留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能

周杰联 冯永新 李德波 赵宁 谢志文

周杰联, 冯永新, 李德波, 等. CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能[J]. 复合材料学报, 2022, 39(12): 5816-5826. doi: 10.13801/j.cnki.fhclxb.20220105.002
引用本文: 周杰联, 冯永新, 李德波, 等. CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能[J]. 复合材料学报, 2022, 39(12): 5816-5826. doi: 10.13801/j.cnki.fhclxb.20220105.002
ZHOU Jielian, FENG Yongxin, LI Debo, et al. Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5816-5826. doi: 10.13801/j.cnki.fhclxb.20220105.002
Citation: ZHOU Jielian, FENG Yongxin, LI Debo, et al. Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5816-5826. doi: 10.13801/j.cnki.fhclxb.20220105.002

CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能

doi: 10.13801/j.cnki.fhclxb.20220105.002
基金项目: 高耗水企业废水资源化及零排放关键技术研究与集成应用(GDKJXM20183546)
详细信息
    通讯作者:

    周杰联,硕士,高级工程师,研究方向为废水处理 E-mail: 381646255@qq.com

  • 中图分类号: TB331

Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation

  • 摘要: 光催化技术绿色环保,近年来在氢能开发、污染净化、医疗保健等领域具有一定的应用前景,有望成为解决环境和能源问题的有效途径。通过控制煅烧条件成功转变相结构,制备了两种不同晶相结构的硒化钴(CoSe2),即正交相硒化钴(o-CoSe2)与立方相硒化钴(c-CoSe2)。选择半导体CdS进行复合,发现两种助催化剂均对光催化降解及制氢有良好的促进作用。通过莫特肖特基曲线(MS)、固体紫外吸收光谱(UV-vis DRS)、稳态荧光光谱(PL)和光电性能表征发现c-CoSe2比o-CoSe2具有更强的导电性及更高效的电荷传输能力,这理论上更利于光催化反应的进行。以乳酸为牺牲剂,o-CoSe2质量分数为10wt%的o-CoSe2/CdS和c-CoSe2质量分数为10wt%的c-CoSe2/CdS为最优负载量的制氢效率分别为9006.2 μmol·g−1·h−1和7151.2 μmol·g−1·h−1,较CdS单体而言分别提升了20倍和15倍,接近甚至超过了同条件下贵金属铂(Pt)负载的制氢活性。最优负载o-CoSe2质量分数为10wt%的o-CoSe2/CdS在含硫废水亚甲基蓝(MB)降解及协同产氢测试中兼顾了降解和产氢性能。结合光催化反应步骤及理论计算分析,发现o-CoSe2金属钴位点上有更合适的氢吸附自由能,是其具有最佳助催效果的关键原因。

     

  • 图  1  o-CoSe2和c-CoSe2的XRD图谱 (a) 和拉曼光谱 (b);CdS、10wt%o-CoSe2/CdS和10wt%c-CoSe2/CdS的XRD图谱 (c) 和氮气吸附-脱附曲线 (d)

    Figure  1.  XRD patterns (a) and Raman spectra (b) of o-CoSe2 and c-CoSe2; XRD patterns (c) and N2 adsorption-desorption curves (d) of CdS, 10wt%o-CoSe2/CdS and 10wt%c-CoSe2/CdS

    STP—Standard temperature and pressure

    图  3  o-CoSe2的SEM图像 (a)、TEM图像 (b)、HRTTEM图像(插图为电子衍射图) (c);c-CoSe2的SEM图像 (d)、TEM图像 (e)、HRTTEM图像(插图为电子衍射图) (f);CdS、10wt%o-CoSe2/CdS、10wt%c-CoSe2/CdS的SEM图像 ((g)~(i))

    Figure  3.  SEM image (a), TEM image (b), HRTEM image (Inset is electron diffraction pattern) (c) of o-CoSe2; SEM image (d), TEM image (e), HRTEM image (Inset is electron diffraction pattern) (f) of c-CoSe2; SEM images of CdS, 10wt%o-CoSe2/CdS and 10wt%c-CoSe2/CdS ((g)-(i))

    d—Spacing

    图  2  o-CoSe2和c-CoSe2中Co2p (a) 和Se3d (b) 的高分辨XPS谱图;o-CoSe2/CdS和c-CoSe2/CdS中Cd3d (c) 和S2p (d) 的高分辨XPS谱图

    Figure  2.  Co2p (a) and Se3d (b) XPS spectra of o-CoSe2 and c-CoSe2; Cd3d (c) and S2p (d) XPS spectra of o-CoSe2/CdS and c-CoSe2/CdS

    Sat.—Satellite peak

    图  5  (a) CdS、10wt%o-CoSe2/CdS和10wt%c-CoSe2/CdS样品的瞬时光电流图谱;(b) 10wt%o-CoSe2/CdS和10wt%c-CoSe2/CdS样品的电化学阻抗谱;(c) 不同样品的莫特肖特基曲线

    Figure  5.  (a) Transient photocurrent curves of CdS, 10wt%o-CoSe2/CdS and 10wt%c-CoSe2/CdS; (b) Electrochemical impedance spectroscopy of 10wt%o-CoSe2/CdS and 10wt%c-CoSe2/CdS; (c) Motshottky curves of different samples

    Z'—Real impedance; Z''—Imaginary impedance; 1/C2—Reciprocal of the capacitance squared

    图  4  CdS、o-CoSe2/CdS、c-CoSe2/CdS (a) 和o-CoSe2、c-CoSe2 (b) 的UV-vis DRS光谱;(c) CdS的带隙评估图;(d) o-CoSe2/CdS和c-CoSe2/CdS在370 nm处的PL光谱

    Figure  4.  UV-vis DRS of CdS, o-CoSe2/CdS, c-CoSe2/CdS (a) and o-CoSe2, c-CoSe2 (b); (c) Estimated bandgap of CdS; (d) PL spectra excited at 370 nm of o-CoSe2/CdS and c-CoSe2/CdS

    图  6  (a) CdS、5wt%、10wt%和15wt%o-CoSe2/CdS样品的光催化制氢性能比较;(b) 10%o-CoSe2/CdS样品的制氢稳定性试验;(c) CdS、5wt%、10wt%和15wt%c-CoSe2/CdS样品的光催化制氢性能比较;(d) 10wt%c-CoSe2/CdS样品的制氢稳定性试验;(e) 在不同波长下10wt%c-CoSe2/CdS和10%o-CoSe2/CdS样品的量子效率图(AQY)(10wt%乳酸作为牺牲剂,50 mg催化剂,带UV滤光片氙灯作为光源,420~850 nm)

    Figure  6.  (a) Photocatalytic hydrogen evolution reaction performance of CdS, 5wt%, 10wt% and 15wt%o-CoSe2/CdS; (b) Stability test of 10wt%o-CoSe2/CdS; (c) Photocatalytic hydrogen evolution reaction performance of CdS, 5wt%, 10wt% and 15wt%c-CoSe2/ CdS; (d) Stability test of 10wt%c-CoSe2/CdS; (e) Apparent quantum yield (AQY) of 10wt%c-CoSe2/CdS and 10wt%o-CoSe2/CdS under different wavelength (10wt% C3H6O3 as sacrificial agent, 50 mg catalyst usage, a xenon lamp as a light source, 420-850 nm)

    图  7  (a) CdS、10wt%o-CoSe2/CdS、10wt%c-CoSe2/CdS和1wt%Pt/CdS样品的光催化制氢性能比较;(b) 10wt%o-CoSe2/CdS降解MB协同产氢量图; (c) CdS、10wt%o-CoSe2/CdS和10wt%c-CoSe2/CdS降解MB性能图;(d) 10wt%o-CoSe2/CdS降解不同浓度的MB 4 h协同产氢量图;10wt%c-CoSe2/CdS (e) 和10wt%o-CoSe2/CdS (f) 循环后的XRD图谱

    Figure  7.  (a) Photocatalytic hydrogen evolution reaction performance of CdS, 10wt%o-CoSe2/ CdS, 10wt%c-CoSe2/CdS and 1wt%Pt/CdS; (b) Photocatalytic degradation simultaneous with hydrogen evolution reaction of 10wt%o-CoSe2/CdS; (c) Photodegradation of MB of CdS, 10wt%o-CoSe2/ CdS, 10wt%c-CoSe2/CdS; (d) Effect of concentration of the photocatalytic degradation simultaneous with HER system of 10wt%o-CoSe2/CdS after 4 h; XRD patterns of 10wt%c-CoSe2/CdS (e) and 10wt%o-CoSe2/CdS (f) before and after the cycle

    C—Concentration; C0—Initial concentration

    图  8  o-CoSe2/CdS和c-CoSe2/CdS光催化反应中电子迁移途径图

    Figure  8.  Diagrams of electron migration pathways in photocatalytic reactions of o-CoSe2/CdS and c-CoSe2/CdS system

    表  1  o-CoSe2/CdS和c-CoSe2/CdS的命名

    Table  1.   Naming of o-CoSe2/CdS and c-CoSe2/CdS

    Sample o-CoSe2/wt% c-CoSe2/wt% CdS/wt%
    5wt%o-CoSe2/CdS 5 - 95
    10wt%o-CoSe2/CdS 10 - 90
    15wt%o-CoSe2/CdS 15 - 85
    5wt%c-CoSe2/CdS - 5 95
    10wt%c-CoSe2/CdS - 10 90
    15wt%c-CoSe2/CdS - 15 85
    下载: 导出CSV
  • [1] SHARMA S, BASU S. Fabrication of centimeter-sized Sb2S3/SiO2 monolithic mimosa pudica nanoflowers for remediation of hazardous pollutants from industrial wastewater[J]. Journal of Cleaner Production, 2021, 280: 124525.
    [2] LIAO C, ERBAUGH J, KELLY A, et al. Clean energy transitions and human well-being outcomes in lower and middle income countries: A systematic review[J]. Renewable and Sustainable Energy Reviews,2021,145:111063. doi: 10.1016/j.rser.2021.111063
    [3] QYYUM M, DICKSON R, ALI S, et al. Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective[J]. Renewable and Sustainable Energy Reviews,2021,145(317):110843.
    [4] HANLEY E, DEANE J, GALLACHÓIR B. The role of hydrogen in low carbon energy futures-A review of existing perspectives[J]. Renewable and Sustainable Energy Reviews,2018,82:3027-3045. doi: 10.1016/j.rser.2017.10.034
    [5] SHANER M, ATWATER H, LEWIS N, et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & Environmental Science,2016,9(7):2354-2371.
    [6] WANG Y, LIU X, WANG X, et al. Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion[J]. Chemical Engineering Journal,2021,419(16):129459.
    [7] KOSCO J, MORUZZI F, WILLNER B, et al. Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications[J]. Advanced Energy Materials,2020,10(39):2001935. doi: 10.1002/aenm.202001935
    [8] LI Y, GAO C, JIANG W, et al. A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution[J]. Applied Catalysis B: Environmental,2021,286:119923. doi: 10.1016/j.apcatb.2021.119923
    [9] LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [10] 吴欢文, 张宁, 钟金莲, 等. p-n复合半导体光催化剂研究进展[J]. 化工进展, 2007(12):1669-1674. doi: 10.3321/j.issn:1000-6613.2007.12.001

    WU Huanwen, ZHANG Ning, ZHONG Jinlian, et al. Progress in research of p-n type semiconductor composite photocatalysts[J]. Chemical Industry and Engineering Progress,2007(12):1669-1674(in Chinese). doi: 10.3321/j.issn:1000-6613.2007.12.001
    [11] BHETHANABOTLA V, RUSSELL D, KUHN J. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase[J]. Applied Catalysis B: Environmental,2017,202:156-164. doi: 10.1016/j.apcatb.2016.09.008
    [12] WANG W, TADÉ M, SHAO Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review[J]. Progress in Materials Science,2018,92:33-63. doi: 10.1016/j.pmatsci.2017.09.002
    [13] 吴晶, 曾昆伟, 周文芳, 等. 敏化剂敏化改性TiO2的研究进展[J]. 材料导报, 2009, 23(17):107-109. doi: 10.3321/j.issn:1005-023X.2009.17.023

    WU Jing, ZENG Kunwei, ZHOU Wenfang, et al. Research progress in sensitizer-sensitized modification of titanium dioxide[J]. Materials Reports,2009,23(17):107-109(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.17.023
    [14] 邱炜, 陈爱平, 刘威, 等. 二氧化钛光催化剂的光敏化研究进展[J]. 现代化工, 2004(S1):43-46.

    QIU Wei, CHEN Aiping, LIU Wei, et al. Advances in photosensitization of titania semiconductor photocatalysts[J]. Modern Chemical Industry,2004(S1):43-46(in Chinese).
    [15] XIAO N, LI S, LI X, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41(4):642-671. doi: 10.1016/S1872-2067(19)63469-8
    [16] 司沿洁. g-C3N4基复合光催化剂的制备及其光催化性能的研究[D]. 武汉: 中国地质大学, 2018.

    SI Yanjie. Synthesis of based hybrid photocatalysts with enhanced photocatalytic activity[D]. Wuhan: China University of Geosciences, 2018(in Chinese).
    [17] LI H, CHEN S, JIA X, et al. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting[J]. Nature Communications,2017,8(1):15377. doi: 10.1038/ncomms15377
    [18] 陈鹏作. 表界面化学调控低维钴基材料电催化活性[D]. 合肥: 中国科学技术大学, 2018.

    CHEN Pengzuo. Surface and interface chemistry regulates the electrocatalytic activity of low-dimensional cobalt-based materials[D]. Hefei: University of Science and Technology of China, 2018(in Chinese).
    [19] LIU Y, CHENG H, LYU M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation[J]. Journal of the American Chemical Society,2014,136(44):15670-15675. doi: 10.1021/ja5085157
    [20] ZHANG T, YU J, GUO H, et al. Heterogeneous CoSe2-CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting[J]. Electrochimica Acta,2020,356:136822. doi: 10.1016/j.electacta.2020.136822
    [21] 王蒙, 马建泰, 吕功煊. 光催化全分解水制氢中助催化剂表面氢氧复合反应的抑制[J]. 分子催化, 2019, 33(5):461-485.

    WANG Meng, MA Jiantai, LV Gongxuan. The inhibition of hydrogen and oxygen recombination reverse reaction on cocatalyst surface in photocatalytic overall water splitting for hydrogen evolution[J]. Journal of Molecular Catalysis (China),2019,33(5):461-485(in Chinese).
    [22] CHEN S, HUANG D, XU P, et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion?[J]. Journal of Materials Chemistry A,2020,8(5):2286-2322. doi: 10.1039/C9TA12799B
    [23] YI J, ZHU X, ZHOU M, et al. Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide[J]. Chemical Engineering Journal,2020,396:125244. doi: 10.1016/j.cej.2020.125244
    [24] GE F, HUANG S, YAN J, et al. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2021, 42: 450-459.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1026
  • HTML全文浏览量:  535
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-12-16
  • 录用日期:  2021-12-25
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回