留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru敏化MOF电子结构实现高效电解水

宋云奇 李征峰 梁彤 张昱梅 刘楚存 谢克民 姚垚

宋云奇, 李征峰, 梁彤, 等. Ru敏化MOF电子结构实现高效电解水[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 宋云奇, 李征峰, 梁彤, 等. Ru敏化MOF电子结构实现高效电解水[J]. 复合材料学报, 2024, 42(0): 1-9.
SONG Yunqi, LI Zhengfeng, LIANG Tong, et al. Ru sensitized MOF electronic structure for efficient water electrolysis[J]. Acta Materiae Compositae Sinica.
Citation: SONG Yunqi, LI Zhengfeng, LIANG Tong, et al. Ru sensitized MOF electronic structure for efficient water electrolysis[J]. Acta Materiae Compositae Sinica.

Ru敏化MOF电子结构实现高效电解水

基金项目: 国家自然科学基金(22265025/12164037), 宁夏自然科学基金(2021AAC05013/2022AAC03336),六盘山资源工程技术研究中心(HGZD22-14),无机化学重点学科及宁夏师范学院2023年度校级大学生创新创业训练计划项目(X202310753180)
详细信息
    通讯作者:

    姚垚, 副教授, 事纳米材料的制备构建、金属纳米颗粒的表面等离激元性质研究,及其在光电催化、气敏传感器等方面的器件制备应用工作。E-mail: yaoyao_zz308@163.com

  • 中图分类号: TB24;TB333

Ru sensitized MOF electronic structure for efficient water electrolysis

Funds: The national natural science foundation of China (22265025/12164037), Ningxia natural science foundation of China (2021aac05013/2022aac03336), LiuPanShan resources engineering technology research center (HGZD22-14), Supported by the key discipline of Inorganic Chemistry and the Innovation and Entrepreneurship Training Project of Ningxia Normal University in 2023 (X202310753180).
  • 摘要: 金属有机框架(MOF)材料因其强大的结构和功能可调性已成为极具潜力的电解水催化剂。然而,MOF催化剂由于自身较弱的电荷转移能力及有限的稳定性,其固有活性较低。因此,设计出兼具高活性与高稳定性的MOF催化剂仍是具有挑战性的难题。本文通过两步水热法成功合成了CoRu-BDC/NF(BDC:对苯二甲酸、NF:泡沫镍),Ru的引入调节了负载在NF上Co-BDC的内在活性,赋予了CoRu-BDC/NF丰富的活性位点、较快的电荷传输能力,有利于电催化性能的提升。结果表明,CoRu-BDC/NF在酸性环境中电流密度达到10 mA·cm−2时,HER过电位为34 mV,Tafel斜率为33 mV·dec−1。值得注意的是,在碱性条件下,当电流密度为10 mA·cm−2,HER和OER所需的过电位也仅为32 mV和280 mV,Tafel斜率分别为39 mV·dec−1 、49 mV·dec−1,均表现出优异的电催化性能。Ru的引入导致Co的电子结构和配位环境发生变化,使原始Co-MOF的表面积增加,为电化学反应提供了更好的电子转移平台,加快了电子在电极和电解液界面间的传递,进一步提升了电催化性能。

     

  • 图  1  (a-d)分别CoRu-BDC/NF纳米复合材料的FE-SEM图像;(e-h,k)为CoRu-BDC的TEM图;(i-j)为CoRu-BDC的TEM-EDX图;(l)为CoRu-BDC电子衍射图

    Figure  1.  Fig 1(a-d) are the FE-SEM images of CoRu-BDC/NF nanocomposites, respectively. (e-h,k-i) indicates the TEM image of CoRu-BDC, (i-j) is the TEM-EDX image of CoRu-BDC

    BDC—Terylene acid; NF—NAickel foam

    图  2  Co-BDC和CoRu-BDC(a)XRD图;(b)拉曼图;(c)傅里叶变换红外光谱;(d) XPS全谱图;(e) Co 2p轨道的高分辨XPS图;(f) Ru 3d轨道的高分辨XPS图

    Figure  2.  Co-BDC and CoRu-BDC (a) XRD; (b) Raman map; (c) Fourier transform infrared spectrum; (d) XPS full spectrum; (e) high resolution XPS map of Co 2p orbit; (f) high resolution XPS map of Ru 3d orbit

    图  3  NF、Co-BDC/NF、Ru-BDC/NF、CoRu-BDC/NF在0.5 mol/L H2SO4中的电化学HER测量:(a) 极化曲线;(b) Tafel斜率; (c) CoRU-BDC/NF不同扫速下的CV曲线; (d) 0.25 V (vs.RHE)处电流密度与扫速的差值; (e) 阻抗图;(f)HER过程中CoRu-BDC/NF的稳定性

    Figure  3.  Electrochemical HER measurements of NF, Co-BDC/NF, Ru-BDC/NF and CoRu-BDC/NF in 0.5 M H2SO4 . (a) Polarization curves, (b) Tafel plots,(c) CV curves at different sweeps of CoRu-BDC/NF speed, (d) Difference of current density at 0.25 V( vs.RHE) as a function of scan rate, (e) Nyquist plots, (f) Stability of the CoRu-BDC/NF during the HER process

    j—Current density; E —Overpotentials; Z’ —Impedance the real part; Z’’ —Impedance virtual part

    图  4  NF、Co-BDC/NF、Ru-BDC/NF和CoRu-BDC/NF:(a)在1 mol/L KOH中的电化学HER测试的极化曲线;(b)Tafel斜率;(c)测试前后XRD;(d)测试后的SEM图

    Figure  4.  NF, Co-BDC/NF, Ru-BDC/NF and CoRu-BDC/NF.(a) Polarization curves for the electrochemical HER tests in 1 M KOH,(b)Tafel plots,(c,d)XRD and SEM plots before and after testing

    图  5  NF、Co-BDC/NF、Ru-BDC/NF和CoRu-BDC/NF:(a)在1 mol/L KOH中的电化学OER测试的极化曲线;(b) Tafel斜率; (c)阻抗图;(d) CoRU-BDC/NF不同扫速下的CV曲线; (e) 0.25 V (vs.RHE)处电流密度与扫速的差值;(f) CoRu-BDC/NF||CoRu-BDC/NF以5 mV·s−1在1 mol/L KOH整体水分的极化曲线。

    Figure  5.  NF, Co-BDC/NF, Ru-BDC/NF and CoRu-BDC/NF. (a) Polarization curves for the electrochemical OER tests in 1 M KOH, (b)Tafel plots, (c) Nyquist plots, (d) CV curves at different sweeps of CoRu-BDC/NF speed, (e) Difference of current density at 0.25 V (vs.RHE) as a function of scan rate, (e) Polarization curves for CoRu-BDC/NF||CoRu-BDC/NF couples toward overall water splitting recorded at a scan rate of 5 mV s −1 in 1 M KOH.

    表  1  近期报道的相关材料全解水性能的比较

    Table  1.   Comparison of the recent reported overall water solution properties of related materials

    Electrocatalyst Acid conditions
    HER η10/mV
    Alkaline conditions
    HER η10/mV
    Alkaline conditions
    OER η10/mV
    Overall Water/V Reference
    CoRu-BDC/NF 34 32 280 1.47 This work
    Co-Co2C/CC / 96 261 1.63 [51]
    CoFeP-N / 64 219 1.56 [52]
    CoCu@NC / 199 301 1.87 [53]
    Co-CN@NiFe / 87 233 1.55 [54]
    Notes:η10—Overpotentials with a current density of 10 mA·cm−2
    下载: 导出CSV
  • [1] MENG C, CAO Y, LUO Y, et al. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media[J]. Inorganic Chemistry Frontiers, 2021, 8(12): 3007-3011. doi: 10.1039/D1QI00345C
    [2] JIAO L, ZHU J, ZHANG Y, et al. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO(2) Electroreduction[J]. J Am Chem Soc, 2021, 143(46): 19417-19424. doi: 10.1021/jacs.1c08050
    [3] CHEN C, SUN M, ZHANG F, et al. Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design[J]. Energy & Environmental Science, 2023, 16(4): 1685-1696.
    [4] YAO Y, LIAO G, CUI H, et al. Monodispersed In2O3@ZIF-8 core-shell nanocomposite with selectivity and enhanced photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(18): 1445. doi: 10.1007/s10854-023-10870-4
    [5] YANG X, LI Q X, CHI S Y, et al. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2[J]. SmartMat, 2022, 3(1): 163-172. doi: 10.1002/smm2.1086
    [6] ZHU W, SONG X, LIAO F, et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide[J]. Nat Commun, 2023, 14(1): 5365. doi: 10.1038/s41467-023-41036-9
    [7] SONG F, LI W, YANG J, et al. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions[J]. Nat Commun, 2018, 9(1): 4531. doi: 10.1038/s41467-018-06728-7
    [8] YAO M, WANG B, SUN B, et al. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2021, 280: 119451. doi: 10.1016/j.apcatb.2020.119451
    [9] INAMDAR A I, CHAVAN H S, HOU B, et al. A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting[J]. Small, 2020, 16(2): e1905884. doi: 10.1002/smll.201905884
    [10] LI L, WANG B, ZHANG G, et al. Electrochemically Modifying the Electronic Structure of IrO2 Nanoparticles for Overall Electrochemical Water Splitting with Extensive Adaptability[J]. Advanced Energy Materials, 2020, 10(30): 2001600. doi: 10.1002/aenm.202001600
    [11] YU L, WU L, MCELHENNY B, et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J]. Energy & Environmental Science, 2020, 13(10): 3439-3446.
    [12] WANG P, PU Z, LI W, et al. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. Journal of Catalysis, 2019, 377: 600-608. doi: 10.1016/j.jcat.2019.08.005
    [13] GONG Y N, JIAO L, QIAN Y, et al. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction[J]. Angewandte Chemie International Edition, 2020, 59(7): 2705-2709. doi: 10.1002/anie.201914977
    [14] ZHANG Y, HAN Y, DENG F, et al. Enhancement of the performance of Ge-air batteries under high temperatures using conductive MOF-modified Ge anodes[J]. Carbon Energy, 2024: e580.
    [15] MADHU R, KARMAKAR A, BERA K, et al. Recent developments in transition metal-based MOFs for electrocatalytic water splitting emphasizing fundamental and structural aspects[J]. Materials Chemistry Frontiers, 2023, 7(11): 2120-2152. doi: 10.1039/D3QM00089C
    [16] LIM Y, KIM B, KIM J. Data-Driven Design of Flexible Metal-Organic Frameworks for Gas Storage[J]. Chemistry of Materials, 2024, 36(11): 5465-5473. doi: 10.1021/acs.chemmater.4c00398
    [17] YU M-H, GENG L, CHANG Z, et al. Coordination Bonding Directed Molecular Assembly toward Functional Metal-Organic Frameworks: From Structural Regulation to Properties Modulation[J]. Accounts of Materials Research, 2023, 4(10): 839-853. doi: 10.1021/accountsmr.3c00097
    [18] DONG P, ZHANG X, HISCOX W, et al. Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties[J]. Adv Mater, 2023, 35(32): e2211841. doi: 10.1002/adma.202211841
    [19] XUE Z, LIU K, LIU Q, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction[J]. Nat Commun, 2019, 10(1): 5048. doi: 10.1038/s41467-019-13051-2
    [20] CHENG W. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis[J]. Nat. Energy, 2019, 4(2): 115-122. doi: 10.1038/s41560-018-0308-8
    [21] MA Y, LENG D, ZHANG X, et al. Enhanced Activities in Alkaline Hydrogen and Oxygen Evolution Reactions on MoS2 Electrocatalysts by In-Plane Sulfur Defects Coupled with Transition Metal Doping[J]. Small, 2022, 18(39): 2203173. doi: 10.1002/smll.202203173
    [22] HUANG Y, HAN J, WANG H, et al. Multiple metallic dopants in nickel nanoparticles for electrocatalytic oxygen evolution[J]. Progress in Natural Science: Materials International, 2023, 33(1): 67-73. doi: 10.1016/j.pnsc.2023.03.002
    [23] ZHANG J, CHENG C, XIAO L, et al. Construction of Co-Se-W at Interfaces of Phase-Mixed Cobalt Selenide via Spontaneous Phase Transition for Platinum-Like Hydrogen Evolution Activity and Long-Term Durability in Alkaline and Acidic Media[J]. Adv Mater, 2024, 36(28): e2401880. doi: 10.1002/adma.202401880
    [24] SUN P, QIAO Z, DONG X, et al. Designing 3d Transition Metal Cation-Doped MRuO(x) As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers[J]. J Am Chem Soc, 2024, 146(22): 15515-15524. doi: 10.1021/jacs.4c04096
    [25] LIU X, WEI S, CAO S, et al. Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt[J]. Adv Mater, 2024, 36(33): e2405970. doi: 10.1002/adma.202405970
    [26] Zhou L, Shao Y, Yin F, et al. Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density[J]. Nature Communications, 2023, 14(1): 7644. doi: 10.1038/s41467-023-43466-x
    [27] CHEN X, XU X, CHENG Y, et al. Achieving High-Performance Electrocatalytic Water Oxidation on Ni(OH)(2) with Optimized Intermediate Binding Energy Enabled by S-Doping and CeO(2) -Interfacing[J]. Small, 2024, 20(8): e2303169. doi: 10.1002/smll.202303169
    [28] GUO X, WAN X, LIU Q, et al. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction[J]. eScience, 2022, 2(3): 304-310. doi: 10.1016/j.esci.2022.04.002
    [29] QI Y, XIAO X, MEI Y, et al. Modulation of Brønsted and Lewis Acid Centers for NixCo3-xO4 Spinel Catalysts: Towards Efficient Catalytic Conversion of Lignin[J]. Advanced Functional Materials, 2022, 32(15): 2111615. doi: 10.1002/adfm.202111615
    [30] ZHOU J, QIAO F, REN Z, et al. Amorphization Engineering of Bimetallic Metal-Organic Frameworks to Identify Volcano-Type Trend toward Oxygen Evolution Reaction[J]. Advanced Functional Materials, 2023, 34(1): 2304380.
    [31] ZHAO S, WANG Y, DONG J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 1-10.
    [32] HUANG L, GAO G, ZHANG H, et al. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution[J]. Nano Energy, 2020, 68: 104296. doi: 10.1016/j.nanoen.2019.104296
    [33] SUN F, WANG G, DING Y, et al. NiFe-Based Metal-Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction[J]. Advanced Energy Materials, 2018, 8(21): 1800584. doi: 10.1002/aenm.201800584
    [34] BORDIGA S, LAMBERTI C, RICCHIARDI G, et al. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour[J]. Chem Commun (Camb), 2004, (20): 2300-1. doi: 10.1039/B407246D
    [35] WANG C-P, FENG Y, SUN H, et al. Self-Optimized Metal-Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation[J]. ACS Catalysis, 2021, 11(12): 7132-7143. doi: 10.1021/acscatal.1c01447
    [36] CHEN G, WANG T, ZHANG J, et al. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites[J]. Adv Mater, 2018, 30(10): 1706279. doi: 10.1002/adma.201706279
    [37] ZHANG L-N, LANG Z-L, WANG Y-H, et al. Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis[J]. Energy & Environmental Science, 2019, 12(8): 2569-2580.
    [38] PENG Y, LU B, CHEN L, et al. Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets[J]. Journal of Materials Chemistry A, 2017, 5(34): 18261-18269. doi: 10.1039/C7TA03826G
    [39] LU B, GUO L, WU F, et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media[J]. Nat Commun, 2019, 10(1): 631. doi: 10.1038/s41467-019-08419-3
    [40] WANG Z-L, SUN K, HENZIE J, et al. Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution[J]. Angewandte Chemie International Edition, 2018, 57(20): 5848-5852. doi: 10.1002/anie.201801467
    [41] LI W, ZHANG H, ZHANG K, et al. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2022, 306: 121095. doi: 10.1016/j.apcatb.2022.121095
    [42] LI W, ZHANG H, HONG M, et al. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting[J]. Chemical Engineering Journal, 2022, 431: 134072. doi: 10.1016/j.cej.2021.134072
    [43] ZHANG M, CHEN J, LI H, et al. Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer[J]. Nano Energy, 2019, 61: 576-583. doi: 10.1016/j.nanoen.2019.04.050
    [44] FAN R, MU Q, WEI Z, et al. Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting[J]. Journal of Materials Chemistry A, 2020, 8(19): 9871-9881. doi: 10.1039/D0TA03272G
    [45] LI Z, WU Y, LU G. Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under Visible Light Irradiation[J]. Applied Catalysis B: Environmental, 2016, 188: 56-64. doi: 10.1016/j.apcatb.2016.01.057
    [46] LI G, LI J, LIU X, et al. Ir-doped Co-BDC MOF as efficient bifunctional catalyst for overall electrochemical water splitting[J]. Ionics, 2023, 29(5): 1963-1973. doi: 10.1007/s11581-023-04928-w
    [47] SUN Y, XUE Z, LIU Q, et al. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution[J]. Nat Commun, 2021, 12(1): 1369. doi: 10.1038/s41467-021-21595-5
    [48] CAO C, MA D D, XU Q, et al. Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation[J]. Advanced Functional Materials, 2018, 29(6): 1970033.
    [49] WANG Y, ZHU R, WANG Z, et al. Cu induced formation of dendritic CoFeCu ternary alloys on Ni foam for efficient oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 880: 160523. doi: 10.1016/j.jallcom.2021.160523
    [50] LI W, ZHANG H, ZHANG K, et al. Altered electronic structure of trimetallic FeNiCo-MOF nanosheets for efficient oxygen evolution[J]. Chem Commun (Camb), 2023, 59(32): 4750-4753. doi: 10.1039/D2CC06727G
    [51] WANG P, ZHU J, PU Z, et al. Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics[J]. Applied Catalysis B: Environmental, 2021, 296: 120334. doi: 10.1016/j.apcatb.2021.120334
    [52] WANG R, SUN X, ZHONG J, et al. Low-temperature plasma-assisted synthesis of iron and nitrogen co-doped CoFeP-N nanowires for high-efficiency electrocatalytic water splitting[J]. Applied Catalysis B: Environment and Energy, 2024, 352: 124027. doi: 10.1016/j.apcatb.2024.124027
    [53] ZHANG Z, WANG H, LI Y, et al. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst[J]. Chemical Research in Chinese Universities, 2022, 38(3): 750-757. doi: 10.1007/s40242-022-1504-4
    [54] GUO T, CHEN L, LI Y, et al. Controllable Synthesis of Ultrathin Defect-Rich LDH Nanoarrays Coupled with MOF-Derived Co-NC Microarrays for Efficient Overall Water Splitting[J]. Small, 2022, 18(29): e2107739. doi: 10.1002/smll.202107739
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 修回日期:  2024-08-24
  • 录用日期:  2024-08-30
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回