留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速渗氮处理下的TC4钛合金的摩擦磨损性能

丁旭 王匀 杜道忠 周泓 于超 刘为力 刘振强 李瑞涛

丁旭, 王匀, 杜道忠, 等. 快速渗氮处理下的TC4钛合金的摩擦磨损性能[J]. 复合材料学报, 2023, 42(0): 1-10.
引用本文: 丁旭, 王匀, 杜道忠, 等. 快速渗氮处理下的TC4钛合金的摩擦磨损性能[J]. 复合材料学报, 2023, 42(0): 1-10.
DING Xu, WANG Yun, DU Daozhong, et al. Friction and wear properties of TC4 titanium alloy with high-speed nitriding treatment[J]. Acta Materiae Compositae Sinica.
Citation: DING Xu, WANG Yun, DU Daozhong, et al. Friction and wear properties of TC4 titanium alloy with high-speed nitriding treatment[J]. Acta Materiae Compositae Sinica.

快速渗氮处理下的TC4钛合金的摩擦磨损性能

基金项目: 国家自然科学基金 (52105259);泰州市科技成果转化项目(SCG202220);泰州市科技支撑计划(TG202247);扬州市重点研发项目(SCY2022010022);无锡市科技攻关项目(G20222007);泰州市双创人才项目(泰人才办[2022]22号)
详细信息
    通讯作者:

    王匀,博士,教授,博士生导师,研究方向为高性能复合材料制备工艺及装备,微成形 E-mail: wangyun@ujs.edu.cn

  • 中图分类号: TB331

Friction and wear properties of TC4 titanium alloy with high-speed nitriding treatment

Funds: National Natural Science Foundation of China (No. 52105259); Taizhou scientific and technological achievements transformation project (No. SCG202220); Taizhou science and technology support plan (No. TG202247); Yangzhou key research and development project (No. SCY2022010022); Wuxi science and technology research project (No. G20222007); Taizhou double creation talent project (No. Thai Talent Office [2022]22)
  • 摘要: 为了改善TC4钛合金表面硬度、耐磨性较差的缺点,本文提出了基于超快高温烧结(UHS)工艺的快速渗氮处理(HSNT)表面处理方法。对TC4钛合金表面进行HSNT,利用X射线衍射仪和扫描电子显微镜研究试样的微观组织,采用维氏显微硬度计和摩擦磨损试验装置对试样进行力学性能测试。2 min即可在TC4钛合金表面形成改性层,改性层由两部分组成,最表层为氮化物层,厚度10 μm,平均显微硬度为973.55 HV0.1,主要成分为TiN;次表层为渗氮层,厚度10 μm,平均显微硬度为774.53 HV0.1,截面显微硬度整体呈现出阶梯分布的趋势。摩擦磨损试验发现,在20 N载荷下,经过HSNT的TC4的摩擦系数为0.406,降低了24.4%,经过HSNT的TC4的磨损体积为0.302 mm3,降低了86.7%。不同载荷下经过HSNT的TC4的摩擦系数和磨损体积始终小于TC4钛合金,且均随着载荷的增加而增大。在20 N载荷下,TC4的磨损机制主要表现为磨粒磨损和氧化磨损,经过HSNT的TC4的磨损机制主要表现为粘着磨损和氧化磨损。经过HSNT的TC4钛合金的性能得到了明显的改善,弥补了TC4硬度低,耐磨性差的缺点。

     

  • 图  1  超快高温烧结工艺示意图[20]

    Figure  1.  Schematic diagram of UHS process[20]

    图  2  快速渗氮处理(HSNT)工艺技术路线图

    Figure  2.  Technical roadmap of high-speed nitriding treatment (HSNT)

    图  3  TC4钛合金快速渗氮处理后的截面形貌:(a)500倍;(b)2000倍;(c)线扫分析

    Figure  3.  Cross-sectional topography of the TC4 titanium alloy with HSNT:(a)500×;(b)2000×;(c) line scanning analysis

    图  4  TC4快速渗氮处理后改性层的XRD图谱

    Figure  4.  XRD patterns of the modified layer of the TC4 with HSNT

    图  5  TC4快速渗氮处理后的显微硬度-深度曲线图

    Figure  5.  Graph of microhardness-depth of the TC4 with HSNT

    图  6  快速渗氮处理前后的TC4钛合金在5 N、20 N载荷下的摩擦系数(a)及平均摩擦系数(b)

    Figure  6.  Friction coefficient(a) of the TC4 titanium alloy before and after HSNT under loads of 5 N, 20 N as well asaverage friction coefficient(b)

    图  7  快速渗氮处理前(a、b)后(c、d)的TC4钛合金在5 N载荷下的磨损形貌

    Figure  7.  Wear morphology of the TC4 titanium alloy before(a,b)and after(c,d)HSNT under a load of 5 N

    图  8  快速渗氮处理前(a、b)后(c、d)的TC4钛合金在20 N载荷下的磨损形貌

    Figure  8.  Wear morphology of the TC4 titanium alloy before (a,b) and after (c,d) HSNT under a load of 20 N

    图  9  快速渗氮处理前后的TC4钛合金在5 N、20 N载荷下的磨痕截面(a)及磨损体积(b)

    Figure  9.  Wear scar cross-section(a) of the TC4 titanium alloy before and after HSNT under loads of5 N, 20 N as well aswear volume(b)

    图  10  快速渗氮处理前(a)后(c)的TC4在20 N载荷下的磨损形貌及相应EDS分析(b)、(d)

    Figure  10.  Wear morphology of the TC4 titanium alloy before (a) and after (c) HSNT under a load of 20 N as well as corresponding EDS analyses (b),(d)

    表  1  TC4钛合金的元素成分(wt%)

    Table  1.   Elemental compositions of TC4 titanium alloy(wt%)

    Ti Alloying element Impurity element
    Al V Fe Si C N H O
    Bal. 5.5~6.8 3.5~4.5 ≤0.30 ≤0.10 ≤0.10 ≤0.05 <0.015 <0.015
    下载: 导出CSV

    表  2  摩擦磨损试验参数

    Table  2.   Parameters of frictional wear test

    Load/N Friction pair Temperature/℃ Rotate speed/(r·min−1) Time/min Radius/mm
    5
    20
    Si3N4 20 500 30 2
    下载: 导出CSV
  • [1] FENG X, ZHAO Y, NING W. Application of the Titanium Alloy in Civil Aviation[J]. Baosteel Technical Research, 2011, 5(4): 25-35.
    [2] DING R, GUO Z X. Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations[J]. Materials Science and Engineering:A, 2004, 365(2): 172-179.
    [3] 应扬, 李磊, 赵彬, 等. 钛合金的摩擦磨损性能及其改善方法[J]. 有色金属材料与工程, 2019, 40(3): 49-54.

    YING Y, LI L, ZHAO B. Friction and Wear Properties of Titanium Alloys and the Improving Methods[J]. Nonferrous Metal Materials and Engineering, 2019, 40(3): 49-54 (in Chinese).
    [4] 衣晓红, 樊占国, 张景垒, 等. TC4钛合金的固体渗硼[J]. 稀有金属材料与工程, 2010, 39(9): 1631-1635.

    YI X H, FAN Z G, ZHANG J L, et al. Solid-State Pack Boronizing of TC4 Titanium Alloy[J]. Rare Metal Materials and Engineering, 2010, 39(9): 1631-1635(in Chinese).
    [5] ZUO S, MIAO Q, LIANG W, et al. Effects of Pretreatment on Borocarburized of TC4 Titanium Alloy[J]. Materials Research Express, 2019, 6(5): 056505. doi: 10.1088/2053-1591/ab0070
    [6] MENG Y G, BAI J, JIANG X J, et al. Effect of Zr on Isothermal Oxidation Behavior of TC4 Alloy at 600℃[J]. Vacuum, 2023, 213: 112112. doi: 10.1016/j.vacuum.2023.112112
    [7] RASTKAR A R, SHOKRI B, BELL T. Structural and Mechanical Evaluation of the Effect of Oxygen Boost Diffusion on a Gamma Based Titanium Aluminide of Ti–45Al–2Nb–2Mn–1B[J]. Surface and Coatings Technology, 2008, 202(24): 6038-6048. doi: 10.1016/j.surfcoat.2008.07.001
    [8] ÜSTEL F, ZEYTIN S. Growth Morphology and Phase Analysis of Titanium-based Coating Produced by Thermochemical Method[J]. Vacuum, 2006, 81(3): 360-365. doi: 10.1016/j.vacuum.2006.06.011
    [9] 谭金花, 孙荣禄, 牛伟等. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.

    TAN J H, SUN R L, NIU W, et al. Research Status of TC4 Alloy Laser Cladding Materials[J]. Materials Reports, 2020, 34(15): 15132-15137(in Chinese).
    [10] KANYANE L R, ADESINA O S, POPOOLA A P, et al. Microstructural Evolution and Corrosion Properties of Laser Clad Ti-Ni on Titanium Alloy (Ti6Al4V)[J]. Procedia Manufacturing, 2019, 35: 1267-1272. doi: 10.1016/j.promfg.2019.06.086
    [11] FENG J, WANG J, YANG K, et al. Microstructure and Performance of YTaO4 Coating Deposited by Atmospheric Plasma Spraying on TC4 Titanium Alloy Surface[J]. Surface and Coatings Technology, 2022, 431: 128004. doi: 10.1016/j.surfcoat.2021.128004
    [12] WANG X, WANG X, SUN X, et al. Microstructure and Properties Evolution of Plasma Sprayed Al2O3-Y2O3 Composite Coatings during High Temperature and Thermal Shock Treatment[J]. Journal of Rare Earths, 2021, 39(6): 718-727. doi: 10.1016/j.jre.2020.09.008
    [13] LIN B, CHEN X, CHEN J, et al. Facile Synthesis of Homogeneously Dispersed Carbon Nanotubes on TC4 Alloy Powder by in-situ CVD and its Growth Behavior[J]. Journal of Materials Research and Technology, 2023, 24: 9928-9938. doi: 10.1016/j.jmrt.2023.05.127
    [14] SHI H, WANG Z, REN H, et al. The Research on Tool Wear of High Speed Milling Titanium Alloy TC4[C]// Seventh International Conference on Electronics and Information Engineering. SPIE, 2017, 10322: 882-88.
    [15] 杨闯, 刘静, 马亚芹, 等. TC4钛合金表面低压渗氮层的显微组织与耐磨性能[J]. 机械工程材料, 2016, 40(6): 98-101. doi: 10.11973/jxgccl201606021

    YANG C, LIU J, MA Y Q, et al. Microstructure and Wear Resistance of Low Pressure Nitrided Layer on TC4 Titanium Alloy Surface[J]. Materials for Mechanical Engineering, 2016, 40(6): 98-101(in Chinese). doi: 10.11973/jxgccl201606021
    [16] ZHU X S, FU Y D, LI Z F, et al. Wear Resistance of TC4 by Deformation Accelerated Plasma Nitriding at 400℃[J]. Journal of Central South University, 2016, 23(11): 2771-2776. doi: 10.1007/s11771-016-3339-y
    [17] YANG Y L, ZHAO G J, ZHANG D, et al. Improving the Surface Property of TC4 Alloy by Laser Nitriding and Its Mechanism[J]. Acta Metallurgica Sinica, 2006, 19(2): 151-156.
    [18] WEN K, ZHANG C, GAO Y. Influence of Gas Pressure on the Low-temperature Plasma Nitriding of Surface-nanocrystallined TC4 Titanium Alloy[J]. Surface and Coatings Technology, 2022, 436: 128327. doi: 10.1016/j.surfcoat.2022.128327
    [19] LIU G, LENG K, HE X, et al. Microstructure Evolution of Ti–6Al–4V under Cold Rolling + Low Temperature Nitriding Process[J]. Progress in Natural Science:Materials International, 2022, 32(4): 424-432. doi: 10.1016/j.pnsc.2022.06.004
    [20] WANG C, PING W, BAI Q, et al. A General Method to Synthesize and Sinter Bulk Ceramics in Seconds[J]. Science, 2020, 368(6490): 521-526. doi: 10.1126/science.aaz7681
    [21] DONG J, POUCHLY V, BIESUZ M, et al. Thermally-insulated ultra-fast high temperature sintering (UHS) of zirconia: A master sintering curve analysis[J]. Scripta Materialia, 2021, 203: 114076. doi: 10.1016/j.scriptamat.2021.114076
    [22] BIESUZ M, GALOTTA A, MOTTA A, et al. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering[J]. Materials Science and Engineering:C, 2021, 127: 112246. doi: 10.1016/j.msec.2021.112246
    [23] GUO R F, MAO H R, ZHAO Z T, et al. Ultrafast high-temperature sintering of bulk oxides[J]. Scripta Materialia, 2021, 193: 103-107. doi: 10.1016/j.scriptamat.2020.10.045
    [24] LI L H, CHEN Y. Atomically Thin Boron Nitride: Unique Properties and Applications[J]. Advanced Functional Materials, 2016, 26(16): 2594-2608. doi: 10.1002/adfm.201504606
    [25] 王培, 叶源盛. 钛合金表面激光熔覆h-BN固体润滑涂层[J]. 表面技术, 2015, 44(8): 44-48.

    WANG P, YE Y S. Solid Self-Lubricating Coatings on TC4 Titanium Alloy by Laser Cladding with h-BN[J]. Surface Technology, 2015, 44(8): 44-48(in Chinese).
    [26] 杨闯, 彭晓东, 刘静, 等. TC4钛合金低压真空渗氮处理[J]. 真空科学与技术学报, 2014, 34(11): 1146-1149.

    YANG C, PENG X D, LIU J, et al. Surface Modification of TC4 Titanium Alloy by Low Pressure Nitriding[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(11): 1146-1149(in Chinese).
    [27] 胡林泉, 缪强, 梁文萍, 等. 载荷对经氧-氮共渗的TC4钛合金摩擦学性能的影响[J]. 热处理, 2019, 34(3): 1-10.

    HU L Q, MIAO Q, LIANG W P, et al. Effect of Loads on Tribological Characteristics of Oxynitrided TC4 Titanium Alloy[J]. Heat Treatment, 2019, 34(3): 1-10(in Chinese).
    [28] LEE H, KANG H, KIM J, et al. Inward diffusion of Al and Ti3Al compound formation in the Ti–6Al–4V Alloy during high temperature gas nitriding[J]. Surface and Coatings Technology, 2014, 240: 221-225. doi: 10.1016/j.surfcoat.2013.12.027
    [29] AICH S, RAVI CHANDRAN K S. TiB whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties[J]. Metallurgical and Materials transactions A, 2002, 33: 3489-3498. doi: 10.1007/s11661-002-0336-6
    [30] ZHANG H, CUI H, MAN C, et al. The tribocorrosion resistance of TiN+ TiB/TC4 composite coatings and the synergistic strengthening effects of multi-level reinforcements[J]. Corrosion Science, 2023, 219: 111224. doi: 10.1016/j.corsci.2023.111224
    [31] XIAO H, LIU X, LU Q, et al. Promoted low-temperature plasma nitriding for improving wear performance of arc-deposited ceramic coatings on Ti6Al4V alloy via shot peening pretreatment[J]. Journal of Materials Research and Technology, 2022, 19: 2981-2990. doi: 10.1016/j.jmrt.2022.06.067
    [32] 李景阳, 王文波, 秦林, 等. TD3钛合金离子渗氮层的摩擦磨损性能[J]. 金属热处理, 2021, 46(9): 258-261.

    LI J Y, WANG W B, QIN L, et al. Friction and Wear Properties of Nitrided Layer of TD3 Titanium Alloy[J]. Heat Treatment of Metals, 2021, 46(9): 258-261(in Chinese).
    [33] CHEN W, ZHENG J, LIN Y, et al. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels[J]. Applied Surface Science, 2015, 332: 525-532. doi: 10.1016/j.apsusc.2015.01.212
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-11-28
  • 录用日期:  2023-12-04
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回