掺量、厚度、长度对两种配比混凝土的力学性能的影响,评估了现有FRC劈拉强度预测公式对MFRC劈拉强度的预测效果,并基于试验结果提出了MFRC劈拉强度预测公式。

    本研究所用粗纤维由某废弃风机叶片通过机械切割及铣削处理得到,主要步骤包括:(1)将完整叶片解体为若干便于运输的粗切节段,并将其切割为长度为0.5~3 m的板材(图1(a));(2)将板材切割为长度30~100 mm的块体(图1(b));(3)采用自动铣削机床(图1(c)),顺着原始叶片的纤维铺层主方向将块体进一步切割成长度30~100 mm,宽度3~5 mm,厚度0.5~1.5 mm的粗纤维(图1(d))。经测试,本文所用粗纤维的密度为1.97 g/cm3

    图  1  风机叶片制备粗纤维的机械方法
    Figure  1.  Mechanical method for producing macro fibres from a wind turbine blade
    GFRP—Glass fibre reinforced polymer

    光学显微镜(OM)和扫描电镜(SEM)图像显示:粗纤维由树脂基体和纤维两相组成,大部分纤维丝嵌置于树脂基体中,但也有少量纤维丝裸露于粗纤维表面,粗纤维表面存在纤维丝损伤断裂和树脂基体剥落的现象(图2)。回收粗纤维的力学性能低于新出厂的风机叶片,主要原因为:(1)叶片在服役期间的性能退化;(2)运输退役叶片过程中造成的损伤;(3)切割及铣削处理造成的损伤[25]。单根粗纤维可能包含多层原始复合材料铺层,而层间在铣削加工剪切力作用下容易受到损伤,因而发生层间脱离现象,造成粗纤维力学性能的降低。对于本研究所采用的机械加工工艺,所制备的粗纤维厚度超过1.5 mm时层间脱离现象较为明显。

    图  2  粗纤维表面的粗糙纹理
    Figure  2.  Rough texture of macro fibre surface

    本研究采用5种不同尺寸的粗纤维,从中各随机挑选200根以对其实际几何尺寸进行了统计(表1)。对于名义尺寸为90 mm×4.5 mm×0.5 mm的粗纤维,其实际平均长度、宽度和厚度分别为91.20、4.49和0.54 mm。其余4种规格粗纤维的实际几何尺寸也接近对应的名义尺寸。

    表  1  回收粗纤维统计参数
    Table  1.  Statistical properties of recycled macro fibres (MF)
    Designation Nominal
    dimensions/
    mm
    Length/mm Width/mm Thickness/mm Tensile strength/MPa Elastic modulus/GPa
    Average Standard
    deviation
    Average Standard
    deviation
    Average Standard
    deviation
    Average Standard
    deviation
    Average Standard
    deviation
    MF-1 90×4.5×0.5 91.20 1.94 4.49 0.43 0.54 0.16 554 135 37.7 7.3
    MF-2 90×4.5×1.2 90.57 4.56 4.57 0.36 1.26 0.26
    MF-3 90×4.5×2.2 87.60 2.97 4.57 0.75 2.26 0.53
    MF-4 60×4.5×0.5 58.25 1.94 4.63 0.80 0.54 0.19
    MF-5 30×4.5×0.5 33.30 1.20 4.81 0.48 0.50 0.12
    下载: 导出CSV 
    | 显示表格

    根据ASTM 3039标准[31]对9个粗纤维测试试件的静力拉伸性能进行测试。拉伸试件名义尺寸为150 mm×4.5 mm×1 mm,名义标距为60 mm。为防止夹持部位发生破坏,采用环氧树脂将尺寸为45 mm×34 mm×1 mm的铝片粘贴于拉伸试件端部。拉伸试验破坏后的粗纤维试件如图3所示。粗纤维平均拉伸强度为554 MPa,标准差为135 MPa,其弹性模量平均值为37.7 GPa,标准差为7.3 GPa。可见粗纤维在力学性能上有显著的离散性,这与前期研究中的观察一致[25, 32]。其离散性来源于:(1)固废来源不同;即便来源于同一叶片,不同部位的纤维铺层方向、纤维含量也不同;(2)切割和铣削处理造成的损伤差异。

    图  3  拉伸破坏后的粗纤维试件
    Figure  3.  Macro fibre specimens after tensile failure

    本文设置两批次共11组试件,如表2所示。批次1的试件用于研究粗纤维体积分数对MFRC轴压和劈拉性能的影响,批次2的试件用于研究粗纤维长度、厚度以及混凝土配合比的影响。每组制备尺寸均为150 mm×300 mm(直径×高度)的圆柱抗压试件和劈拉试件各3个。在试件组别的命名中,“S”代表批次,“W”代表水灰比,“L”代表纤维长度,“V”代表纤维体积分数,“T”代表纤维厚度。例如,S1W0.32L90V-0.5%T0.5-1代表第一批,混凝土水灰比为0.32,粗纤维长度为90 mm,粗纤维体积分数为0.5vol%,粗纤维厚度为0.5 mm的同组3个试件中的第一个。此外,为便于后续讨论,每个组别也被赋予一个简化编号。例如,组别1-3代表批次1中的第3组。

    表3为本研究采用的两种依据普通混凝土配合比设计规程JGJ 55—2011[33] 确定的配合比(C60和C40);在本文中,对混凝土配比无特别说明时,所讨论对象均为配比一混凝土。在预试验中,掺入1.5vol%粗纤维的C40混凝土的坍落度由180 mm急剧下降至30 mm以下,且掺入2vol%粗纤维的混凝土搅拌困难,未能成型。原因在于粗纤维尺寸较大且表面粗糙,容易“结团”。因此,在正式试验中,除原C40配比(水灰比0.47,砂率0.4)外,新加入了一种C60配比(水灰比0.32,砂率0.45)。C60配比的水灰比较低,胶凝材料用量大,容易形成粘稠的浆体,因此提升砂率可以改善流动性,减少空隙率,提升密实度。因掺入粗纤维会显著影响混凝土的流动性,在试配试验中将不含粗纤维的两种配比混凝土的目标坍落度定为200 mm,以给后续因粗纤维而导致的坍落度下降提供空间。此外,通过试配确定了两种混凝土配比的减水剂用量。两种不同配比混凝土的实测坍落度分别为220 mm和195 mm,接近预期的200 mm。

    表  2  试件设计
    Table  2.  Specimen design
    No. Mix Water/cement ratio Fibre length/mm Fibre thickness/mm Fibre volume
    fraction/vol%
    No. of specimens
    Compression Splitting
    1-1 S1W0.32L0V0%T0 0.32 0 3 3
    1-2 S1W0.32L90V0.5%T0.5 0.32 90 0.5 0.5 3 3
    1-3 S1W0.32L90V1%T0.5 0.32 90 0.5 1 3 3
    1-4 S1W0.32L90V1.5%T0.5 0.32 90 0.5 1.5 3 3
    1-5 S1W0.32L90V2%T0.5 0.32 90 0.5 2 3 3
    2-1 S2W0.32L90V1.5%T1.2 0.32 90 1.2 1.5 3 3
    2-2 S2W0.32L90V1.5%T2.2 0.32 90 2.2 1.5 3 3
    2-3 S2W0.32L60V1.5%T0.5 0.32 60 0.5 1.5 3 3
    2-4 S2W0.32L30V1.5%T0.5 0.32 30 0.5 1.5 3 3
    2-5 S2W0.47L90V1.5%T0.5 0.47 90 0.5 1.5 3 3
    2-6 S2W0.47L0V0%T0 0.47 0 3 3
    下载: 导出CSV 
    | 显示表格
    表  3  混凝土基体配合比
    Table  3.  Mix proportions of concrete matrix
    Mix Strength grade Fresh water/
    cement ratio
    Fresh water/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Fine aggregate/
    (kg·m−3)
    Coarse aggregate/
    (kg·m−3)
    Water reducer/%
    1 C60 0.32 160 500 795 970 0.45
    2 C40 0.47 185 395 715 1075 0.19
    下载: 导出CSV 
    | 显示表格

    粗骨料为5~20 mm碎石集料,细骨料为天然河砂,水泥采用强度等级为42.5R的石井牌普通硅酸盐水泥。在混凝土浇筑前对碎石集料进行清洗以去除其表面淤泥及其他杂质,河砂和碎石集料经过阳光晒干以去除其内部水分。在混凝土搅拌过程中,先将其他组份拌合均匀,然后继续搅拌1 min,在此期间匀速加入粗纤维。对坍落度进行测试后,将混凝土拌合物浇筑至模具内,24 h后对试件进行脱模,然后将其置于湿润室温环境下进行养护。需要说明的是,因疫情影响,至加载时试件的实际龄期约为6个月。所有试件的试验工作都在13 d内完成。

    采用意大利MATEST 4000 kN伺服控制压力试验机对MFRC圆柱体进行轴压强度测试(图4(a)),具体操作依照ASTM C39规范执行[34]。试件加载前,采用高强石膏对圆柱体试件上下两端表面进行找平,确保荷载能够均匀地施加于试件上下端。试验全程采用位移控制,加载速率设为0.18 mm/min,当轴压荷载降至峰值荷载的20%时,加载结束。

    图  4  试验装置
    Figure  4.  Test setups

    在圆柱试件半高处设置有两个标距为80 mm的环向应变片,以及两个标距为100 mm的纵向应变片,纵向应变片主要用于监测加载初始阶段试件的同心度。采用位移计测量试件的轴向变形,通过套箍将两个位移计对称设置于圆柱体试件的中心高度120 mm(即位移计的标距=120 mm)区域上,其平均读数除以标距为轴向应变。需要说明的是,当荷载达到峰值后,试件表面裂纹逐渐发展,套箍可能发生移位,致使位移传感器数值不能正确反映轴向应变。因此,上述位移计读数仅用于测量峰值荷载前的轴向应变。在加载平台上另外设置两个位移传感器以监测试件全高的轴向变形。峰值荷载后的实际轴向应变由以下方法求得:实际轴向应变=(全高位移计平均读数−峰值荷载处的全高位移计平均读数)/试件全高+峰值荷载处的套箍位移计平均读数/位移计标距。依据试验所得圆柱体轴压应力-应变全曲线(包含上升和下降段),依照ASTM C469 规程[35]获取弹性模量(E)、峰值应变(εco)及其他力学参数。

    依照ASTM C496 实验规程,采用前述相同压力试验机对MFRC圆柱体进行劈拉强度测试(图4(b))[36]。为保证劈拉力沿试件长度方向均匀分布,将尺寸为300 mm×2.5 mm×3 mm的木垫片粘贴于圆柱试件上下承压表面,并与中心线对齐;其后,将圆柱试件置于劈拉夹具内,加载条沿试件中心线对齐。试验全程采用劈拉应力控制,以1.2 MPa/min的速率加载至试件破坏。劈拉强度fsp由下式计算:

    fsp=2Pπld (1)

    其中:P为劈拉峰值荷载;ld分别为圆柱体试件的长度和直径。

    粗纤维掺入降低了混凝土拌合物的流动性,对采用配合比一的混凝土,坍落度由不含纤维时的220 mm降低至2vol%纤维掺量时的140 mm(图5(a))。原因在于:(1)各组分总表面积增加,需水量上升;(2)粗纤维的“棚架”效应。粗纤维的厚度和长度,以及不同配比对坍落度的影响如图5(b)所示。2-1组和2-2组的坍落度分别为165 mm和175 mm。这表明,在其他参数不变的情况下,随着纤维厚度的增加,坍落度略有提升,这是由于粗纤维的根数降低。粗纤维掺量为1.5vol%时,掺入30 mm和60 mm粗纤维的混凝土(2-4组和2-3组)的塌落度均在160 mm左右。

    图  5  粗纤维掺入对混凝土坍落度的影响
    Figure  5.  Effect of macro fibres on concrete slump value

    采用配合比一的情况下,1-1组和1-4组的坍落度分别为220 mm和170 mm。而采用配合比二的情况下,2-6组和2-5组的坍落度分别为195 mm和30 mm。同样掺入1.5vol%的粗纤维,配合比二混凝土的坍落度下降幅度显著大于配合比一混凝土。这表明不同基体配比的粗纤维混凝土具有不同的流动性。值得注意的是,纤维的掺量较高(≥1.5vol%)且长度较长(如90 mm)时,可能出现明显的粗纤维“棚架”效应。此时,振捣不够均匀可能引起浇筑质量控制不佳,而振捣过久易引起混凝土泌水。

    受压试件典型破坏模态如图6所示。轴压试验过程中,随着荷载上升,试件开始出现表面裂纹。达到峰值荷载后,未掺纤维的控制试件发生部分块体剥落(图6(a));MFRC试件无大块体剥落,可清晰看到起桥接作用的粗纤维,试件裂而不散,整体性保持较好(图6(b))。

    图  6  粗纤维混凝土(MFRC)轴压试件典型破坏模态
    Figure  6.  Typical failure modes of macro fibre reinforced concrete (MFRC) cylinders under compression

    轴压实验数据如表4所示。受压试件的轴压强度如图7所示。在批次1的试件中(均为配合比一混凝土),纤维掺量为0vol%、0.5vol%和1vol%的试件的平均轴压强度分别为51.7 MPa、46.0和49.1 MPa,表明粗纤维的掺入对轴压强度产生了轻微不利影响。然而,当纤维含量增加到1.5vol%和2vol%时,轴压强度和弹性模量均有明显下降,该两组试件在浇筑中有轻微泌水现象。如前文所述,粗纤维的“棚架”效应会引起混凝土的浇筑质量问题,在纤维的掺量和长度较高的情况下,可采取添加外加剂等措施以保证浇筑质量。

    表  4  MFRC轴压实验结果
    Table  4.  Key results of MFRC compression tests
    No. Group fc,m/MPa CoV/% εco,m/% CoV/% Em/GPa CoV/% vm CoV/%
    1-1 S1W0.32L0V0%T0 51.7 2.1 0.223 13.7 35.5 5.9 0.18 6.2
    1-2 S1W0.32L90V0.5%T0.5 46.0 6.4 0.175 10.6 36.2 0.7 0.19 0.0
    1-3 S1W0.32L90V1%T0.5 49.1 4.7 0.183 3.8 35.4 3.6 0.20 5.0
    1-4 S1W0.32L90V1.5%T0.5 37.4 5.3 0.167 9.0 32.7 6.8 0.19 11.2
    1-5 S1W0.32L90V2%T0.5 38.0 7.3 0.194 6.2 28.6 6.7 0.17 3.5
    2-1 S2W0.32L90V1.5%T1.2 74.5 1.6 0.264 4.7 39.7 1.2 0.17 0.0
    2-2 S2W0.32L90V1.5%T2.2 65.5 1.2 0.245 11.9 39.5 1.9 0.21 4.8
    2-3 S2W0.32L60V1.5%T0.5 57.4 1.0 0.236 16.2 37.1 5.4 0.19 6.0
    2-4 S2W0.32L30V1.5%T0.5 60.2 2.7 0.208 1.7 40.2 2.5 0.19 5.3
    2-5 S2W0.47L90V1.5%T0.5 50.9 2.9 0.272 0.7 32.4 4.6 0.19 16.6
    2-6 S2W0.47L0V0%T0 50.1 2.4 0.218 7.2 36.0 2.9 0.22 16.2
    Notes: fc,m—Average compressive strength; εco,m—Average value of strain at compressive strength; Em—Average value of modulus of elasticity in compression; vm—Average Poisson's ratio; CoV—Coefficient of variation.
    下载: 导出CSV 
    | 显示表格
    图  7  MFRC轴压强度
    Figure  7.  Compressive strength of MFRC

    在第2批次的试件中,纤维长度从30 mm提升至60 mm时,混凝土轴压强度从60.2 MPa降至57.4 MPa。纤维厚度从1.2 mm提升至2.2 mm时,混凝土轴压强度从74.5 MPa降至65.5 MPa。此外,在采用配合比二的情况下,粗纤维掺入对轴压强度没有显著影响。相关研究表明[25, 32],粗纤维掺入的主要影响有:(1)吸收部分自由水,致使水灰比轻微下降;(2)限制裂纹的发展;(3)产生粗纤维和水泥基体之间的弱界面。当前两种效应占主导地位时,混凝土强度受到有利影响。

    表4所示,批次2中C60配比的抗压强度和模量接近预期,而批次1中C60配比的抗压性能略低于预期,导致其与C40配比的数据相近。造成批次1中C60配比的抗压性能低于预期的原因有:(1)对于同批次试件的浇筑,所用粗细骨料均为同批次采购且同时进行清洗晾晒处理,而不同批次间所采用的原料可能有细微不同,进而造成了试件抗压性能的差异。因此,本文仅在同一批次试件中进行单因素影响分析。例如,采用批次2中的2-1组(粗纤维厚度为1.2 mm)和2-2组(粗纤维厚度为2.2 mm)进行粗纤维厚度的影响分析,而批次1中的1-4组(粗纤维厚度为0.5 mm)不包括在内;(2)如前文所述,粗纤维对混凝土强度有不利影响,尤其是纤维掺量较高(如≥1.5vol%)且长度较长(如90 mm)时可能出现明显的粗纤维“结团”效应,进而影响该组混凝土的浇筑质量(如1-4和1-5组)。

    圆柱体试件轴压应力-应变曲线如图8所示。粗纤维掺入对峰值前曲线的斜率(即弹性模量)影响较小,而对峰值后曲线形状产生较为明显的影响。如图8(a)所示,随着纤维掺量的上升(0vol%~1.5vol%),曲线峰值点有所下降,同时峰值后曲线形状逐渐变得平缓,应力下降速率降低。但纤维掺量提升至2vol%时,峰值后曲线的下降速率并未进一步降低。如前文所述,粗纤维掺入能有效桥接裂缝以限制其发展,因而试件能更持久地维持高轴压应力状态,表现为更平缓的峰值后曲线。

    图  8  MFRC轴压应力-应变曲线
    Figure  8.  Compressive stress-strain curves of MFRC

    粗纤维厚度对曲线的影响如图8(b)所示。纤维厚度从1.2 mm (2-1组)提升至2.2 mm (2-2组)时,曲线峰值和抗压延性均有所降低。本研究所用的机械加工工艺所能产生的粗纤维最薄为0.5 mm左右,厚度超过1.5 mm时粗纤维自身的层间脱离现象较为明显。因此,本研究认为粗纤维厚度的合理范围为0.5~1.5 mm。

    粗纤维长度对曲线的影响如图8(c)所示。粗纤维越长,曲线下降段越平缓,这与采用其他种类纤维的混凝土特性类似[37]。对于未掺入粗纤维的两种不同配比混凝土(图8(a)中S1W0.32L0V0T0组和图8(d)中S2W0.47L0V0T0组),峰值后应力下降至峰值的20%时其轴压应变均在0.5%左右。而掺入1.5vol%粗纤维后,该值均超过1%,增韧效果明显。

    图9为劈拉试件的两种典型破坏模态。未掺粗纤维的控制试件均于峰值荷载处沿中心线劈裂成两半。对于MFRC试件,达到峰值荷载后其加载面出现可视裂缝,荷载突然下降;由于有粗纤维横跨裂缝,MFRC试件此时并未被完全劈开,裂而不断。继续加载可使试件最终被劈裂成两半,在劈裂面可以看到许多横跨主裂缝分布的粗纤维。

    图  9  MFRC劈拉试件典型破坏模态
    Figure  9.  Typical failure modes of MFRC splitting tensile test specimens

    圆柱体劈拉试验结果见图10。粗纤维掺量从0vol%提升至2vol%时,劈拉强度从4.2 MPa提升至5.2 MPa。如图10(b)所示,粗纤维厚度从1.2 mm提升至2.2 mm时,劈拉强度的变化不明显。粗纤维长度从30 mm提升至60 mm时,劈拉强度从4.8 MPa提升至5.4 MPa。这与采用其他纤维的混凝土特性类似,即长细比越大,强度越高。此外,在采用配合比二的情况下,2-6组和2-5组的劈拉强度分别为3.5 MPa和4.9 MPa。这表明,同样掺入1.5vol%的粗纤维,采用配合比二的混凝土劈拉强度提升幅度(40%)显著大于配合比一(10%)。

    图  10  MFRC劈拉强度
    Figure  10.  Splitting tensile strength of MFRC

    纤维的掺入对混凝土拉伸性能影响显著。影响纤维混凝土(Fibre reinforced concrete,FRC)劈拉强度的因素包括基体强度,纤维体积掺量[38-39]、纤维直径和长度[40-47]。现有的众多纤维混凝土劈拉强度模型[38-47](表5)通常包括基体贡献项和纤维贡献项,两项结合方式或为乘积形式[40, 42, 44, 47]或为相加形式[38-39, 41, 43, 45-46]

    表  5  纤维混凝土(FRC)劈拉强度预测模型
    Table  5.  Models for predicting the splitting tensile strength of fibre reinforced concrete (FRC)
    Parameter Equation Note Ref.
    fc,Vf fspf=0.58(fc)0.5+3.02Vf fc [38]
    f_{\rm{c}}^{\prime},{V_{\rm{f}}},L,{d_{\rm{f}}} {f_{\rm{spf}}} = 0.83{(f_{\rm{c}}^{\prime})^{0.47}}\left(\dfrac{{ - 2}}{{1 + {{(0.125 R_{\mathrm{i}})}^{0.8}}}} + 3\right) \begin{gathered} R_{\mathrm{i}}{\text{ = }}{V_{\rm{f}}}L/{d_{\rm{f}}} \\ f_{\rm{c}}^{\prime} \leqslant 150\;{\text{MPa}} \\ \end{gathered} [40]
    f_{\rm{c}}^{},{V_{\rm{f}}} f_{\rm{spf}}=0.63(f_{\mathrm{c}})^{0.5}+3.01V_{\rm{f}}-0.02V_{\rm{f}}^2 {f_{\rm{c}}} \leqslant 100\;{\text{MPa}} [39]
    f_{\rm{c}}^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}} } {f_{\rm{spf}}} = 0.47{(f_{\rm{c}}^{})^{0.5}} + 4.2 F \begin{gathered} F{\text{ = }}{V_{\rm{f}}}{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} \\ 41 \leqslant f_{\rm{c}}^{} \leqslant 115\;{\text{MPa}} \\ \end{gathered} [41]
    f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} } {f_{\rm{spf} }} = {({f_{\rm{cf} }})^{0.5}}\left(0.6 + 0.4{V_{\rm{f}}}\dfrac{L}{{{d_{\rm{f}} }}}\right) 4 \leqslant {f_{\rm{cf} }} \leqslant 120\;{\text{MPa}} [42]
    f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} },{b_{\rm{f}}} {f_{\rm{spf} }} = 0.095\left[{f_{\rm{cf} }} + 10\sqrt F \left(3 - \dfrac{{20}}{{{f_{\rm{cf} }}}}\right)\right] F{\text{ = }}{V_{\rm{f}} }{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} [43]
    f_{\rm{cf} }^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}}} {f_{\rm{spf}}} = {({f_{\rm{cf} }})^{0.5}}\left(0.94{V_{\rm{f}} }\dfrac{L}{{{d_{\rm{f}}}}}{b_{\rm{f}} } + 0.67\right) 120 \leqslant {f_{\rm{cf} }} \leqslant 200\;{\text{MPa}} [44]
    Notes: fc'—Characteristic compressive strength of plain concrete; fc— Measured compressive strength of plain concrete; fcf—Measured compressive strength of FRC; Vf—Fibre volume fraction; L—Fibre length; df—Fibre diameter; bf—Bond factor; fspf—Splitting tensile strength of FRC; Ri—Reinforcing index; F—Fibre factor.
    下载: 导出CSV 
    | 显示表格
    {f}_{{\mathrm{sp}}}=U({f}'_{{\mathrm{c}}}) G(R_{\mathrm{i}}) (2)

    f_{\mathrm{sp}}=U(f_{\mathrm{c}}')+G(R_{\mathrm{i}}) (3)

    其中:fsp为混凝土劈拉强度;fc'为混凝土轴压强度标准值;U(fc')为基体贡献项,常采用以fc'为自变量的幂函数,JSCE和FIB规范采用的指数为0.67[48-49],而ACI规范采用的指数为0.5[50-51]G(Ri)为纤维贡献项,是以Ri为自变量的函数,多采用幂函数或多项式函数;参数Ri (Reinforcing index)为纤维影响系数,可表示为

    {R_{\text{i}}} = \frac{{V_{{\mathrm{f}}} }L} {d_{{\mathrm{f}}} } (4)

    其中:Vf为纤维体积掺量;L为纤维长度;df为纤维直径。在预测纤维混凝土强度、弹性模量、泊松比以及坍落度时,采用型如Vf(L/df)αndLα/dfβ (nd为单位体积纤维数量,aβ均为拟合系数)的纤维影响系数可以获得较好的拟合效果[52]

    采用预测值/实验值之比的统计参数和积分绝对误差(Integral absolute error,IAE)评估了现有FRC劈拉强度预测公式对MFRC劈拉强度的预测效果,其统计参数见表6。IAE由下式计算:

    表  6  FRC模型对MFRC劈拉强度的预测效果
    Table  6.  Evaluation of FRC models for predicting the splitting tensile strength of MFRC
    Ratio of predicted value and test value IAE/% Ref.
    Average SD CoV/%
    0.83 0.14 16 19.8 [38]
    1.32 0.14 10 30.5 [40]
    0.98 0.16 16 12.6 [39]
    0.92 0.13 15 13.5 [41]
    1.19 0.12 10 18.5 [42]
    1.28 0.16 13 27.5 [43]
    1.34 0.13 10 33.5 [44]
    1.00 0.08 8 6.0 Eq. (5)
    1.02 0.15 15 7.4 Eq. (6)
    Notes: SD—Standard deviation; IAE—Integral absolute error.
    下载: 导出CSV 
    | 显示表格
    \mathrm{IAE}=\sum_{ }^{ }\frac{\left| {{O_{\rm{i}}} - {P_{\rm{i}}}} \right|}{\displaystyle\sum_{ }^{ }O_{\mathrm{i}}} (5)

    其中:Oi为实验值;Pi为预测值。IAE小于10%,代表模型预测效果较好[40]。如表6所示,各模型预测效果不一,其预测值与实验值之比的平均值在0.83~1.34,IAE在12.6%~33.5%之间。

    参考现有FRC模型的特征和基本形式,经过试算及优选,建议以下MFRC劈拉强度预测模型:

    {f_{{\mathrm{sp}}}} = 0.53{(f_{\mathrm{c}}^{})^{0.5}} + 8.58{V_{\mathrm{f}}}{L^{0.51}}{\left(\frac{\psi }{A}\right)^{0.056}} (6)

    其中,ψA分别为粗纤维的截面周长及截面积,因此该模型适用于任意截面形状的粗纤维。考虑到式(5)较为复杂,经过试算也可以采用以下较为简单的表达式:

    f_{\mathrm{sp}}=(f_{\mathrm{c}})^{0.67}\left(\text{0}\text{.28}+0.021V_{\mathrm{f}}L\frac{\psi}{A}\right) (7)

    当粗纤维掺量为0vol%时,公式(6)退化为普通混凝土劈拉强度预测公式:

    {f_{{\mathrm{sp}}}} = {\text{0}}{\text{.28}}{(f_{\mathrm{c}}^{})^{0.67}} (8)

    其形式与JSCE[48]和FIB[49]规范中普通混凝土劈拉强度预测公式相同:

    f_{\mathrm{sp}}=\text{0}\text{.23}(f_{\mathrm{c}}^{ }\mathrm{'})^{0.67},\begin{array}{*{20}{c}} & 20\; \text{MPa}\leqslant f_{\mathrm{c}}^{ }\mathrm{'}\leqslant\end{array}80\; \text{MPa} (9)
    f_{\mathrm{sp}}=\text{0}\text{.3}(f_{\mathrm{c}}^{ }\mathrm{'})^{0.67},\begin{array}{*{20}{c}} & f_{\mathrm{c}}^{ }\mathrm{'}\leqslant\end{array}50\; \text{MPa} (10)

    式(6)中的拟合系数0.28 处于JSCE和FIB规范公式中的拟合系数0.23~0.3之间。

    本文所提式(5)和式(6)的预测效果见图11。式(5)的R2为0.75,IAE为5.96%,式(6)的R2为0.70,IAE为7.4%,总体预测效果较好。值得注意的是,由于砂石等原材料的性能差异,部分试件的抗压性能低于预期。然而,这些实验数据仍被纳入数据库和预测公式推导中。一方面,尽管抗压强度数据存在误差,劈裂强度数据仍然具有价值。另一方面,在实际应用中,砂石骨料来源不同所带来的性能差异也应在数据库中得到体现。在进一步研究中,建议扩大实验规模以研究更广泛的实验参数范围对数据结果的影响。同时,预测公式中应考虑除抗压强度外的更多指标。

    图  11  MFRC劈拉强度实验值和预测值的比较
    Figure  11.  Predicted vs. test values of MFRC splitting tensile strength
    ψ—Section circumference of macro fibre; A—Sectional area of macro fibre; R2—Coefficient of determination

    (1)添加粗纤维降低了混凝土拌合物的流动性,坍落度随粗纤维掺量提升而降低。例如,在配比一混凝土中掺入2vol%体积掺量的粗纤维后,混凝土坍落度从220 mm降至140 mm。纤维掺量较高且长度较长时,其“棚架”效应可能会影响混凝土的浇筑质量。

    (2)粗纤维的掺入对轴压强度有轻微不利影响,粗纤维过厚会造成混凝土强度明显降低。例如,在配比一混凝土中,纤维厚度从1.2 mm提升至2.2 mm时,混凝土轴压强度从74.5 MPa降至65.5 MPa。

    (3)粗纤维的掺入提升了混凝土的劈拉强度。在配比二混凝土中,粗纤维掺量从0vol%提升至1.5vol%时,劈拉强度由3.5 MPa提升至4.9 MPa,提升了40%。

    (4)对于本文的粗纤维混凝土试验数据,所提出的劈拉强度公式的积分绝对误差(IAE)为5.96%~7.40%,总体预测效果较好。

    致谢:感谢广东工业大学提供的场地和试验设备。

  • 图  1   B4C-SiC复合陶瓷的应用

    Figure  1.   Applications of B4C-SiC composite ceramics

    图  2   B4C-50wt%SiC复合陶瓷的微观结构[42]:(a)以湿磨后的B4C-SiC复合粉体为原料;(b)以干磨后的B4C-SiC复合粉体为原料

    Figure  2.   Microstructure of B4C-50wt%SiC composite ceramics produced from[42]: (a) B4C-SiC composite powders after wet ball milling; (b) B4C-SiC composite powders after dry mixing

    图  3   B4C-SiC复合陶瓷的力学性能[42]:(a)以湿磨后的B4C-SiC复合粉体为原料;(b)以干磨后的B4C-SiC复合粉体为原料

    Figure  3.   Mechanical properties of B4C-SiC composite ceramics produced from[42]: (a) B4C-SiC composite powders after wet ball milling; (b) B4C-SiC composite powders after dry mixing

    图  4   B4C-50wt%SiC复合陶瓷断面的微观结构[47]:(a)以高能球磨的B4C-SiC复合粉体为原料;(b)以普通球磨的B4C-SiC复合粉体为原料

    Figure  4.   Microstructure of fracture surfaces of B4C-50wt%SiC composite ceramics produced from[47]: (a) B4C-SiC composite powders prepared by high-energy ball milling; (b) B4C-SiC composite powders prepared by ball milling

    图  5   固相烧结B4C-SiC复合陶瓷的相界特征、裂纹扩展及断面:(a)洁净且清晰的相界[50];(b)穿晶扩展[47];(c)断面处粗糙的SiC晶粒[54]

    Figure  5.   Phase boundary characteristics, crack propagation, and fracture surface of solid-state sintered B4C-SiC composite ceramics: (a) Clean and clear phase boundary[50]; (b) Transgranular propagation mode[47]; (c) Fracture surface exhibiting rougher SiC grains[54]

    图  6   不同B4C与SiC质量比的B4C-SiC复合陶瓷的抛光表面形貌[59]:(a) 80∶20;(b) 60∶40;(c) 40∶60;(d) 20∶80

    Figure  6.   Morphologies of polished surface of B4C-SiC composite ceramics with different mass ratios of B4C to SiC[59]: (a) 80∶20; (b) 60∶40; (c) 40∶60; (d) 20∶80

    图  7   含有5wt%氧化石墨烯(rGO)烧结助剂的B4C-SiC复合陶瓷表面的裂纹扩展[74]:(a)石墨烯桥联;(b)石墨烯拔出

    Figure  7.   Crack propagation on surface of B4C-SiC composite ceramics with sintering additive of 5wt% graphene oxide (rGO)[74]: (a) Graphene oxide bridging; (b) Graphene oxide pull-out

    图  8   含有5wt%CeO2烧结助剂的B4C-SiC复合陶瓷表面的裂纹扩展[78]:(a)裂纹偏转;(b)裂纹桥联

    Figure  8.   Crack propagation on surface of B4C-SiC composite ceramics with sintering additive of 5wt%CeO2[78]: (a) Crack deflection; (b) Crack bridging

    图  9   B4C-40wt%SiC复合陶瓷表面的裂纹扩展[94]:(a)未添加TiB2;(b)添加5wt%TiB2

    Figure  9.   Crack propagation on surface of B4C-40wt%SiC composite ceramics[94]: (a) Without addition of TiB2; (b) With addition of 5wt%TiB2

    表  1   含有不同碳烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  1   Mechanical properties of B4C-SiC composite ceramics with different carbon sintering additives

    Ceramic Sintering additive Content of
    sintering
    additive/wt%
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Elastic
    modulus/
    GPa
    Ref.
    B4C-9wt%SiC Carbon black 2 Hot-press 99.6 403 5.26 (SENB) [70]
    B4C-15wt%SiC No No Spark plasma 96.6 30.3 6.00 (IF) [32]
    Graphite 2 98.8 25.7 5.50 (IF)
    B4C-15wt%SiC Graphene oxide 5 Spark plasma 99.2 34.2 545 5.72 (IF) 444 [74]
    Notes: The bending strength is measured according to three-point bending test method; SENB and IF represent that the fracture toughness is measured according to single edge notched beam method and indentation-fracture method, respectively.
    下载: 导出CSV

    表  2   含有不同氧化物烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  2   Mechanical properties of B4C-SiC composite ceramics with different oxide sintering additives

    Ceramic Sintering
    additive
    Content of
    sintering
    additive
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Ref.
    B4C-10wt%SiC Al2O3 3wt% Spark plasma 99.5 35.1 (3 N) 5.9 (IF) [76]
    Al2O3 6wt% 99.1 33.7 (3 N) 6.5 (IF)
    B4C-15vol%SiC No No Spark plasma 97.8 31.1 (9.8 N) [77]
    Y2O3 5wt% 98.2 33.0 (9.8 N)
    B4C-15wt%SiC No No Pressureless 85.8 19.8 (9.8 N) 194 2.40 (SENB) [78]
    CeO2 1wt% 91.2 26.0 (9.8 N) 270 3.25 (SENB)
    CeO2 5wt% 96.4 32.2 (9.8 N) 380 4.32 (SENB)
    CeO2 9wt% 93.4 27.0 (9.8 N) 330 4.00 (SENB)
    B4C-9wt%SiC No No Pressureless 82.8 307 3.72 (SENB) [81]
    Al2O3-Y2O3 15wt% 98.8 496 4.57 (SENB)
    B4C-10wt%SiC Al2O3:Y2O3(5:3, molar ratio) 10vol% Pressureless 91.5 29.5 (9.8 N) [83]
    AlN:Y2O3(3:2, molar ratio) 10vol% 93.4 30.3 (9.8 N)
    Note: The bending strength is measured according to three-point bending test method.
    下载: 导出CSV

    表  3   含有不同硼化物或碳化物烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  3   Mechanical properties of B4C-SiC composite ceramics with different boride or carbide sintering additives

    Ceramic Sintering
    additive
    Content of
    sintering
    additive
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Elastic
    modulus/
    GPa
    Ref.
    B4C-40wt%SiC No No Spark plasma 99.5 29.5 2.39 (IF) 436 [94]
    TiB2 10wt% 99.0 28.5 3.07 (IF) 427
    TiB2 20wt% 98.4 23.4 2.96 (IF) 415
    B4C-10vol%SiC TiB2 30vol% Hot-press 99.2 32.8 858 8.21 (SENB) [95]
    B4C-10vol%SiC ZrB2 30vol% Hot-press 99.7 612 [96]
    B4C-20wt%SiC TiC 3wt% Pressureless 89.7 176 4.57 (SENB) [98]
    TiC 12wt% 94.5 239 4.91 (SENB)
    TiC 15wt% 92.1 230 4.75 (SENB)
    Note: The bending strength is measured according to three-point bending test method.
    下载: 导出CSV

    表  4   含有不同金属或非金属单质烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  4   Mechanical properties of B4C-SiC composite ceramics with different metallic or non-metallic elemental sintering additives

    Ceramic Sintering
    additive
    Content of
    sintering
    additive/wt%
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Ref.
    B4C-50wt%SiC No No Pressureless 97.5 290 [99]
    Ti 3 97.6 204
    B4C-15wt%SiC No No Hot-press 95.4 24.0 265 4.96 [101]
    Si 4 95.8 26.4 260 5.06
    Si 15 98.3 31.0 350 5.40
    B4C-60wt%SiC
    No No Pressureless 89.0 20.0 [103]
    Si 2 88.0 14.0
    Si 5 89.0 16.2
    Si 10 92.0 18.1
    Si 20 90.0 15.0
    B4C-60wt%SiC No No Spark plasma 94.0 28.0 [103]
    Si 2 94.6 22.0
    Si 5 96.3 24.4
    Si 10 98.0 27.8
    Si 20 97.0 24.0
    Notes: The bending strength is measured according to three-point bending test method; The fracture toughness is determined according to indentation-fracture method.
    下载: 导出CSV
  • [1]

    ZARE A, HE M R, STRAKER M, et al. Mechanical characterization of boron carbide single crystals[J]. Journal of the American Ceramic Society, 2022, 105(5): 3030-3042. DOI: 10.1111/jace.18065

    [2]

    ZHANG W, YAMASHITA S, KITA H. Self lubrication of pressureless sintered SiC ceramics[J]. Journal of Materials Research and Technology, 2020, 9(6): 12880-12888. DOI: 10.1016/j.jmrt.2020.09.022

    [3]

    THÉVENOT F. Boron carbide—A comprehensive review[J]. Journal of the European Ceramic Society, 1990, 6(4): 205-225. DOI: 10.1016/0955-2219(90)90048-K

    [4]

    ZHANG W. Tribology of SiC ceramics under lubrication: Features, developments, and perspectives[J]. Current Opinion in Solid State & Materials Science, 2022, 26(4): 101000.

    [5]

    ZHANG W, YAMASHITA S, KITA H. Effects of load on tribological properties of B4C and B4C-SiC ceramics sliding against SiC balls[J]. Journal of Asian Ceramic Societies, 2020, 8(3): 586-596. DOI: 10.1080/21870764.2020.1769819

    [6]

    KHODAEI M, YAGHOBIZADEH O, ALHOSSEINI S H N, et al. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review[J]. Journal of the European Ceramic Society, 2019, 39(7): 2215-2231. DOI: 10.1016/j.jeurceramsoc.2019.02.042

    [7]

    SURI A K, SUBRAMANIAN C, SONBER J K, et al. Synthesis and consolidation of boron carbide: A review[J]. International Materials Reviews, 2010, 55(1): 4-40. DOI: 10.1179/095066009X12506721665211

    [8]

    ZHANG W, CHEN X Y, YAMASHITA S, et al. Frictional characteristics of carbide ceramics in water[J]. Journal of Tribology, 2022, 144(1): 011702. DOI: 10.1115/1.4050732

    [9]

    ZHANG W. A review of tribological properties for boron carbide ceramics[J]. Progress in Materials Science, 2021, 116: 100718. DOI: 10.1016/j.pmatsci.2020.100718

    [10]

    ZHANG W, YAMASHITA S, KITA H. Progress in tribological research of SiC ceramics in unlubricated sliding—A review[J]. Materials & Design, 2020, 190: 108528.

    [11]

    LEE W E, GILBERT M, MURPHY S T, et al. Opportunities for advanced ceramics and composites in the nuclear sector[J]. Journal of the American Ceramic Society, 2013, 96(7): 2005-2030. DOI: 10.1111/jace.12406

    [12]

    SAUERSCHNIG P, WATTS J L, VANEY J B, et al. Thermoelectric properties of phase pure boron carbide prepared by a solution-based method[J]. Advances in Applied Ceramics, 2020, 119(2): 97-106. DOI: 10.1080/17436753.2019.1705017

    [13]

    ZHANG W, CHEN X Y, YAMASHITA S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear[J]. ACS Applied Nano Materials, 2021, 4(3): 3159-3166. DOI: 10.1021/acsanm.1c00375

    [14]

    ZHANG W, DAI W Y, CHIYODA N. Research on thermal shock resistance of mullite-bauxite-silicon carbide castable refractory[J]. Chinese Journal of Geochemistry, 2012, 31(2): 204-208. DOI: 10.1007/s11631-012-0569-z

    [15]

    ZHANG J, ZHANG Y, WANG Y F, et al. Long-term oxidation performance of SiCf/SiC composites at 1200℃ in air atmosphere manufactured by PIP and hybrid CVI/PIP techniques[J]. Ceramics International, 2024, 50(7): 10259-10267. DOI: 10.1016/j.ceramint.2023.12.337

    [16]

    ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Tribological properties of B4C ceramics prepared by pressureless sintering and annealed at different temperatures[J]. Tribology Transactions, 2020, 63(4): 672-682. DOI: 10.1080/10402004.2020.1734705

    [17]

    ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Influence of surface roughness parameters and surface morphology on friction performance of ceramics[J]. Journal of the Ceramic Society of Japan, 2019, 127(11): 837-842. DOI: 10.2109/jcersj2.19124

    [18] 张巍, 张杰. 碳化硼陶瓷自润滑研究现状[J]. 中国表面工程, 2024, 37(3): 103-114.

    ZHANG Wei, ZHANG Jie. State of the art on self-lubrication of boron carbide ceramics[J]. China Surface Engineering, 2024, 37(3): 103-114(in Chinese).

    [19] 崔凤单, 马天, 李伟萍, 等. SiC和B4C防弹插板抗多发弹打击损伤特性研究[J]. 无机材料学报, 2017, 32(9): 967-972. DOI: 10.15541/jim20160667

    CUI Fengdan, MA Tian, LI Weiping, et al. Damage characteristics of SiC and B4C ballistic insert plates subjected to multi-hit[J]. Journal of Inorganic Materials, 2017, 32(9): 967-972(in Chinese). DOI: 10.15541/jim20160667

    [20]

    ZHANG W, YAMASHITA S, KITA H. Progress in pressureless sintering of boron carbide ceramics—A review[J]. Advances in Applied Ceramics, 2019, 118(4): 222-239. DOI: 10.1080/17436753.2019.1574285

    [21] 李树杰, 陈孝飞, 刘文慧, 等. 采用聚硅氧烷(HPSO-VPSO)和Al-Si粉连接无压烧结SiC陶瓷[J]. 复合材料学报, 2011, 28(1): 88-93.

    LI Shujie, CHEN Xiaofei, LIU Wenhui, et al. Joining of pressureless sintered SiC using polysiloxane (HPSO-VPSO) with additive Al-Si powders[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 88-93(in Chinese).

    [22]

    YAMADA S, HIRAO K, YAMAUCHI Y, et al. B4C-CrB2 composites with improved mechanical properties[J]. Journal of the European Ceramic Society, 2003, 23(3): 561-565. DOI: 10.1016/S0955-2219(02)00094-8

    [23]

    GUPTA S, SHARMA S K, KUMAR B V M, et al. Tribological characteristics of SiC ceramics sintered with a small amount of yttria[J]. Ceramics International, 2015, 41(10): 14780-14789. DOI: 10.1016/j.ceramint.2015.07.210

    [24]

    SECRIST D R. Phase equilibria in the system boron carbide-silicon carbide[J]. Journal of the American Ceramic Society, 1964, 47(3): 127-130. DOI: 10.1111/j.1151-2916.1964.tb14369.x

    [25]

    HONG J D, SPEAR K E, STUBICAN V S. Directional solidification of SiC-B4C eutectic: Growth and some properties[J]. Materials Research Bulletin, 1979, 14(6): 775-783. DOI: 10.1016/0025-5408(79)90137-5

    [26]

    ZORZI J E, PEROTTONI C A, JORNADA J A H. Hardness and wear resistance of B4C ceramics prepared with several additives[J]. Materials Letters, 2005, 59(23): 2932-2935. DOI: 10.1016/j.matlet.2005.04.047

    [27]

    BIND J M, BIGGERS J V. Hot-pressing of silicon carbide with 1% boron carbide addition[J]. Journal of the American Ceramic Society, 1975, 58(7-8): 304-306. DOI: 10.1111/j.1151-2916.1975.tb11482.x

    [28]

    LI C R, LI S, AN D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C[J]. Ceramics International, 2020, 46(8): 10142-10146. DOI: 10.1016/j.ceramint.2020.01.005

    [29] 张巍, 张杰. B4C-Al2O3复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.

    ZHANG Wei, ZHANG Jie. Toughening mechanism of B4C-Al2O3 composite ceramics[J]. Chinese Journal of Materials Research, 2024, 38(8): 614-620(in Chinese).

    [30]

    LYU X X, ZHAO Z Y, SUN H L, et al. Influence of Y2O3 contents on sintering and mechanical properties of B4C-Al2O3 multiphase ceramic composites[J]. Journal of Materials Research and Technology, 2020, 9(5): 11687-11701. DOI: 10.1016/j.jmrt.2020.08.072

    [31]

    BAHARVANDI H R, HADIAN A M, ABDIZADEH A, et al. Investigation on addition of ZrO2-3mol% Y2O3 powder on sintering behavior and mechanical properties of B4C[J]. Journal of Materials Science, 2006, 41(16): 5269-5272. DOI: 10.1007/s10853-006-0355-6

    [32]

    MOSHTAGHIOUN B M, ORTIZ A L, GARCÍA D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition[J]. Journal of the European Ceramic Society, 2013, 33(8): 1395-1401. DOI: 10.1016/j.jeurceramsoc.2013.01.018

    [33]

    MAGNANI G, BELTRAMI G, MINOCCARI G L, et al. Pressureless sintering and properties of αSiC-B4C composite[J]. Journal of the European Ceramic Society, 2001, 21(5): 633-638. DOI: 10.1016/S0955-2219(00)00244-2

    [34]

    ZHANG W, CHEN X Y, YAMASHITA S, et al. Effect of water temperature on tribological performance of B4C-SiC ceramics under water lubrication[J]. Tribology Letters, 2021, 69(2): 34. DOI: 10.1007/s11249-021-01406-0

    [35]

    ZHANG W, YAMASHITA S, KITA H. A study of B4C-SiC composite for self-lubrication[J]. Journal of the American Ceramic Society, 2021, 104(5): 2325-2336. DOI: 10.1111/jace.17584

    [36]

    ZHANG W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide[J]. Advances in Colloid and Interface Science, 2022, 301: 102604. DOI: 10.1016/j.cis.2022.102604

    [37] 宋小伟. 振荡压力烧结B4C-SiCw复合陶瓷制备与性能研究[D]. 郑州: 郑州航空工业管理学院, 2023.

    SONG Xiaowei. Preparation and properties of B4C-SiCw composite ceramics sintered by hot oscillating pressure[D]. Zhengzhou: Zhengzhou University of Aeronautics, 2023(in Chinese).

    [38] 陈家鑫, 曾启航, 王峰, 等. B4C增强SiC基复合陶瓷力学性能和抗氧化性能[J]. 硅酸盐学报, 2023, 51(3): 730-737.

    CHEN Jiaxin, ZENG Qihang, WANG Feng, et al. Mechanical and oxidation resistance of SiC based composite ceramics reinforced with B4C[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 730-737(in Chinese).

    [39]

    ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Effect of nanorelief structure formed in situ on tribological properties of ceramics in dry sliding[J]. Ceramics International, 2019, 45(11): 13818-13824. DOI: 10.1016/j.ceramint.2019.04.078

    [40]

    ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Study on friction behavior of SiC-B4C composite ceramics after annealing[J]. Industrial Lubrication and Tribology, 2020, 72(5): 673-679.

    [41]

    ZHANG W. An overview of the synthesis of silicon carbide-boron carbide composite powders[J]. Nanotechnology Reviews, 2023, 12: 20220571. DOI: 10.1515/ntrev-2022-0571

    [42]

    YAŞAR Z A, HABER R A. Evaluating the role of uniformity on the properties of B4C-SiC composites[J]. Ceramics International, 2021, 47(4): 4838-4844. DOI: 10.1016/j.ceramint.2020.10.055

    [43]

    ZHANG W, YAMASHITA S, KITA H. Effect of counterbody on tribological properties of B4C-SiC composite ceramics[J]. Wear, 2020, 458-459: 203418. DOI: 10.1016/j.wear.2020.203418

    [44]

    ZHANG W, CHEN X Y, YAMASHITA S, et al. Tribological behaviour of B4C-SiC composite ceramics under water lubrication: Influence of counterpart[J]. Materials Science and Technology, 2021, 37(9): 863-876. DOI: 10.1080/02670836.2021.1961365

    [45]

    SO S M, CHOI W H, KIM K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering[J]. Ceramics International, 2020, 46(7): 9575-9581. DOI: 10.1016/j.ceramint.2019.12.222

    [46]

    MATOVIĆ B, MALETAŠKIĆ J, PRIKHNA T, et al. Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering[J]. Journal of the European Ceramic Society, 2021, 41(9): 4755-4760. DOI: 10.1016/j.jeurceramsoc.2021.03.047

    [47]

    ZHANG Z X, DU X W, WANG W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 270-275. DOI: 10.1016/j.ijrmhm.2013.04.012

    [48]

    ZHANG Z X, DU X W, WANG W M, et al. Preparation and sintering of high active and ultrafine B4C-SiC composite powders[J]. Journal of Inorganic Materials, 2014, 29(2): 185-190. DOI: 10.3724/SP.J.1077.2014.13226

    [49]

    ZHANG W. Recent progress in B4C-SiC composite ceramics: Processing, microstructure, and mechanical properties[J]. Materials Advances, 2023, 4(15): 3140-3191. DOI: 10.1039/D3MA00143A

    [50]

    ZHANG W, YAMASHITA S, KUMAZAWA T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics[J]. Ceramics International, 2019, 45(17): 23143-23148. DOI: 10.1016/j.ceramint.2019.08.008

    [51]

    ZHU Y, LUO D J, LI Z J, et al. Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B4C/SiC ceramic composite with carbon additive[J]. Journal of Alloys and Compounds, 2020, 820: 153153. DOI: 10.1016/j.jallcom.2019.153153

    [52]

    KALANDARAGH Y A, NAMINI A S, AHMADI Z, et al. Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites[J]. Ceramics International, 2018, 44(16): 19932-19938. DOI: 10.1016/j.ceramint.2018.07.258

    [53]

    HWANG C, YANG Q, XIANG S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite[J]. Journal of the European Ceramic Society, 2019, 39(4): 718-725. DOI: 10.1016/j.jeurceramsoc.2018.12.029

    [54] 吴宇超, 曹剑武, 高晓菊, 等. 温度对SPS烧结B4C-SiC复相陶瓷力学性能的影响[J]. 兵器材料科学与工程, 2019, 42(2): 21-24.

    WU Yuchao, CAO Jianwu, GAO Xiaoju, et al. Effect of temperature on mechanical properties of B4C-SiC prepared by SPS sintering[J]. Ordnance Material Science and Engineering, 2019, 42(2): 21-24(in Chinese).

    [55]

    MORADKHANI A, BAHARVANDI H. Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sintering[J]. International Journal of Refractory Metals & Hard Materials, 2018, 70: 107-115.

    [56]

    YE K C, WANG Z J. Residual stress effects on toughening of ultrafine-grained B4C-SiC ceramics[J]. Materials Today Communications, 2023, 36: 106649. DOI: 10.1016/j.mtcomm.2023.106649

    [57] 张志晓, 杜贤武, 邢伟宏, 等. SiC含量对机械合金化-热压制备B4C-SiC复合陶瓷的影响[J]. 无机材料学报, 2014, 29(7): 695-700.

    ZHANG Zhixiao, DU Xianwu, XING Weihong, et al. Effect of SiC content on B4C-SiC composites fabricated by mechanical alloying-hot pressing[J]. Journal of Inorganic Materials, 2014, 29(7): 695-700(in Chinese).

    [58]

    CHO J Y, AN T, JI S, et al. The effects of B4C addition on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge[J]. Ceramics International, 2017, 43(17): 15332-15338. DOI: 10.1016/j.ceramint.2017.08.072

    [59]

    ZHANG W, YAMASHITA S, KITA H. Tribological properties of SiC-B4C ceramics under dry sliding condition[J]. Journal of the European Ceramic Society, 2020, 40(8): 2855-2861. DOI: 10.1016/j.jeurceramsoc.2020.02.062

    [60]

    VANDEPERRE L J, TEO J H. Pressureless sintering of SiC-B4C composites[C]//37th International Conference on Advanced Ceramics and Composites. Hoboken: John Wiley & Sons, Inc, 2014, 34(5): 101-108.

    [61]

    MCCLELLAN K J, CHU F, ROPER J M, et al. Room temperature single crystal elastic constants of boron carbide[J]. Journal of Materials Science, 2001, 36(14): 3403-3407. DOI: 10.1023/A:1017947625784

    [62] 张巍, 张金, 段春雷, 等. Al2O3抗热震陶瓷的研究进展[J]. 沈阳工业大学学报, 2020, 42(6): 624-647. DOI: 10.7688/j.issn.1000-1646.2020.06.05

    ZHANG Wei, ZHANG Jin, DUAN Chunlei, et al. Research progress in Al2O3 thermal shock resistant ceramics[J]. Journal of Shenyang University of Technology, 2020, 42(6): 624-647(in Chinese). DOI: 10.7688/j.issn.1000-1646.2020.06.05

    [63]

    KEÇELI Z, ÖGÜNÇ H, BOYRAZ T, et al. Effects of B4C addition on the micro-structural and thermal properties of hot pressed SiC ceramic matrix composites[J]. Journal of Achievements in Materials and Manufacturing Engi-neering, 2009, 37(2): 428-433.

    [64]

    CHEN W, HAO W H, ZHAO Z Q, et al. Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater[J]. Journal of Asian Ceramic Societies, 2021, 9(4): 1495-1505. DOI: 10.1080/21870764.2021.1986202

    [65]

    TOMOHIRO Y, ATSUSHI N, KATSUAKI S, et al. Preparation and properties of B4C-SiC composite[J]. Japan Society of Powder and Powder Metallurgy, 1990, 37(4): 571-574. DOI: 10.2497/jjspm.37.571

    [66]

    XU C M, CAI Y B, FLODSTRÖM K, et al. Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 139-144. DOI: 10.1016/j.ijrmhm.2011.07.016

    [67]

    YAŞAR Z A, HABER R. Effect of acid etching time and concentration on oxygen content of powder on the microstructure and elastic properties of silicon carbide densified by SPS[J]. International Journal of Materials Science and Applications, 2020, 9(1): 7-13. DOI: 10.11648/j.ijmsa.20200901.12

    [68]

    YAŞAR Z A, DELUCCA V A, HABER R A. Influence of oxygen content on the microstructure and mechanical properties of SPS SiC[J]. Ceramics International, 2018, 44(18): 23248-23253. DOI: 10.1016/j.ceramint.2018.08.195

    [69]

    KAKIAGE M, TOMINAGA Y, YANASE I, et al. Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid-polyol product[J]. Powder Technology, 2012, 221: 257-263. DOI: 10.1016/j.powtec.2012.01.010

    [70] 李少峰. B4C-SiC复合材料的制备及性能研究[J]. 佛山陶瓷, 2018, 28(5): 12-15. DOI: 10.3969/j.issn.1006-8236.2018.05.004

    LI Shaofeng. The research on preparation process and properties of B4C-SiC composite materials[J]. Foshan Ceramics, 2018, 28(5): 12-15(in Chinese). DOI: 10.3969/j.issn.1006-8236.2018.05.004

    [71]

    THÉVENOT F. Sintering of boron carbide and boron carbide-silicon carbide two-phase materials and their properties[J]. Journal of Nuclear Materials, 1988, 152(2-3): 154-162. DOI: 10.1016/0022-3115(88)90321-2

    [72]

    GALÁN C A, ORTIZ A L, GUIBERTEAU F, et al. High-energy ball-milling of ZrB2 in the presence of graphite[J]. Journal of the American Ceramic Society, 2010, 93(10): 3072-3075. DOI: 10.1111/j.1551-2916.2010.04051.x

    [73]

    MOSHTAGHIOUN B M, GARCÍA D G, RODRÍGUEZ A D. High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C-SiC with/without graphite (g)[J]. Journal of the European Ceramic Society, 2016, 36(5): 1127-1134. DOI: 10.1016/j.jeurceramsoc.2015.12.016

    [74]

    HU L X, WANG A Y, TIAN T, et al. Effects of SiC on the microstructures and mechanical properties of B4C-SiC-rGO composites prepared using spark plasma sintering[J]. Journal of the European Ceramic Society, 2022, 42(4): 1282-1291. DOI: 10.1016/j.jeurceramsoc.2021.11.038

    [75]

    PYZIK A J, BEAMAN D R. Microstructure and properties of self-reinforced silicon nitride[J]. Journal of the American Ceramic Society, 2010, 76(11): 2737-2744.

    [76]

    JAMALE S, KUMAR B V M. Sintering and sliding wear studies of B4C-SiC composites[J]. International Journal of Refractory Metals & Hard Materials, 2020, 87: 105124.

    [77]

    SAHIN F C, APAK B, AKIN I, et al. Spark plasma sintering of B4C-SiC composites[J]. Solid State Sciences, 2012, 14(11-12): 1660-1663. DOI: 10.1016/j.solidstatesciences.2012.05.037

    [78]

    ZHU Y, WANG F C, WANG Y W, et al. Mechanical properties and microstructure evolution of pressureless-sintered B4C-SiC ceramic composite with CeO2 additive[J]. Ceramics International, 2019, 45(12): 15108-15115. DOI: 10.1016/j.ceramint.2019.04.251

    [79]

    YIN B Y, WANG L S. Study on physical properties of hot-pressing sintered B4C ceramic[J]. Atomic Energy Science and Technology, 2004, 38(5): 429-431.

    [80] 彭可武, 马贺利, 陈韧, 等. 原位生成CeB6颗粒增韧B4C/Al复合材料的研究[J]. 稀有金属, 2009, 33(6): 850-854. DOI: 10.3969/j.issn.0258-7076.2009.06.017

    PENG Kewu, MA Heli, CHEN Ren, et al. Toughening B4C/Al ceramics by in-situ CeB6 particles in B4C[J]. Chinese Journal of Rare Metals, 2009, 33(6): 850-854(in Chinese). DOI: 10.3969/j.issn.0258-7076.2009.06.017

    [81] 李少峰. 液相烧结法制备B4C-SiC复合陶瓷材料的研究[J]. 佛山陶瓷, 2019, 29(5): 10-13. DOI: 10.3969/j.issn.1006-8236.2019.05.005

    LI Shaofeng. The research on preparation of B4C-SiC composite ceramic materials by liquid-phase sintering process[J]. Foshan Ceramics, 2019, 29(5): 10-13(in Chinese). DOI: 10.3969/j.issn.1006-8236.2019.05.005

    [82]

    JAMALE S, KUMAR B V M. B4C-SiC composites with tuneable mechanical properties: Role of Al2O3-Y2O3 sintering additives[J]. Journal of Alloys and Compounds, 2024, 976: 172954. DOI: 10.1016/j.jallcom.2023.172954

    [83]

    ROCHA R M D, MELO F C L D. Pressureless sintering of B4C-SiC composites for armor applications[J]. Ceramic Engineering & Science Proceedings, 2010, 30(5): 113-119.

    [84]

    ROCHA R M D, MELO F C L D. Sintering of B4C-SiC composites with AlN-Y2O3 addition[J]. Materials Science Forum, 2012, 727-728: 850-855. DOI: 10.4028/www.scientific.net/MSF.727-728.850

    [85]

    ZHOU Y, TANAKA H, OTANI S, et al. Low-temperature pressureless sintering of α-SiC with Al4C3-B4C-C additions[J]. Journal of the American Ceramic Society, 1999, 82(8): 1959-1964. DOI: 10.1111/j.1151-2916.1999.tb02026.x

    [86]

    ZHANG Y L, ZHANG Y M, LI C H, et al. Influence of reaction temperature on the densification behavior of the SiC/B4C composites[J]. Applied Mechanics and Materials, 2015, 727-728: 11-14. DOI: 10.4028/www.scientific.net/AMM.727-728.11

    [87]

    ZHANG Y L, ZHANG Y M, HU M, et al. Effect of B4C content on densification behavior of SiC-B4C ceramics[J]. Advanced Materials Research, 2014, 997: 454-456. DOI: 10.4028/www.scientific.net/AMR.997.454

    [88]

    SCHWETZ K. Handbook of ceramic hard materials[M]. Oxford: Alden Bookset, 2000: 683-748.

    [89]

    RIDGWAY R R. Boron carbide: A new crystalline abrasive and wear-resisting product[J]. Transactions of the Electrochemical Society, 1934, 66(1): 117. DOI: 10.1149/1.3498064

    [90]

    MUNRO R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5): 709-720. DOI: 10.6028/jres.105.057

    [91]

    WU C, XIE S H, LI Y K. Microstructure evolution and phase transformation of TiB2/SiC/B4C composites synthesized from Ti-SiC-B4C ternary system[J]. International Journal of Applied Ceramic Technology, 2017, 14(6): 1055-1061. DOI: 10.1111/ijac.12740

    [92]

    ZHANG X R, ZHANG Z X, WANG W M, et al. Preparation of B4C composites toughened by TiB2-SiC agglomerates[J]. Journal of the European Ceramic Society, 2017, 37(2): 865-869. DOI: 10.1016/j.jeurceramsoc.2016.09.003

    [93]

    ZHANG X R, ZHANG Z X, WANG W M, et al. Microstructure and mechanical properties of B4C-TiB2-SiC composites toughened by composite structural toughening phases[J]. Journal of the American Ceramic Society, 2017, 100(7): 3099-3107. DOI: 10.1111/jace.14815

    [94]

    YAŞAR Z A, CELIK A M, HABER R A. Improving fracture toughness of B4C-SiC composites by TiB2 addition[J]. International Journal of Refractory Metals and Hard Materials, 2022, 108: 105930. DOI: 10.1016/j.ijrmhm.2022.105930

    [95]

    HE Q L, WANG A Y, LIU C, et al. Microstructures and mechanical properties of B4C-TiB2-SiC composites fabricated by ball milling and hot pressing[J]. Journal of the European Ceramic Society, 2018, 38(7): 2832-2840. DOI: 10.1016/j.jeurceramsoc.2018.02.020

    [96]

    QU Z L, HE R J, CHENG X M, et al. Fabrication and characterization of B4C-ZrB2-SiC ceramics with simultaneously improved high temperature strength and oxidation resistance up to 1600℃[J]. Ceramics International, 2016, 42(7): 8000-8004. DOI: 10.1016/j.ceramint.2016.01.202

    [97]

    UPATOV M, VLEUGELS J, KOVAL Y, et al. Microstructure and mechanical properties of B4C-NbB2-SiC ternary eutectic composites by a crucible-free zone melting method[J]. Journal of the European Ceramic Society, 2021, 41(2): 1189-1196. DOI: 10.1016/j.jeurceramsoc.2020.09.049

    [98] 孟凡然, 王琨, 冯荣, 等. TiC对B4C-SiC复合陶瓷材料性能的影响[J]. 佛山陶瓷, 2022, 32(3): 16-19. DOI: 10.3969/j.issn.1006-8236.2022.03.005

    MENG Fanran, WANG Kun, FENG Rong, et al. Effect of TiC on properties of B4C-SiC composite ceramic materials[J]. Foshan Ceramics, 2022, 32(3): 16-19(in Chinese). DOI: 10.3969/j.issn.1006-8236.2022.03.005

    [99] 王书晗. B4C/SiC和B4C/TiB2陶瓷复合材料的制备、组织及力学性能的研究[D]. 沈阳: 东北大学, 2019.

    WANG Shuhan. A study on preparation, microstructure and mechanical properties of B4C/SiC and B4C/TiB2 ceramic composites[D]. Shenyang: Northeastern University, 2019(in Chinese).

    [100] 王伟明, 王为得, 粟毅, 等. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646.

    WANG Weiming, WANG Weide, SU Yi, et al. Research progress in high thermal conductivity silicon nitride ceramics prepared by non-oxide additives[J]. Journal of Inorganic Materials, 2024, 39(6): 634-646(in Chinese).

    [101]

    DU X W, WANG Y, ZHANG Z X, et al. Effects of silicon addition on the microstructure and properties of B4C-SiC composite prepared with polycarbosilane-coated B4C powder[J]. Materials Science & Engineering A, 2015, 636: 133-137.

    [102]

    DU X W, ZHANG Z X, WANG W M, et al. Microstructure and properties of B4C-SiC composites prepared by polycarbosilane-coating/B4C powder route[J]. Journal of the European Ceramic Society, 2014, 34(5): 1123-1129. DOI: 10.1016/j.jeurceramsoc.2013.10.039

    [103]

    SAHANI P, CHAIRA D. Nonlubricated sliding wear behavior study of SiC-B4C-Si cermet against a diamond indenter[J]. Journal of Tribology, 2017, 139(5): 051601. DOI: 10.1115/1.4035344

  • 期刊类型引用(3)

    1. 范浩博,豆书亮,李垚. 二氧化钒智能热控涂层光学结构原理及研究进展. 材料导报. 2025(01): 34-43 . 百度学术
    2. 张新宇,徐慧妍,杨立凯,王尚,杨帅军,蒋绪川. 智能窗用二氧化钒基复合结构薄膜的制备及研究进展. 复合材料学报. 2025(02): 679-691 . 本站查看
    3. 张丽萍,孟晓荣,宋锦峰,杜金晶. VO_2@KH550/570@PS复合薄膜的制备及其热致相变性能. 化工学报. 2024(09): 3348-3359 . 百度学术

    其他类型引用(7)

图(9)  /  表(4)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  161
  • PDF下载量:  45
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-04-15
  • 录用日期:  2024-04-22
  • 网络出版日期:  2024-05-16
  • 发布日期:  2024-05-16
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回