留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

配置新型封闭缠绕式GFRP箍筋混凝土梁的受剪性能试验

原野 王震宇 王代玉

原野, 王震宇, 王代玉. 配置新型封闭缠绕式GFRP箍筋混凝土梁的受剪性能试验[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 原野, 王震宇, 王代玉. 配置新型封闭缠绕式GFRP箍筋混凝土梁的受剪性能试验[J]. 复合材料学报, 2022, 40(0): 1-12
Ye YUAN, Zhenyu WANG, Daiyu WANG. Experimental study on the shear performance of concrete beams reinforced with new type closed winding GFRP stirrups[J]. Acta Materiae Compositae Sinica.
Citation: Ye YUAN, Zhenyu WANG, Daiyu WANG. Experimental study on the shear performance of concrete beams reinforced with new type closed winding GFRP stirrups[J]. Acta Materiae Compositae Sinica.

配置新型封闭缠绕式GFRP箍筋混凝土梁的受剪性能试验

基金项目: 国家自然科学基金(51878224); 国家重点研发计划(2017 YFC0703001—02)
详细信息
    通讯作者:

    王代玉,博士,副教授,博士生导师,研究方向为FRP-钢-混凝土新型组合结构 E-mail: daiyuwang@hit.edu.cn

  • 中图分类号: TU377.9+1

Experimental study on the shear performance of concrete beams reinforced with new type closed winding GFRP stirrups

Funds: The National Natural Science Foundation of China (51878224); The National Key Research and Development Program of China (2017 YFC0703001—02)
  • 摘要: 对采用新型封闭缠绕式玻璃纤维增强树脂复合材料(GFRP)箍筋的混凝土梁进行了三点加载试验,考察了箍筋形式、纵筋配筋率、剪跨比、箍筋间距对配置新型封闭缠绕式GFRP箍筋混凝土梁受剪性能的影响规律。试验结果表明,新型封闭缠绕式GFRP箍筋的弯曲段强度与平直段受拉强度之比达到0.81,是拉挤成型箍筋的2.07倍。剪跨比和箍筋间距相同时,新型封闭缠绕式GFRP箍筋混凝土梁的受剪性能更好,其材料利用效率显著高于拉挤成型箍筋。梁的抗剪承载力随纵筋配筋率增加的提高幅度不大,但梁的延性有较明显改善。当箍筋间距为75mm,新型封闭缠绕式GFRP箍筋的应变显著增大,同时对剪压区混凝土产生一定的约束作用,提升了受剪承载力。采用中国(GB50608-2020)、美国(ACI 440.1R-15)、加拿大(CSA S806-12)、英国(BISE-1999)和日本(JSCE-1997)五种FRP筋混凝土结构设计规范计算的受剪承载力显著低于试验值,建议适当提高新型封闭缠绕式GFRP箍筋的断裂应变限值。

     

  • 图  1  试件截面与加载测量装置示意图

    Figure  1.  Schematic drawing of cross-sectional details, test set-up and instrumentation of beam test

    图  2  FRP筋材的材料性能测试

    Figure  2.  Material test of FRP reinforcement

    图  3  试件GC1-W75、GC2-W75与GC3-W75的裂缝开展过程

    Figure  3.  Crack propagation process of specimen GC1-W75、GC2-W75 and GC3-W75

    图  4  GFRP筋混凝土梁的破坏模式

    Figure  4.  Failure mode of concrete beams reinforced with GFRP reinforcement

    图  5  GFRP筋混凝土梁剪力-跨中位移曲线

    Figure  5.  Shear load-midspan deflection curves of concrete beams reinforced with GFRP reinforcement

    图  6  GC2-W75的剪力-箍筋应变曲线

    Figure  6.  shear load-stirrups strain curve of GC2-W75

    图  7  GC1-W100与GC1-P100中S2与S3位置的箍筋应变-跨中位移关系曲线

    Figure  7.  Stirrups strain-midspan deflection curves at the location S2 and S3 of GC1-2100 and GC1-P100

    图  8  GFRP筋混凝土梁平均箍筋应变与箍筋间距关系

    Figure  8.  Average stirrups strain-stirrups spacing relationship of concrete beams reinforced with GFRP reinforcement

    图  9  各GFRP筋混凝土梁试件箍筋的材料利用效率

    Figure  9.  Effectiveness of FRP utilization of concrete beams reinforced with GFRP reinforcement

    Note: * stands for beams with pultruded stirrups

    表  1  试验工况

    Table  1.   Test matrix

    SpecimenStirrups
    type
    s/mmρl/%ρv/%λ
    GC1-P100Pultruded1001.540.672.1
    GC1-W75New type751.540.482.1
    GC1-W100New type1001.540.362.1
    GC1-W125New type1251.540.292.1
    GC1-W150New type1501.540.242.1
    GC2-W75New type752.210.482.1
    GC2-W100New type1002.210.362.1
    GC2-W125New type1252.210.292.1
    GC2-W150New type1502.210.242.1
    GC3-P100Pultruded1002.210.672.9
    GC3-W75New type752.210.482.9
    GC3-W100New type1002.210.362.9
    GC3-W125New type1252.210.292.9
    GC3-W150New type1502.210.242.9
    Notes: ρl is the longitudinal reinforcement ratio; ρv is the shear reinforcement ratio; λ is the shear-span ratio. “GC” stands for GFRP stirrups reinforced concrete beams. The λ and ρl of batch GC1 are 2.1 and 1.54%, the the λ and ρl of batch GC2 are 2.1 and 2.21%, and the λ and ρl, of batch GC3 are 2.9 and 2.21%. The character “P” stands for pultruded GFRP stirrups, “W” stands for closed winding stirrups, and the following number stands for the stirrups spacing.
    下载: 导出CSV

    表  2  FRP筋材力学性能参数

    Table  2.   Mechanical properties of FRP reinforcements

    MaterialGFRP barPultruded stirrupsNew type stirrups
    d or w×t/mm1689×3
    A/mm22015027
    E/MPa47.250.255.0
    ffu/MPa88910591096
    $ {\varepsilon _{{\text{fu}}}} $/%1.882.121.99
    ffb/MPa415892
    ffb/ffu0.390.81
    Notes: d is the diameter of pultruded GFRP bar or stirrups; w and t are the width and thickness of new type stirrups, A is the cross-sectional area of reinforcement; E is the elastic modulus, ffu is the tensile strength of the straight portion of reinforcements, $ {\varepsilon _{{\text{fu}}}} $is the ultimate strain at the straight portion, ffb is the bend corner strength of stirrups.
    下载: 导出CSV

    表  3  GFRP筋混凝土梁受剪试验结果

    Table  3.   Shear test result of GFRP reinforced concrete beams

    BeamVu/kNΔp/mmΔu/mmKs / kN/mm$ {\varepsilon _{{\text{max}}}} $/%$ {\varepsilon _{{\text{avg}}}} $/%$ {\varepsilon _{{\text{avg}}}}/{\varepsilon _{{\text{fu}}}} $Stirrups ruptured
    or not
    GC1-P100139.610.2811.7526.81.010.600.28N
    GC1-W75151.413.0213.0233.81.360.940.47Y
    GC1-W100140.610.2510.2530.30.950.730.37N
    GC1-W125131.69.519.5128.80.890.670.34N
    GC1-W150135.710.8210.8230.81.110.620.31N
    GC2-W75168.415.9315.9346.41.541.230.62Y
    GC2-W100137.48.4210.3145.8Y
    GC2-W125139.98.1713.0546.11.140.600.30N
    GC2-W150103.56.3910.5136.11.060.530.27N
    GC3-P100101.817.0817.0812.61.120.680.32N
    GC3-W75147.932.7832.7816.61.591.240.62Y
    GC3-W100117.527.4627.4614.91.090.860.43N
    GC3-W125102.424.2324.2315.21.541.040.52Y
    GC3-W15092.915.2815.2815.71.311.110.56Y
    Notes: Vu is the shear capacity; Δp is the midspan deflection at peak load, Δu is the midspan deflection at final failure (for the specimens failed at peak load, Δu is equal to the Δp); Ks is the stiffness after shear cracking, which was calculated as the slope of the line connecting the two points with loads of 40 kN and 90 kN respectively. $ {\varepsilon _{{\text{max}}}} $is the maximal stirrups strain at ultimate; $ {\varepsilon _{{\text{avg}}}} $is the average stirrups strain at ultimate; $ {\varepsilon _{\text{f}}}_{\text{u}} $is the ultimate strain. The strain gauges of GC2-W100 were damaged prior to the failure.
    下载: 导出CSV

    表  4  规范中的FRP筋混凝土梁受剪承载力计算公式

    Table  4.   Code formula for calculating the shear capacity of FRP reinforced concrete beams

    Design codeConcrete contributionShear reinforcement contribution
    GB50608-2020[17]${V_{\text{c}}} = 0.86{f_{\text{t}}}bc$$c = k{h_{\text{0}}}$$k = \sqrt {2{\rho _{\text{f}}}{\alpha _{\text{E}}} + {{\left( {{\rho _{\text{f}}}{\alpha _{\text{E}}}} \right)}^2}} - {\rho _{\text{f}}}{\alpha _{\text{E}}}$${\rho _{\text{f}}} = {A_{\text{f}}}/b{h_{\text{0}}}$${V_{\text{f} } } = \dfrac{ { {A_{ {\text{fv} } } }{f_{ {\text{fv} } } }{h_{\text{0} } } }}{s}$${f_{ {\text{fv} } } } = \min \left( {0.004{E_{ {\text{fv} } } },(0.05\dfrac{ { {r_{\text{b} } } }}{ { {d_{\text{b} } } }} + 0.3){f_{ {\text{fu} } } }} \right)$
    ACI 440.1 R-15[18]${V_{\text{c} } } = \dfrac{2}{5}\sqrt { { {f'}_c} } bk{h_{\text{0} } }$$k = \sqrt {2{\rho _{\text{f}}}{\alpha _{\text{E}}} + {{\left( {{\rho _{\text{f}}}{\alpha _{\text{E}}}} \right)}^2}} - {\rho _{\text{f}}}{\alpha _{\text{E}}}$${V_{\text{f} } } = \dfrac{ { {A_{ {\text{fv} } } }{f_{ {\text{fv} } } }{h_{\text{0} } } }}{s}$${f_{ {\text{fv} } } } = \min \left( {0.004{E_{ {\text{fv} } } },(0.05\dfrac{ { {r_{\text{b} } } }}{ { {d_{\text{b} } } }} + 0.3){f_{ {\text{fu} } } }} \right)$
    CSA S806-12[19]$ {V_{\text{c}}} = 0.05{k_{\text{m}}}{k_{\text{r}}}{k_{\text{a}}}{k_{\text{s}}}{\left( {{{f'}_c}} \right)^{\frac{1}{3}}}b{h_{\text{0}}} $$ 0.11\sqrt {{{f'}_c}} b{h_{\text{v}}} \leqslant {V_{\text{c}}} \leqslant 0.22\sqrt {{{f'}_c}} b{h_{\text{v}}} $${k_{\text{m} } } = \sqrt {\dfrac{ { { {\text{V} }_{\text{f} } }{h_{\text{0} } } }}{ { {M_{\text{f} } } } } } \leqslant 1.0$$ {k_{\text{r}}} = 1 + {\left( {{E_{\text{f}}}{\rho _{\text{f}}}} \right)^{\frac{1}{3}}} $${k_{\text{a} } } = \dfrac{ {2.5{V_{\text{f} } }d} }{ { {M_{\text{f} } } }} \leqslant 2.5$${k_{\text{s} } } = \dfrac{ {750} }{ {450 + {h_{ {\text{fo} } } } } } \leqslant 1.0$${V_{\text{s} } } = \dfrac{ { {A_{ {\text{fv} } } }{f_{ {\text{fv} } } }{h_{\text{v} } }\cot \theta } }{s}$$ \theta = 30 + 7000{\varepsilon _x} $${\varepsilon _x} = \dfrac{ {M/{\text{d} } + V} }{ {2{E_{\text{f} } }{A_{\text{f} } } }}$$ {h_{\text{v}}} = \min \left( {0.9{h_0},0.72 h} \right) $$ {f_{{\text{fv}}}} = \min \left( {0.005{E_{{\text{fv}}}},0.4{f_{{\text{fu}}}},1200{\text{MPa}}} \right) $
    BISE-1999[22]${V_{\text{c} } } = 0.79{\left( {100{\rho _{\text{f} } }\dfrac{ { {E_{\text{f} } } }}{ { {E_{\text{s} } } } } } \right)^{\frac{1}{3} } }{\left( {\dfrac{ {400} }{ { {h_0} } } } \right)^{\frac{1}{4} } }{\left( {\dfrac{ {1.25{f_{\text{c} } }^\prime } }{ {25} } } \right)^{\frac{1}{3} } }bd$${V_{\text{s} } } = \dfrac{ {0.0025{A_{ {\text{fv} } } }{E_{ {\text{fv} } } }{h_0} } }{s}$
    JSCE-1997[23]$ {V_{\text{c}}} = {\beta _{\text{d}}}{\beta _{\text{p}}}{{\text{f}}_{{{\upsilon cd}}}}b{h_{\text{0}}} $${\beta _{\text{d} } } = {\left( {\dfrac{ {1000} }{ { {h_0} } } } \right)^{\frac{1}{4} } } \leqslant 1.5$${\beta _{\text{p} } }{\text{ = } }{\left( {1000 \cdot \dfrac{ { {\rho _{\text{f} } }{E_{\text{f} } } }}{ { {E_{\text{s} } } } } } \right)^{\frac{1}{3} } } \leqslant 1.5$$ f_{\mathrm{vcd}}=0.2 f_{c}^{\prime \frac{1}{3}} \leq 0.72 \mathrm{~N} / \mathrm{mm}^{2} $${V_{\text{s} } } = \dfrac{ { {A_{ {\text{fv} } } }{E_{ {\text{fv} } } }{\varepsilon _{\text{f} } }_{\text{v} }z} }{s}$$ z{\text{ = }}{h_0}/1.15 $${\varepsilon _{\text{f} } }_{\text{v} } = \sqrt { { {\left( {\dfrac{h}{ {0.3} } } \right)}^{ - \frac{1}{ {10} } } }{f_{\text{c} } }^\prime \dfrac{ { {\rho _{\text{f} } }{E_{\text{f} } } }}{ { {\rho _{ {\text{fv} } } }{E_{ {\text{fv} } } } } } } \cdot {10^{ - 4} }$
    Notes: ft is the tensile strength of concrete; b is the width of concrete beam; h is the depth of the beam; h0 is the distance from compression fiber to the centroid of tension reinforcement; k is the ratio of depth of neutral axis to reinforcement depth; ${\alpha _{\text{E}}}$= ratio of modulus of elasticity of FRP bars to modulus of elasticity of concrete; Af, Ef and$ {\rho _{\text{f}}} $are the area, the modulus of elasticity and the reinforcement ratio of longitudinal bars; Afv Efv, ffv and$ {\rho _{\text{f}}}_{\text{v}} $are the area, the modulus of elasticity, the stress of FRP and the reinforcement ratio shear reinforcement; rb and db are the radius of the bend corner and the bar diameter of the pultruded stirrups; $ {f'_{\text{c}}} $ is the cylinder compressive strength of concrete, ka is the coefficient taking into account the effect of arch action; ks is the coefficient taking into account the effect of member size; km is the coefficient taking into account the effect of the moment at section; $ \theta $ is the angle between the diagonal shear crack and the horizontal axis; $ {\varepsilon _x} $ is the longitudinal strain at mid-depth of the section; Es is the modulus of elasticity of steel.
    下载: 导出CSV

    表  5  规范对FRP筋混凝土梁受剪承载力预测结果

    Table  5.   Code predictions of the shear capacity of FRP reinforced concrete beams

    GB50608-2020ACI 440.1 R-15CSA S806-12BISE-1999JSCE-1997
    BeamVu/
    kN
    Vpre/
    kN
    $\dfrac{ {V }_{\text{pre} } }{ {V }_{\text{u} } }$Vpre,
    m/kN
    Vu/
    kN
    Vpre/
    kN
    $\dfrac{ {V }_{\text{pre} } }{ {V }_{\text{u} } }$Vpre,
    m/kN
    Vu/
    kN
    Vpre/
    kN
    $\dfrac{ {V }_{\text{pre} } }{ {V }_{\text{u} } }$Vpre,
    m/kN
    Vu/
    kN
    Vpre/
    kN
    $\dfrac{ {V }_{\text{pre} } }{ {V }_{\text{u} } }$Vpre,
    m/kN
    Vu/
    kN
    Vpre/
    kN
    $\dfrac{ {V }_{\text{pre} } }{ {V }_{\text{u} } }$Vpre,
    m/kN
    $\dfrac{ {V }_{\text{pre,m} } }{ {V }_{\text{u} } }$
    GC1-P100 139.6 72.0 0.52 72.0 0.52 84.7 0.61 62.9 0.45 63.1 0.45
    GC1-W75 151.4 57.1 0.38 162.6 1.07 57.1 0.38 162.5 1.07 68 0.45 114.4 0.76 53.7 0.35 170.6 1.13 60.5 0.40 176.5 1.17
    GC1-W100 140.6 47.5 0.34 126.7 0.90 47.5 0.34 126.6 0.90 62.7 0.45 95.8 0.68 47.7 0.34 135.4 0.96 59.6 0.42 145.8 1.04
    GC1-W125 131.6 41.8 0.32 105.1 0.80 41.8 0.32 105.0 0.80 59.2 0.45 84.6 0.64 44.1 0.33 114.2 0.87 59.0 0.45 127.5 0.97
    GC1-W150 135.7 38.0 0.28 90.7 0.67 38.0 0.28 90.7 0.67 56.3 0.41 77.1 0.57 41.7 0.31 100.1 0.74 58.6 0.43 115.2 0.85
    GC2-W75 168.4 60.3 0.36 165.8 0.98 60.3 0.36 165.7 0.98 80.4 0.48 118.9 0.71 57.4 0.34 174.3 1.03 61.7 0.37 176.5 1.05
    GC2-W100 137.4 50.7 0.37 129.8 0.94 50.7 0.37 129.7 0.94 73 0.53 103.3 0.75 51.4 0.37 139.1 1.01 60.7 0.44 145.8 1.06
    GC2-W125 139.9 44.9 0.32 108.3 0.77 44.9 0.32 108.2 0.77 68.2 0.49 95.7 0.68 47.8 0.34 117.9 0.84 60.0 0.43 127.5 0.91
    GC2-W150 103.5 41.1 0.40 93.9 0.91 41.1 0.40 93.8 0.91 64.8 0.63 89.7 0.87 45.4 0.44 103.8 1.00 59.5 0.57 115.2 1.11
    GC3-P100 101.8 75.2 0.74 75.2 0.74 80.3 0.79 66.7 0.65 61.6 0.61
    GC3-W75 147.9 60.3 0.41 165.8 1.12 60.3 0.41 165.7 1.12 70.8 0.48 112.1 0.76 57.4 0.39 174.3 1.18 61.7 0.42 176.5 1.19
    GC3-W100 117.5 50.7 0.43 129.8 1.10 50.7 0.43 129.7 1.10 64.4 0.55 93.4 0.79 51.4 0.44 139.1 1.18 60.7 0.52 145.8 1.24
    GC3-W125 102.4 44.9 0.44 108.3 1.06 44.9 0.44 108.2 1.06 59.8 0.58 82.8 0.81 47.8 0.47 117.9 1.15 60.0 0.59 127.5 1.24
    GC3-W150 92.9 41.1 0.44 93.9 1.01 41.1 0.44 93.8 1.01 56.6 0.61 78.5 0.84 45.4 0.49 103.8 1.12 59.5 0.64 115.2 1.24
    Notes: Vu is the shear capacity, Vpre is the predicted shear capacity by design codes, Vpre,m is the predicted shear capacity using the average stirrups strain of the ruptured stirrup.
    下载: 导出CSV
  • [1] 张依睿, 魏洋, 柏佳文, 端茂军, 王立彬. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Models for predicting axial compression behavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [2] 缪坤廷, 魏洋, 朱超, 等. 钢管混凝土-FRP管海水海砂混凝土组合柱轴压模型[J]. 复合材料学报, 2021, 39(0):1-12.

    MIAO Kunting, WEI Yang, ZHU Chao, et al. Model for stress-strain curves of concrete filled steel tube-seawater and sea sand concrete filled FRP tube composite columns under axial load[J]. Acta Materiae Compositae Sinica,2021,39(0):1-12(in Chinese).
    [3] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9):3084-3093.

    BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3084-3093(in Chinese).
    [4] 叶列平, 冯鹏. FRP 在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [5] BENMOKRANE B, MOHAMED H M. Use of fibre-reinforced polymer (FRP) rebars for building durable concrete infrastructure[J]. Balkema, Cape Town:CRC Press,2016:1518-1523.
    [6] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150.

    YIN Shiping, HUA Yuntao, XU Shilang. A review on research progress and application of concrete structures internally reinforced with FRP bars[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese).
    [7] MARANAN G B, MANALO A C, BENMOKRANE B, et al. Shear behavior of geopolymer concrete beams reinforced with glass fiber-reinforced polymer bars[J]. ACI Structural Journal,2017,114(2):337-348.
    [8] ALI M A, EL-SALAKAWY E. Seismic performance of GFRP-reinforced concrete rectangular columns[J]. Journal of Composites for Construction,2016,20(3):04015074. doi: 10.1061/(ASCE)CC.1943-5614.0000637
    [9] SHEHATA E, MORPHY R, RIZKALLA S. Fibre reinforced polymer shear reinforcement for concrete members: behaviour and design guidelines[J] Canadian Journal of Civil Engineering, 2000, 27 (5): 859–872.
    [10] EL-SAYED A K, EL-SALAKAWY E, BENMOKRANE B. Mechanical and structural characterization of new carbon FRP stirrups for concrete members[J]. Journal of Composites for Construction,2007,11(4):352-362. doi: 10.1061/(ASCE)1090-0268(2007)11:4(352)
    [11] AHMED E, EL-SAYED A, EL-SALAKAWY E, et al. Bend strength of FRP stirrups: comparison and evaluation of testing methods[J]. Journal of Composites for Construction,2009,14(1):3-10.
    [12] PENG Fei, XUE Weichen. Evaluation of bend strength calculation of fiber-reinforced polymer stirrups [C] // Joint Conference of the 12 th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & the 5 th Asia Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015)[C]. Nanjing, China, 2015.
    [13] IMJAI T, GUADAGNINI M, PILAKOUTAS K. Curved FRP as concrete reinforcement[J]. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics,2009,162(3):171-178. doi: 10.1680/eacm.2009.162.3.171
    [14] JUMAA G B, YOUSIF A R. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups[J]. Construction and Building Materials,2019,209(JUN.10):77-94.
    [15] 康明睿, 薛伟辰. 配FRP箍筋混凝土梁的抗剪性能研究进展[J]. 华北水利水电学院学报, 2015, 036(2): 15-20.

    KANG Mingrui, XUE Weichen. A review on research progress of shear behavior of concrete beams reinforced with FRP stirrups. Journal of North China University of Water Resources and Electric Power[J]. 2015, 036(2): 15-20(in Chinese)
    [16] 侯慕轶. 碳纤维筋混凝土梁受剪性能试验研究[D]. 绵阳: 西南科技大学, 2017.

    HOU Muyi. Experiment studies on the shear performance of concrete beam with CFRP bars[D]. Mianyang: Southwest University of Science and Technology, 2011(in Chinese).
    [17] 彭俊桢. 玄武岩纤维(BFRP)筋混凝土梁的受剪性能研究[D]. 厦门: 厦门大学, 2019.

    PENG Junzhen. Research on shear performance of BFRP reinforced concrete beams[D]. Xiamen: Xiamen University, 2019(in Chinese).
    [18] WHITEHEAD P A, IBELL T J. Novel shear reinforcement for fiber-reinforced polymer- reinforced and prestressed concrete[J]. ACI Structural Journal,2005,102(2):286-94.
    [19] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范(GB 50608-2020)[S]. 北京: 中国标准出版社, 2010. Ministry of Housing and Urban-Rural Development of People’ s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608-2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [20] American Concrete Institute. ACI 440.1 R-15 Guide for the design and construction of structural concrete reinforced with fiber reinforced polymer (FRP) bars[S]. Farmington Hills, USA: American Concrete Institute, 2015.
    [21] Canadian Standard Association. CSA S806–12 Design and construction of building components with fibre reinforced polymers[S]. Toronto, Canada: Canadian Standards Association International, 2012.
    [22] Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement[S]. London, British: Institution of Structural Engineers, 1999.
    [23] Recommendation for Design and construction of concrete structures using continuous fiber reinforcing materials[S]. Tokyo, Japan: Japan Society of Civil Engineers, 1997.
    [24] DONG H, WANG D, WANG Z, et al. Axial compressive behavior of square concrete columns reinforced with innovative closed-type winding GFRP stirrups[J]. Composite Structures,2018,192:115-125. doi: 10.1016/j.compstruct.2018.02.092
    [25] 董恒磊. 配置GFRP纵筋与新型箍筋的混凝土墩柱约束机理与抗震性能[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    DONG Henglei. Confinement mechanism and seismic performance of concrete piers reinforced with GFRP rebars and innovative ties[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [26] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法(GB/T 30022-2013)[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022-2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [27] American Society of Testing Materials. ASTM D3039/3039 M-00 Standard Test method for tensile properties of polymer matrix composite materials[S] West Conshohocken, PA: American Society of Testing Materials International, 2000.
    [28] American Concrete Institute. ACI 440.3 R-2012 Guide test methods for fiber reinforced polymer (FRP) Composites for reinforcing or strengthening concrete and masonry structures[S]. Farmington Hills, USA, American Concrete Institute, 2012.
    [29] MIHAYLOV B I, BENTZ E C, COLLINS M P. Behavior of large deep beams subjected to monotonic and reversed cyclic shear[J] ACI Structural Journal, 2010, 107(6): 726–734.
    [30] JEONG J P, KIM W. Shear resistant mechanism into base components: beam action and arch action in shear-critical RC members[J]. International Journal of Concrete Structures and Materials,2014,8(1):1-14. doi: 10.1007/s40069-013-0064-x
    [31] HU B, WU Y F. Effect of shear span-to-depth ratio on shear strength components of RC beams[J]. Engineering Structures,2018,168:770-783. doi: 10.1016/j.engstruct.2018.05.017
    [32] 易伟建, 谭童. 钢筋混凝土有腹筋梁受剪机理试验研究. 建筑结构学报.https://doi.org/10.14006/j.jzjgxb.2021.0065

    YI Weijian, TAN Tong. Experimental study on shear mechanism of reinforced concrete beams with stirrups[J]. Journal of Building Structures,https://doi.org/10.14006/j.jzjgxb.2021.0065(in Chinese)
    [33] ALI A H, MOHAMED H M, BENMOKRANE B. Shear behavior of circular concrete members reinforced with GFRP bars and spirals at shear span-to-depth ratios between 1.5 and 3.0[J]. Journal of Composites for Construction,2016,20(6):04016055. doi: 10.1061/(ASCE)CC.1943-5614.0000707
    [34] RAZAQPUR A G, SPADEA S. Shear strength of FRP reinforced concrete members with stirrups[J]. Journal of Composites for Construction,2015,19(1):04014025. doi: 10.1061/(ASCE)CC.1943-5614.0000483
    [35] JOHNSON D T, SHEIKH S A. Experimental investigation of glass fiber-reinforced polymer-reinforced normal-strength concrete beams[J]. ACI Structural Journal,2016,113(6):1165-74.
    [36] SPADEA S, ORR J, NANNI A, et al. Wound FRP shear reinforcement for concrete structures[J]. Journal of Composites for Construction,2017,21(5):04017026. doi: 10.1061/(ASCE)CC.1943-5614.0000807
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-18
  • 网络出版日期:  2022-06-14

目录

    /

    返回文章
    返回