留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B4C-SiC复合陶瓷力学性能的研究进展

张巍

张巍. B4C-SiC复合陶瓷力学性能的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 张巍. B4C-SiC复合陶瓷力学性能的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
ZHANG Wei. Advance in investigation on mechanical properties of B4C-SiC composite ceramics[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Wei. Advance in investigation on mechanical properties of B4C-SiC composite ceramics[J]. Acta Materiae Compositae Sinica.

B4C-SiC复合陶瓷力学性能的研究进展

基金项目: 辽宁省自然科学基金(2022-MS-013),中国科学院金属研究所自主部署项目(E255L401),沈阳材料科学国家研究中心青年人才项目(E21SL412)
详细信息
    通讯作者:

    张巍,博士,副研究员,硕士生导师,研究方向为无机非金属材料结构和物性 E-mail: cnzhangwei2008@126.com

  • 中图分类号: TB321; TB332

Advance in investigation on mechanical properties of B4C-SiC composite ceramics

Funds: Natural Science Foundation of Liaoning Province of China (2022-MS-013), Starting Grants of Institute of Metal Research, Chinese Academy of Science (E255L401), Shenyang National Laboratory for Materials Science (E21SL412)
  • 摘要: B4C-SiC复合陶瓷结合了碳化硼(B4C)和碳化硅(SiC)的性能,具有良好的物理和力学性能。与单相B4C陶瓷相比,B4C-SiC复合陶瓷具有更高的断裂韧性;与单相SiC陶瓷相比,B4C-SiC复合陶瓷具有更大的硬度。B4C-SiC复合陶瓷有望替代单相B4C陶瓷和单相SiC陶瓷广泛应用于工程领域。B4C-SiC复合陶瓷的力学性能与B4C-SiC复合粉体的颗粒分散均匀性有关。同时,B4C-SiC复合陶瓷的力学性能还受微观结构和相组成的影响。为了降低B4C-SiC复合陶瓷的烧结温度,常在原料中添加烧结助剂,常用的烧结助剂主要有:碳、氧化物、硼化物、碳化物、金属单质、非金属单质(除碳外)。不同烧结助剂促进B4C-SiC复合陶瓷烧结的机制各不相同;同时,这些烧结助剂通过影响B4C-SiC复合陶瓷的微观结构进而影响其力学性能。本文根据B4C-SiC复合陶瓷力学性能的研究结果,从B4C-SiC复合粉体、微观结构、相组成和烧结助剂等方面详细阐述了B4C-SiC复合陶瓷力学性能的影响因素,以期为B4C-SiC复合陶瓷的设计和研究提供依据。

     

  • 图  1  B4C-SiC复合陶瓷的应用

    Figure  1.  Applications of B4C-SiC composite ceramics

    图  2  B4C-50wt%SiC复合陶瓷的微观结构:(a)以湿磨后的B4C-SiC复合粉体为原料,(b)以干磨后的B4C-SiC复合粉体为原料[42]

    Figure  2.  Microstructure of B4C-50wt%SiC composite ceramics produced from: (a) B4C-SiC composite powders after wet ball milling and (b) B4C-SiC composite powders after dry mixing[42]

    图  3  B4C-SiC复合陶瓷的力学性能:(a)以湿磨后的B4C-SiC复合粉体为原料,(b)以干磨后的B4C-SiC复合粉体为原料[42]

    Figure  3.  Mechanical properties of B4C-SiC composite ceramics produced from: (a) B4C-SiC composite powders after wet ball milling and (b) B4C-SiC composite powders after dry mixing[42]

    图  4  B4C-50wt%SiC复合陶瓷断面的微观结构:(a)以高能球磨的B4C-SiC复合粉体为原料,(b)以普通球磨的B4C-SiC复合粉体为原料[47]

    Figure  4.  Microstructure of fracture surfaces of B4C-50wt%SiC composite ceramics produced from: (a) B4C-SiC composite powders prepared by high-energy ball milling and (b) B4C-SiC composite powders prepared by ball milling[47]

    图  5  固相烧结B4C-SiC复合陶瓷的相界特征、裂纹扩展及断面:(a)洁净且清晰的相界[50],(b)穿晶扩展[47],(c)断面处粗糙的SiC晶粒[54]

    Figure  5.  Phase boundary characteristics, crack propagation, and fracture surface of solid-state sintered B4C-SiC composite ceramics: (a) clean and clear phase boundary[50], (b) transgranular propagation mode[47], and (c) fracture surface exhibiting rougher SiC grains[54]

    图  6  不同B4C与SiC质量比的B4C-SiC复合陶瓷的抛光表面形貌:(a) 80∶20,(b) 60∶40,(c) 40∶60,(d) 20∶80[59]

    Figure  6.  Morphologies of polished surface of B4C-SiC composite ceramics with different mass ratios of B4C to SiC: (a) 80∶20, (b) 60∶40, (c) 40∶60, (d) 20∶80[59]

    图  7  含有5wt%氧化石墨烯烧结助剂的B4C-SiC复合陶瓷表面的裂纹扩展:(a)石墨烯桥联,(b)石墨烯拔出[74]

    Figure  7.  Crack propagation on surface of B4C-SiC composite ceramics with sintering additive of 5wt% graphene oxide: (a) graphene oxide bridging and (b) graphene oxide pull-out[74]

    图  8  含有5wt%CeO2烧结助剂的B4C-SiC复合陶瓷表面的裂纹扩展:(a)裂纹偏转,(b)裂纹桥联[78]

    Figure  8.  Crack propagation on surface of B4C-SiC composite ceramics with sintering additive of 5wt%CeO2: (a) crack deflection and (b) crack bridging[78]

    图  9  B4C-40wt%SiC复合陶瓷表面的裂纹扩展:(a)未添加TiB2,(b)添加5wt%TiB2[94]

    Figure  9.  Crack propagation on surface of B4C-40wt%SiC composite ceramics: (a) without addition of TiB2 and (b) with addition of 5wt%TiB2[94]

    表  1  含有不同碳烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  1.   Mechanical properties of B4C-SiC composite ceramics with different carbon sintering additives

    Ceramics Sintering additive Content of
    sintering
    additive/wt%
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Elastic
    modulus/
    GPa
    Ref.
    B4C-9wt%SiC Carbon black 2 Hot-press 99.6 - 403 5.26 (SENB) - [70]
    B4C-15wt%SiC No No Spark plasma 96.6 30.3 - 6.00 (IF) - [32]
    Graphite 2 98.8 25.7 - 5.50 (IF) -
    B4C-15wt%SiC Graphene oxide 5 Spark plasma 99.2 34.2 545 5.72 (IF) 444 [74]
    Notes: The bending strength is measured according to three-point bending test method. ‘SENB’ and ‘IF’ represent that the fracture toughness is measured according to single edge notched beam method and indentation-fracture method, respectively.
    下载: 导出CSV

    表  2  含有不同氧化物烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  2.   Mechanical properties of B4C-SiC composite ceramics with different oxide sintering additives

    Ceramics Sintering
    additive
    Content of
    sintering
    additive
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Ref.
    B4C-10wt%SiC Al2O3 3wt% Spark plasma 99.5 35.1 (3 N) - 5.9 (IF) [76]
    Al2O3 6wt% 99.1 33.7 (3 N) - 6.5 (IF)
    B4C-15vol%SiC No No Spark plasma 97.8 31.1 (9.8 N) - - [77]
    Y2O3 5wt% 98.2 33.0 (9.8 N) - -
    B4C-15wt%SiC No No Pressureless 85.8 19.8 (9.8 N) 194 2.40 (SENB) [78]
    CeO2 1wt% 91.2 26.0 (9.8 N) 270 3.25 (SENB)
    CeO2 5wt% 96.4 32.2 (9.8 N) 380 4.32 (SENB)
    CeO2 9wt% 93.4 27.0 (9.8 N) 330 4.00 (SENB)
    B4C-9wt%SiC No No Pressureless 82.8 - 307 3.72 (SENB) [81]
    Al2O3-Y2O3 15wt% 98.8 - 496 4.57 (SENB)
    B4C-10wt%SiC Al2O3:Y2O3(5:3, molar ratio) 10vol% Pressureless 91.5 29.5 (9.8 N) - - [83]
    AlN:Y2O3(3:2, molar ratio) 10vol% 93.4 30.3 (9.8 N) - -
    下载: 导出CSV

    表  3  含有不同硼化物或碳化物烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  3.   Mechanical properties of B4C-SiC composite ceramics with different boride or carbide sintering additives

    Ceramics Sintering
    additive
    Content of
    sintering
    additive
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Elastic
    modulus/
    GPa
    Ref.
    B4C-40wt%SiC No No Spark plasma 99.5 29.5 - 2.39 (IF) 436 [94]
    TiB2 10wt% 99.0 28.5 - 3.07 (IF) 427
    TiB2 20wt% 98.4 23.4 - 2.96 (IF) 415
    B4C-10vol%SiC TiB2 30vol% Hot-press 99.2 32.8 858 8.21 (SENB) - [95]
    B4C-10vol%SiC ZrB2 30vol% Hot-press 99.7 - 612 - - [96]
    B4C-20wt%SiC TiC 3wt% Pressureless 89.7 - 176 4.57 (SENB) - [98]
    TiC 12wt% 94.5 - 239 4.91 (SENB) -
    TiC 15wt% 92.1 - 230 4.75 (SENB) -
    下载: 导出CSV

    表  4  含有不同金属或非金属单质烧结助剂的B4C-SiC复合陶瓷的力学性能

    Table  4.   Mechanical properties of B4C-SiC composite ceramics with different metallic or non-metallic elemental sintering additives

    Ceramics Sintering
    additive
    Content of
    sintering
    additive/wt%
    Sintering
    method
    Relative
    density/%
    Vickers
    hardness/
    GPa (9.8 N)
    Bending
    strength/
    MPa
    Fracture
    toughness/
    (MPa·m1/2)
    Ref.
    B4C-50wt%SiC No No Pressureless 97.5 - 290 - [99]
    Ti 3 97.6 - 204 -
    B4C-15wt%SiC No No Hot-press 95.4 24.0 265 4.96 [101]
    Si 4 95.8 26.4 260 5.06
    Si 15 98.3 31.0 350 5.40
    B4C-60wt%SiC
    No No Pressureless 89.0 20.0 - - [103]
    Si 2 88.0 14.0 - -
    Si 5 89.0 16.2 - -
    Si 10 92.0 18.1 - -
    Si 20 90.0 15.0 - -
    B4C-60wt%SiC No No Spark plasma 94.0 28.0 - - [103]
    Si 2 94.6 22.0 - -
    Si 5 96.3 24.4 - -
    Si 10 98.0 27.8 - -
    Si 20 97.0 24.0 - -
    下载: 导出CSV
  • [1] ZARE A, HE M R, STRAKER M, et al. Mechanical characterization of boron carbide single crystals[J]. Journal of the American Ceramic Society, 2022, 105(5): 3030-3042. doi: 10.1111/jace.18065
    [2] ZHANG W, YAMASHITA S, KITA H. Self lubrication of pressureless sintered SiC ceramics[J]. Journal of Materials Research and Technology, 2020, 9(6): 12880-12888. doi: 10.1016/j.jmrt.2020.09.022
    [3] THÉVENOT F. Boron carbide- a comprehensive review[J]. Journal of the European Ceramic Society, 1990, 6(4): 205-225. doi: 10.1016/0955-2219(90)90048-K
    [4] ZHANG W. Tribology of SiC ceramics under lubrication: Features, developments, and perspectives[J]. Current Opinion in Solid State & Materials Science, 2022, 26(4): 101000.
    [5] ZHANG W, YAMASHITA S, KITA H. Effects of load on tribological properties of B4C and B4C-SiC ceramics sliding against SiC balls[J]. Journal of Asian Ceramic Societies, 2020, 8(3): 586-596. doi: 10.1080/21870764.2020.1769819
    [6] KHODAEI M, YAGHOBIZADEH O, ALHOSSEINI S H N, et al. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review[J]. Journal of the European Ceramic Society, 2019, 39(7): 2215-2231. doi: 10.1016/j.jeurceramsoc.2019.02.042
    [7] SURI A K, SUBRAMANIAN C, SONBER J K, et al. Synthesis and consolidation of boron carbide: a review[J]. International Materials Reviews, 2010, 55(1): 4-40. doi: 10.1179/095066009X12506721665211
    [8] ZHANG W, CHEN X Y, YAMASHITA S, et al. Frictional characteristics of carbide ceramics in water[J]. Journal of Tribology, 2022, 144(1): 011702. doi: 10.1115/1.4050732
    [9] ZHANG W. A review of tribological properties for boron carbide ceramics[J]. Progress in Materials Science, 2021, 116: 100718. doi: 10.1016/j.pmatsci.2020.100718
    [10] ZHANG W, YAMASHITA S, KITA H. Progress in tribological research of SiC ceramics in unlubricated sliding-A review[J]. Materials & Design, 2020, 190: 108528.
    [11] LEE W E, GILBERT M, MURPHY S T, et al. Opportunities for advanced ceramics and composites in the nuclear sector[J]. Journal of the American Ceramic Society, 2013, 96(7): 2005-2030. doi: 10.1111/jace.12406
    [12] SAUERSCHNIG P, WATTS J L, VANEY J B, et al. Thermoelectric properties of phase pure boron carbide prepared by a solution-based method[J]. Advances in Applied Ceramics, 2020, 119(2): 97-106. doi: 10.1080/17436753.2019.1705017
    [13] ZHANG W, CHEN X Y, YAMASHITA S, et al. B4C–SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear[J]. ACS Applied Nano Materials, 2021, 4(3): 3159-3166. doi: 10.1021/acsanm.1c00375
    [14] ZHANG W, DAI W Y, CHIYODA N. Research on thermal shock resistance of mullite-bauxite-silicon carbide castable refractory[J]. Chinese Journal of Geochemistry, 2012, 31(2): 204-208. doi: 10.1007/s11631-012-0569-z
    [15] ZHANG J, ZHANG Y, WANG Y F, et al. Long-term oxidation performance of SiCf/SiC composites at 1200 ℃ in air atmosphere manufactured by PIP and hybrid CVI/PIP techniques[J]. Ceramics International, 2024, 50(7): 10259-10267. doi: 10.1016/j.ceramint.2023.12.337
    [16] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Tribological properties of B4C ceramics prepared by pressureless sintering and annealed at different temperatures[J]. Tribology Transactions, 2020, 63(4): 672-682. doi: 10.1080/10402004.2020.1734705
    [17] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Influence of surface roughness parameters and surface morphology on friction performance of ceramics[J]. Journal of the Ceramic Society of Japan, 2019, 127(11): 837-842. doi: 10.2109/jcersj2.19124
    [18] 张巍, 张杰. 碳化硼陶瓷自润滑的研究现状[J]. 中国表面工程, 2024, 37(3): 15-26.

    ZHANG Wei, ZHANG Jie. State of the art on self-lubrication of boron carbide ceramics[J]. China Surface Engineering, 2024, 37(3): 15-26(in Chinese).
    [19] 崔凤单, 马天, 李伟萍, 等. SiC和B4C防弹插板抗多发弹打击损伤特性研究[J]. 无机材料学报, 2017, 32(9): 967-972. doi: 10.15541/jim20160667

    CUI Fengdan, MA Tian, LI Weiping, et al. Damage characteristics of SiC and B4C ballistic insert plates subjected to multi-hit[J]. Journal of Inorganic Materials, 2017, 32(9): 967-972(in Chinese). doi: 10.15541/jim20160667
    [20] ZHANG W, YAMASHITA S, KITA H. Progress in pressureless sintering of boron carbide ceramics-A review[J]. Advances in Applied Ceramics, 2019, 118(4): 222-239. doi: 10.1080/17436753.2019.1574285
    [21] 李树杰, 陈孝飞, 刘文慧, 等. 采用聚硅氧烷(HPSO-VPSO)和Al-Si粉连接无压烧结SiC陶瓷[J]. 复合材料学报, 2011, 28(1): 88-93.

    LI Shujie, CHEN Xiaofei, LIU Wenhui, et al. Joining of pressureless sintered SiC using polysiloxane (HPSO-VPSO) with additive Al-Si powders[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 88-93(in Chinese).
    [22] YAMADA S, HIRAO K, YAMAUCHI Y, et al. B4C−CrB2 composites with improved mechanical properties[J]. Journal of the European Ceramic Society, 2003, 23(3): 561-565. doi: 10.1016/S0955-2219(02)00094-8
    [23] GUPTA S, SHARMA S K, KUMAR B V M, et al. Tribological characteristics of SiC ceramics sintered with a small amount of yttria[J]. Ceramics International, 2015, 41(10): 14780-14789. doi: 10.1016/j.ceramint.2015.07.210
    [24] SECRIST D R. Phase equilibria in the system boron carbide-silicon carbide[J]. Journal of the American Ceramic Society, 1964, 47(3): 127-130. doi: 10.1111/j.1151-2916.1964.tb14369.x
    [25] HONG J D, SPEAR K E, STUBICAN V S. Directional solidification of SiC-B4C eutectic: growth and some properties[J]. Materials Research Bulletin, 1979, 14(6): 775-783. doi: 10.1016/0025-5408(79)90137-5
    [26] ZORZI J E, PEROTTONI C A, JORNADA J A H. Hardness and wear resistance of B4C ceramics prepared with several additives[J]. Materials Letters, 2005, 59(23): 2932-2935. doi: 10.1016/j.matlet.2005.04.047
    [27] BIND J M, BIGGERS J V. Hot-pressing of silicon carbide with 1 % boron carbide addition[J]. Journal of the American Ceramic Society, 1975, 58(7-8): 304-306. doi: 10.1111/j.1151-2916.1975.tb11482.x
    [28] LI C R, LI S, AN D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C[J]. Ceramics International, 2020, 46(8): 10142-10146. doi: 10.1016/j.ceramint.2020.01.005
    [29] 张巍, 张杰. B4C-Al2O3复合陶瓷增韧机理研究[J]. 材料研究学报, 2024.

    ZHANG Wei, ZHANG Jie. Study on the toughening mechanism of B4C-Al2O3 composite ceramics[J]. Chinese Journal of Materials Research, 2024(in Chinese).
    [30] LYU X X, ZHAO Z Y, SUN H L, et al. Influence of Y2O3 contents on sintering and mechanical properties of B4C-Al2O3 multiphase ceramic composites[J]. Journal of Materials Research and Technology, 2020, 9(5): 11687-11701. doi: 10.1016/j.jmrt.2020.08.072
    [31] BAHARVANDI H R, HADIAN A M, ABDIZADEH A, et al. Investigation on addition of ZrO2-3 mol% Y2O3 powder on sintering behavior and mechanical properties of B4C[J]. Journal of Materials Science, 2006, 41(16): 5269-5272. doi: 10.1007/s10853-006-0355-6
    [32] MOSHTAGHIOUN B M, ORTIZ A L, GARCÍA D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition[J]. Journal of the European Ceramic Society, 2013, 33(8): 1395-1401. doi: 10.1016/j.jeurceramsoc.2013.01.018
    [33] MAGNANI G, BELTRAMI G, MINOCCARI G L, et al. Pressureless sintering and properties of αSiC-B4C composite[J]. Journal of the European Ceramic Society, 2001, 21(5): 633-638. doi: 10.1016/S0955-2219(00)00244-2
    [34] ZHANG W, CHEN X Y, YAMASHITA S, et al. Effect of water temperature on tribological performance of B4C-SiC ceramics under water lubrication[J]. Tribology Letters, 2021, 69(2): 34. doi: 10.1007/s11249-021-01406-0
    [35] ZHANG W, YAMASHITA S, KITA H. A study of B4C-SiC composite for self-lubrication[J]. Journal of the American Ceramic Society, 2021, 104(5): 2325-2336. doi: 10.1111/jace.17584
    [36] ZHANG W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide[J]. Advances in Colloid and Interface Science, 2022, 301: 102604. doi: 10.1016/j.cis.2022.102604
    [37] 宋小伟. 振荡压力烧结B4C-SiCw复合陶瓷制备与性能研究[D]. 郑州: 郑州航空工业管理学院, 2023.

    SONG Xiaowei. Preparation and properties of B4C-SiCw composite ceramics sintered by hot oscillating pressure[D]. Zhengzhou: Zhengzhou University of Aeronautics, 2023(in Chinese).
    [38] 陈家鑫, 曾启航, 王峰, 等. B4C增强SiC基复合陶瓷力学性能和抗氧化性能[J]. 硅酸盐学报, 2023, 51(3): 730-737.

    CHEN Jiaxin, ZENG Qihang, WANG Feng, et al. Mechanical and oxidation resistance of SiC based composite ceramics reinforced with B4C[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 730-737(in Chinese).
    [39] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Effect of nanorelief structure formed in situ on tribological properties of ceramics in dry sliding[J]. Ceramics International, 2019, 45(11): 13818-13824. doi: 10.1016/j.ceramint.2019.04.078
    [40] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Study on friction behavior of SiC-B4C composite ceramics after annealing[J]. Industrial Lubrication and Tribology, 2020, 72(5): 673-679.
    [41] ZHANG W. An overview of the synthesis of silicon carbide-boron carbide composite powders[J]. Nanotechnology Reviews, 2023, 12: 20220571. doi: 10.1515/ntrev-2022-0571
    [42] YAŞAR Z A, HABER R A. Evaluating the role of uniformity on the properties of B4C–SiC composites[J]. Ceramics International, 2021, 47(4): 4838-4844. doi: 10.1016/j.ceramint.2020.10.055
    [43] ZHANG W, YAMASHITA S, KITA H. Effect of counterbody on tribological properties of B4C–SiC composite ceramics[J]. Wear, 2020, 458-459: 203418. doi: 10.1016/j.wear.2020.203418
    [44] ZHANG W, CHEN X Y, YAMASHITA S, et al. Tribological behaviour of B4C-SiC composite ceramics under water lubrication: influence of counterpart[J]. Materials Science and Technology, 2021, 37(9): 863-876. doi: 10.1080/02670836.2021.1961365
    [45] SO S M, CHOI W H, KIM K H, et al. Mechanical properties of B4C–SiC composites fabricated by hot-press sintering[J]. Ceramics International, 2020, 46(7): 9575-9581. doi: 10.1016/j.ceramint.2019.12.222
    [46] MATOVIĆ B, MALETAŠKIĆ J, PRIKHNA T, et al. Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering[J]. Journal of the European Ceramic Society, 2021, 41(9): 4755-4760. doi: 10.1016/j.jeurceramsoc.2021.03.047
    [47] ZHANG Z X, DU X W, WANG W M, et al. Preparation of B4C–SiC composite ceramics through hot pressing assisted by mechanical alloying[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 270-275. doi: 10.1016/j.ijrmhm.2013.04.012
    [48] ZHANG Z X, DU X W, WANG W M, et al. Preparation and sintering of high active and ultrafine B4C-SiC composite powders[J]. Journal of Inorganic Materials, 2014, 29(2): 185-190. doi: 10.3724/SP.J.1077.2014.13226
    [49] ZHANG W. Recent progress in B4C–SiC composite ceramics: processing, microstructure, and mechanical properties[J]. Materials Advances, 2023, 4(15): 3140-3191. doi: 10.1039/D3MA00143A
    [50] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics[J]. Ceramics International, 2019, 45(17): 23143-23148. doi: 10.1016/j.ceramint.2019.08.008
    [51] ZHU Y, LUO D J, LI Z J, et al. Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B4C/SiC ceramic composite with carbon additive[J]. Journal of Alloys and Compounds, 2020, 820: 153153. doi: 10.1016/j.jallcom.2019.153153
    [52] KALANDARAGH Y A, NAMINI A S, AHMADI Z, et al. Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites[J]. Ceramics International, 2018, 44(16): 19932-19938. doi: 10.1016/j.ceramint.2018.07.258
    [53] HWANG C, YANG Q, XIANG S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite[J]. Journal of the European Ceramic Society, 2019, 39(4): 718-725. doi: 10.1016/j.jeurceramsoc.2018.12.029
    [54] 吴宇超, 曹剑武, 高晓菊, 等. 温度对SPS烧结B4C-SiC复相陶瓷力学性能的影响[J]. 兵器材料科学与工程, 2019, 42(2): 21-24.

    WU Yuchao, CAO Jianwu, GAO Xiaoju, et al. Effect of temperature on mechanical properties of B4C-SiC prepared by SPS sintering[J]. Ordnance Material Science and Engineering, 2019, 42(2): 21-24(in Chinese).
    [55] MORADKHANI A, BAHARVANDI H. Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sintering[J]. International Journal of Refractory Metals & Hard Materials, 2018, 70: 107-115.
    [56] YE K C, WANG Z J. Residual stress effects on toughening of ultrafine-grained B4C-SiC ceramics[J]. Materials Today Communications, 2023, 36: 106649. doi: 10.1016/j.mtcomm.2023.106649
    [57] 张志晓, 杜贤武, 邢伟宏, 等. SiC含量对机械合金化-热压制备B4C-SiC复合陶瓷的影响[J]. 无机材料学报, 2014, 29(7): 695-700.

    ZHANG Zhixiao, DU Xianwu, XING Weihong, et al. Effect of SiC content on B4C-SiC composites fabricated by mechanical alloying-hot pressing[J]. Journal of Inorganic Materials, 2014, 29(7): 695-700(in Chinese).
    [58] CHO J Y, AN T, JI S, et al. The effects of B4C addition on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge[J]. Ceramics International, 2017, 43(17): 15332-15338. doi: 10.1016/j.ceramint.2017.08.072
    [59] ZHANG W, YAMASHITA S, KITA H. Tribological properties of SiC-B4C ceramics under dry sliding condition[J]. Journal of the European Ceramic Society, 2020, 40(8): 2855-2861. doi: 10.1016/j.jeurceramsoc.2020.02.062
    [60] VANDEPERRE L J, TEO J H. Pressureless sintering of SiC-B4C composites[J]. Advances in Ceramic Armor IX, 2014, 101-108.
    [61] MCCLELLAN K J, CHU F, ROPER J M, et al. Room temperature single crystal elastic constants of boron carbide[J]. Journal of Materials Science, 2001, 36(14): 3403-3407. doi: 10.1023/A:1017947625784
    [62] 张巍, 张金, 段春雷, 等. Al2O3抗热震陶瓷的研究进展[J]. 沈阳工业大学学报, 2020, 42(6): 624-647. doi: 10.7688/j.issn.1000-1646.2020.06.05

    ZHANG Wei, ZHANG Jin, DUAN Chunlei, et al. Research progress in Al2O3 thermal shock resistant ceramics[J]. Journal of Shenyang University of Technology, 2020, 42(6): 624-647(in Chinese). doi: 10.7688/j.issn.1000-1646.2020.06.05
    [63] KEÇELI Z, ÖGÜNÇ H, BOYRAZ T, et al. Effects of B4C addition on the micro-structural and thermal properties of hot pressed SiC ceramic matrix composites[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2009, 37(2): 428-433.
    [64] CHEN W, HAO W H, ZHAO Z Q, et al. Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater[J]. Journal of Asian Ceramic Societies, 2021, 9(4): 1495-1505. doi: 10.1080/21870764.2021.1986202
    [65] TOMOHIRO Y, ATSUSHI N, KATSUAKI S, et al. Preparation and properties of B4C-SiC composite[J]. Japan Society of Powder and Powder Metallurgy, 1990, 37(4): 571-574. doi: 10.2497/jjspm.37.571
    [66] XU C M, CAI Y B, FLODSTRÖM K, et al. Spark plasma sintering of B4C ceramics: the effects of milling medium and TiB2 addition[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 139-144. doi: 10.1016/j.ijrmhm.2011.07.016
    [67] YAŞAR Z A, HABER R. Effect of acid etching time and concentration on oxygen content of powder on the microstructure and elastic properties of silicon carbide densified by SPS[J]. International Journal of Materials Science and Applications, 2020, 9(1): 7-13. doi: 10.11648/j.ijmsa.20200901.12
    [68] YAŞAR Z A, DELUCCA V A, HABER R A. Influence of oxygen content on the microstructure and mechanical properties of SPS SiC[J]. Ceramics International, 2018, 44(18): 23248-23253. doi: 10.1016/j.ceramint.2018.08.195
    [69] KAKIAGE M, TOMINAGA Y, YANASE I, et al. Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid-polyol product[J]. Powder Technology, 2012, 221: 257-263. doi: 10.1016/j.powtec.2012.01.010
    [70] 李少峰. B4C-SiC复合材料的制备及性能研究[J]. 佛山陶瓷, 2018, 28(5): 12-15. doi: 10.3969/j.issn.1006-8236.2018.05.004

    LI Shaofeng. The research on preparation process and properties of B4C-SiC composite materials[J]. Foshan Ceramics, 2018, 28(5): 12-15(in Chinese). doi: 10.3969/j.issn.1006-8236.2018.05.004
    [71] THÉVENOT F. Sintering of boron carbide and boron carbide-silicon carbide two-phase materials and their properties[J]. Journal of Nuclear Materials, 1988, 152(2-3): 154-162. doi: 10.1016/0022-3115(88)90321-2
    [72] GALÁN C A, ORTIZ A L, GUIBERTEAU F, et al. High-energy ball-milling of ZrB2 in the presence of graphite[J]. Journal of the American Ceramic Society, 2010, 93(10): 3072-3075. doi: 10.1111/j.1551-2916.2010.04051.x
    [73] MOSHTAGHIOUN B M, GARCÍA D G, RODRÍGUEZ A D. High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C-SiC with/without graphite (g)[J]. Journal of the European Ceramic Society, 2016, 36(5): 1127-1134. doi: 10.1016/j.jeurceramsoc.2015.12.016
    [74] HU L X, WANG A Y, TIAN T, et al. Effects of SiC on the microstructures and mechanical properties of B4C–SiC–rGO composites prepared using spark plasma sintering[J]. Journal of the European Ceramic Society, 2022, 42(4): 1282-1291. doi: 10.1016/j.jeurceramsoc.2021.11.038
    [75] PYZIK A J, BEAMAN D R. Microstructure and properties of self-reinforced silicon nitride[J]. Journal of the American Ceramic Society, 2010, 76(11): 2737-2744.
    [76] JAMALE S, KUMAR B V M. Sintering and sliding wear studies of B4C-SiC composites[J]. International Journal of Refractory Metals & Hard Materials, 2020, 87: 105124.
    [77] SAHIN F C, APAK B, AKIN I, et al. Spark plasma sintering of B4C–SiC composites[J]. Solid State Sciences, 2012, 14(11-12): 1660-1663. doi: 10.1016/j.solidstatesciences.2012.05.037
    [78] ZHU Y, WANG F C, WANG Y W, et al. Mechanical properties and microstructure evolution of pressureless-sintered B4C-SiC ceramic composite with CeO2 additive[J]. Ceramics International, 2019, 45(12): 15108-15115. doi: 10.1016/j.ceramint.2019.04.251
    [79] YIN B Y, WANG L S. Study on physical properties of hot-pressing sintered B4C ceramic[J]. Atomic Energy Science and Technology, 2004, 38(5): 429-431.
    [80] 彭可武, 马贺利, 陈韧, 等. 原位生成CeB6颗粒增韧B4C/Al复合材料的研究[J]. 稀有金属, 2009, 33(6): 850-854. doi: 10.3969/j.issn.0258-7076.2009.06.017

    PENG Kewu, MA Heli, CHEN Ren, et al. Toughening B4C/Al ceramics by in-situ CeB6 particles in B4C[J]. Chinese Journal of Rare Metals, 2009, 33(6): 850-854(in Chinese). doi: 10.3969/j.issn.0258-7076.2009.06.017
    [81] 李少峰. 液相烧结法制备B4C-SiC复合陶瓷材料的研究[J]. 佛山陶瓷, 2019, 29(5): 10-13. doi: 10.3969/j.issn.1006-8236.2019.05.005

    LI Shaofeng. The research on preparation of B4C-SiC composite ceramic materials by liquid-phase sintering process[J]. Foshan Ceramics, 2019, 29(5): 10-13(in Chinese). doi: 10.3969/j.issn.1006-8236.2019.05.005
    [82] JAMALE S, KUMAR B V M. B4C-SiC composites with tuneable mechanical properties: Role of Al2O3-Y2O3 sintering additives[J]. Journal of Alloys and Compounds, 2024, 976: 172954. doi: 10.1016/j.jallcom.2023.172954
    [83] ROCHA R M D, MELO F C L D. Pressureless sintering of B4C-SiC composites for armor applications[J]. Ceramic Engineering & Science Proceedings, 2010, 30(5): 113-119.
    [84] ROCHA R M D, MELO F C L D. Sintering of B4C-SiC composites with AlN-Y2O3 addition[J]. Materials Science Forum, 2012, 727-728: 850-855. doi: 10.4028/www.scientific.net/MSF.727-728.850
    [85] ZHOU Y, TANAKA H, OTANI S, et al. Low-temperature pressureless sintering of α-SiC with Al4C3-B4C-C additions[J]. Journal of the American Ceramic Society, 1999, 82(8): 1959-1964. doi: 10.1111/j.1151-2916.1999.tb02026.x
    [86] ZHANG Y L, ZHANG Y M, LI C H, et al. Influence of reaction temperature on the densification behavior of the SiC/B4C composites[J]. Applied Mechanics and Materials, 2015, 727-728: 11-14. doi: 10.4028/www.scientific.net/AMM.727-728.11
    [87] ZHANG Y L, ZHANG Y M, HU M, et al. Effect of B4C content on densification behavior of SiC-B4C ceramics[J]. Advanced Materials Research, 2014, 997: 454-456. doi: 10.4028/www.scientific.net/AMR.997.454
    [88] SCHWETZ K. Handbook of Ceramic Hard Materials[M]. Oxford: Alden Bookset, 2000.
    [89] RIDGWAY R R. Boron carbide: a new crystalline abrasive and wear-resisting product[J]. Transactions of the Electrochemical Society, 1934, 66(1): 117. doi: 10.1149/1.3498064
    [90] MUNRO R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5): 709-720. doi: 10.6028/jres.105.057
    [91] WU C, XIE S H, LI Y K. Microstructure evolution and phase transformation of TiB2/SiC/B4C composites synthesized from Ti-SiC-B4C ternary system[J]. International Journal of Applied Ceramic Technology, 2017, 14(6): 1055-1061. doi: 10.1111/ijac.12740
    [92] ZHANG X R, ZHANG Z X, WANG W M, et al. Preparation of B4C composites toughened by TiB2-SiC agglomerates[J]. Journal of the European Ceramic Society, 2017, 37(2): 865-869. doi: 10.1016/j.jeurceramsoc.2016.09.003
    [93] ZHANG X R, ZHANG Z X, WANG W M, et al. Microstructure and mechanical properties of B4C–TiB2–SiC composites toughened by composite structural toughening phases[J]. Journal of the American Ceramic Society, 2017, 100(7): 3099-3107. doi: 10.1111/jace.14815
    [94] YAŞAR Z A, CELIK A M, HABER R A. Improving fracture toughness of B4C–SiC composites by TiB2 addition[J]. International Journal of Refractory Metals and Hard Materials, 2022, 108: 105930. doi: 10.1016/j.ijrmhm.2022.105930
    [95] HE Q L, WANG A Y, LIU C, et al. Microstructures and mechanical properties of B4C-TiB2-SiC composites fabricated by ball milling and hot pressing[J]. Journal of the European Ceramic Society, 2018, 38(7): 2832-2840. doi: 10.1016/j.jeurceramsoc.2018.02.020
    [96] QU Z L, HE R J, CHENG X M, et al. Fabrication and characterization of B4C–ZrB2–SiC ceramics with simultaneously improved high temperature strength and oxidation resistance up to 1600 ℃[J]. Ceramics International, 2016, 42(7): 8000-8004. doi: 10.1016/j.ceramint.2016.01.202
    [97] UPATOV M, VLEUGELS J, KOVAL Y, et al. Microstructure and mechanical properties of B4C-NbB2-SiC ternary eutectic composites by a crucible-free zone melting method[J]. Journal of the European Ceramic Society, 2021, 41(2): 1189-1196. doi: 10.1016/j.jeurceramsoc.2020.09.049
    [98] 孟凡然, 王琨, 冯荣, 等. TiC对B4C-SiC复合陶瓷材料性能的影响[J]. 佛山陶瓷, 2022, 32(3): 16-19. doi: 10.3969/j.issn.1006-8236.2022.03.005

    MENG Fanran, WANG Kun, FENG Rong, et al. Effect of TiC on properties of B4C-SiC composite ceramic materials[J]. Foshan Ceramics, 2022, 32(3): 16-19(in Chinese). doi: 10.3969/j.issn.1006-8236.2022.03.005
    [99] 王书晗. B4C/SiC和B4C/TiB2陶瓷复合材料的制备、组织及力学性能的研究[D]. 沈阳: 东北大学, 2019.

    WANG Shuhan. A study on preparation, microstructure and mechanical properties of B4C/SiC and B4C/TiB2 ceramic composites[D]. Shenyang: Northeastern University, 2019(in Chinese).
    [100] 王伟明, 王为得, 粟毅, 等. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, https://link.cnki.net/urlid/31.1363.TQ.20240202.1626.004.

    WANG Weiming, WANG Weide, SU Yi, et al. Research progress in high thermal conductivity silicon nitride ceramics prepared by non-oxide additives[J]. Journal of Inorganic Materials, https://link.cnki.net/urlid/31.1363.TQ.20240202.1626.004 (in Chinese).
    [101] DU X W, WANG Y, ZHANG Z X, et al. Effects of silicon addition on the microstructure and properties of B4C–SiC composite prepared with polycarbosilane-coated B4C powder[J]. Materials Science & Engineering A, 2015, 636: 133-137.
    [102] DU X W, ZHANG Z X, WANG W M, et al. Microstructure and properties of B4C-SiC composites prepared by polycarbosilane-coating/B4C powder route[J]. Journal of the European Ceramic Society, 2014, 34(5): 1123-1129. doi: 10.1016/j.jeurceramsoc.2013.10.039
    [103] SAHANI P, CHAIRA D. Nonlubricated sliding wear behavior study of SiC–B4C–Si cermet against a diamond indenter[J]. Journal of Tribology, 2017, 139(5): 051601. doi: 10.1115/1.4035344
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-23
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回