留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平纹编织结构CFRP正交切削切屑形成及表面损伤

周强 陈燕 王晓宇 张川川 陈雪梅 刘元吉 陈清良 勾江洋

周强, 陈燕, 王晓宇, 等. 平纹编织结构CFRP正交切削切屑形成及表面损伤[J]. 复合材料学报, 2022, 40(0): 1-15
引用本文: 周强, 陈燕, 王晓宇, 等. 平纹编织结构CFRP正交切削切屑形成及表面损伤[J]. 复合材料学报, 2022, 40(0): 1-15
Qiang ZHOU, Yan CHEN, Xiaoyu WANG, Chuanchuan ZHANG, Xuemei CHEN, Yuanji LIU, Qingliang CHEN, Jiangyang GOU. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica.
Citation: Qiang ZHOU, Yan CHEN, Xiaoyu WANG, Chuanchuan ZHANG, Xuemei CHEN, Yuanji LIU, Qingliang CHEN, Jiangyang GOU. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica.

平纹编织结构CFRP正交切削切屑形成及表面损伤

基金项目: 国家自然科学基金 (51875284)
详细信息
    通讯作者:

    陈燕,博士,教授,博士生导师,研究方向为难加工材料的高效精密加工技术 E-mail: ninaych@nuaa.edu.cn

  • 中图分类号: TB332;V257

Chip formation and surface damage in orthogonal cutting of plain-woven CFRP

Funds: National Natural Science Foundation of China(51875284)
  • 摘要: 平纹编织碳纤维增强树脂基复合材料(Plain-Woven Carbon Fiber-Reinforced Plastic,简称PW-CFRP)由于纤维间相互交错的几何结构,展现出高损伤容限特性,在航空航天领域应用广泛。国内外学者主要是开展了材料的力学性能试验或仿真研究,且仿真多聚焦在微观仿真层面,在切削加工方面研究更偏向于单向CFRP,同时PW-CFRP是一种多尺度复合材料,传统的微、宏观尺度并不能较好的去研究其切削机理。本文进一步完善了碳纤维复合材料切削加工的理论内容,为扩大PW-CFRP的应用范围提供理论支撑。本文根据PW-CFRP的几何结构特点建立了包含树脂基体相-界面相-纤维增强相的三维几何模型,并采用3D Hashin失效准则和PUCK基体失效准则,利用Fortran语言编写等效均质纤维束力学本构模型,建立介观尺度三维正交切削仿真模型。模拟了PW-CFRP的切屑形成过程,同时开展正交切削试验,对仿真模型进行验证;通过仿真分析结合实验阐明了在PW-CFRP中,纤维切削角对材料去除机理的影响以及经纬纤维束之间的相互钳制作用。其中不同纤维方向的纤维束区域最大损伤深度依次为0°<45°<90°<135°;经纬编织结构对切削加工损伤起到一定的抑制作用,相邻纤维束间的支撑约束作用阻碍了损伤扩展,其最大加工损伤深度不会超出纤维束截面最大宽度。同时,表面纤维附近树脂层厚度是加工表面损伤形成的重要因素,树脂富集区域对纤维的支撑作用较好,可以有效抑制损伤,树脂薄弱区域对纤维支撑较弱,损伤容易扩展至此处,使得材料表面损伤呈弧形分布。(0°/90°)铺层织物正交切削切屑形成过程纤维束受力情形与表面损伤形成

     

  • 图  1  PW-CFRP截面实物图与结构示意图

    Figure  1.  Physical and structural diagram of PW-CFRP section

    图  2  PW-CFRP三维几何模型

    Figure  2.  Three-dimensional geometric model of PW-CFRP

    图  3  PW-CFRP正交切削仿真模型及纤维束材料主方向

    Figure  3.  Orthogonal cutting simulation model of PW-CFRP and main material direction of fiber bundle

    图  4  树脂基体材料本构

    Figure  4.  Constitutive model of matrix material

    图  5  Cohesive粘性表面本构

    Figure  5.  Constitutive model of Cohesive surface

    图  6  界面层的壳单元模型

    Figure  6.  Shell element model of interface layer

    图  7  PW-CFRP正交切削试验平台及刀具示意图

    Figure  7.  Orthogonal cutting experiment platform of PW-CFRP and tool diagram

    图  8  PW-CFRP切削力仿真与试验结果对比(v=2000 mm·min−1ap=0.1 mm)

    Figure  8.  Comparison of simulation force and experiment force results of PW-CFRP(v=2000 mm·min−1ap=0.1 mm)

    图  9  PW-CFRP织物层最大损伤深度的仿真与试验结果(v=2000 mm·min−1ap=0.1 mm)

    Figure  9.  PW-CFRP fabric layer simulation and experiment results of maximum damage depth(v=2000 mm·min−1ap=0.1 mm

    图  10  PW-CFRP(0°/90°)织物层纤维束的切屑形成过程

    Figure  10.  Chip formation process of PW-CFRP (0°/90°) fabric layer

    图  11  PW-CFRP(45°/135°)织物层纤维束的切屑形成过程

    Figure  11.  Chip formation process of PW-CFRP (45°/135°) fabric layer

    图  12  PW-CFRP中树脂厚度分布示意图

    Figure  12.  Matrix thickness distribution in PW-CFRP

    图  13  表面PW-CFRP织物在切削载荷下的受力情形示意图

    Figure  13.  Force analysis of surface PW-CFRP fabric under cutting load

    图  14  PW-CFRP(0°/90°)织物层材料表面损伤形成机制

    Figure  14.  PW-CFRP ( 0° / 90° ) fabric layer material removal mechanism

    图  15  PW-CFRP(45°/135°)织物层材料表面损伤形成机制

    Figure  15.  PW-CFRP ( 45° / 135° ) fabric layer material removal mechanism

    表  1  仿真模型几何尺寸参数

    Table  1.   Geometric dimension parameters of simulation model

    A0/mmH0/mmVfh0/mm
    1.80.1555%0.05
    Notes:A0 is fiber bundle width; H0 the maximum thickness of fiber bundle interface; Vf is fiber volume fraction; h0 is the thickness of resin-starved area.
    下载: 导出CSV

    表  2  T700碳纤维织物材料各组分性能参数[27-30]

    Table  2.   Property parameters of each component of T700 carbon fiber fabric[27-30]

    Phase compositionMaterial parameterValue
    Fiber bundleX1 tf/MPa4900
    X1 cf/MPa4500
    X2 tf/MPa400
    X2 cf/MPa700
    X3 tf/MPa400
    X3 cf/MPa700
    S12f/MPa100
    S13/MPa100
    S23f/MPa58
    Matrixρm/(kg·m−3)980
    Em/MPa4000
    νm0.4
    σy0m /MPa270
    Interface propertiesNmax/MPa60
    Smax/MPa90
    Tmax/MPa90
    $ {G}_{\mathrm{n}}^{\mathrm{c}} $/(N·m−1)0.2
    $ {G}_{\mathrm{s}}^{\mathrm{c}} $/(N·m−1)1.0
    $ {G}_{\mathrm{t}}^{\mathrm{c}} $/(N·m−1)1.0
    Notes:X1 tf—Tensile strength of fiber bundles in 1 direction; X2 tf—Tensile strength of fiber bundles in 2 directions; X3 tf—Tensile strength of fiber bundles in 3 directions; X1 cf— Compressive strength of fiber bundles in the 1 direction; X2 cf—Compressive strength of fiber bundles in 2 directions; X3 cf—Compressive strength of fiber bundles in 3 directions; S12f—Shear strength of fiber bundles in 1-2 plane; S23f—Shear strength of fiber bundles in 2-3 planes; S13f—Shear strength of fiber bundles in 1-3 planes. ρm is matrix density; Em is Young 's modulus of matrix;νm is Poisson 's ratio of matrix; σy0m is yield strength of the matrix; Nmax is normal stress intensity of interface; Smax is first tangential stress intensity of interface; Tmax is second tangential stress intensity of interface; $ {G}_{\mathrm{n}}^{\mathrm{c}} $is normal critical fracture energy of interface; $ {G}_{\mathrm{s}}^{\mathrm{c}} $ is first tangential critical fracture energy of interface; $ {G}_{\mathrm{t}}^{\mathrm{c}} $ is second tangential critical fracture energy of interface.
    下载: 导出CSV

    表  3  正交切削试验参数

    Table  3.   Process parameters of orthogonal cutting experiment

    v/(mm·min−1)ap/mmγ/(°)α/(°)
    20000.11512
    Notes: v is cutting speed; ap is cutting depth; γ is working orthogonal rake of tool; α is working back angle of tool.
    下载: 导出CSV
  • [1] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002
    [2] 林刚. 碳纤维产业“聚”变发展—2020 全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 5:27-49.

    LIN Gang. The development of carbon fiber industry-2020 global carbon fiber composite market report[J]. Textile Science Research,2021,5:27-49(in Chinese).
    [3] FEITO N, CANTERO J L, et al. Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs[J]. Journal of Reinforced Plastics and Composites,2016,35(1):33-55. doi: 10.1177/0731684415612931
    [4] GAO Z, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263:113685. doi: 10.1016/j.compstruct.2021.113685
    [5] ONAL L, ADANUR S. Modeling of elastic, thermal, and strength/failure analysis of two-dimensional woven composites—A review[J]. Applied Mechanics Reviews,2007,60:37. doi: 10.1115/1.2375143
    [6] 杨晓文. 基于编织角动态变化的2 D编织CFRP力学性能仿真研究 [D]. 长春: 吉林大学, 2022.

    YANG Xiaowen. Simulation research on mechanical properties of 2 D braided CFRP based on dynamic change of braiding angle [D]. Changchun: Jilin University, 2022(in Chinese).
    [7] ZHAO Q, WANG W, LIU Y, et al. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites[J]. Composite Structures,2022,299:116090. doi: 10.1016/j.compstruct.2022.116090
    [8] ZHANG X, SHI Y, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates[J]. Composites Part B:Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [9] 张铁纯, 杨晨晨, 王轩, 等. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2):64-72. doi: 10.11868/j.issn.1005-5053.2021.000106

    ZHANG Tiechun, YANG Chenchen, WANG Xuan, et al. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials,2022,42(2):64-72(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000106
    [10] SIDDIQUE A, SUN B, GU B. Structural influences of two-dimensional and three-dimensional carbon/epoxy composites on mode I fracture toughness behaviors with rate effects on damage evolution[J]. Journal of Industrial Textiles,2020,50(1):23-45. doi: 10.1177/1528083718819871
    [11] KING M J, SOCRATE S. A continuum constitutive model for the mechanical behavior of woven fabrics[J]. International journal of solids and structures,2005,42(13):3867-3896. doi: 10.1016/j.ijsolstr.2004.10.030
    [12] RATTAN R, BIJWE J, FAHIM M. Influence of weave of carbon fabric on low amplitude oscillating wear performance of Polyetherimide composites[J]. Wear,2007,262(5-6):727-735. doi: 10.1016/j.wear.2006.08.005
    [13] NAIK N K, REDDY K S, Meduri S, et al. Interlaminar fracture characterization for plain weave fabric composites[J]. Journal of Materials Science,2002,37(14):2983-2987. doi: 10.1023/A:1016025232102
    [14] 王冬峣, 赫晓东, 刘文博, 等. 二维编织复合材料在正交切削中的切削力和加工表面质量研究[J]. 玻璃钢/复合材料, 2017(12):77-82. doi: 10.3969/j.issn.1003-0999.2017.12.014

    WANG Dongyao, HE Xiaodong, LIU Wenbo, et al. Study on machining forces and machined surface quality of plane woven-fabric CFRP in orthogonal cutting experiment[J]. Composites Science and Engineering,2017(12):77-82(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.014
    [15] LIU S, WU D, ZHAO J, et al. The material removal mechanism in orthogonal cutting of woven AFRP[J]. Journal of Materials Science,2022,57(34):16301-16316. doi: 10.1007/s10853-022-07422-2
    [16] SU F, YUAN J, SUN F, et al. Modeling and simulation of milling forces in milling plain woven carbon fiber-reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9):4141-4152.
    [17] ZHANG D, WANG H, BURKS AR, CONG W. Delamination in rotary ultrasonic machining of CFRP composites: finite element analysis and experimental implementation[J]. Int J Adv Manuf Technol,2020,107:3847-3858. doi: 10.1007/s00170-020-05310-0
    [18] WONG I, TAN C L, AZMI A I, et al. Evaluations of mechanical properties and residual strength of drilled glass fiber reinforced polymer (GFRP) composites[J]. Applied Mechanics and Materials. Trans Tech Publications Ltd,2014,660:270-274.
    [19] 周井文, 黄久超, 杨叶, 等. 单向铺层与织物结构CFRP端铣加工表面质量对比分析[J]. 工具技术, 2021, 55(8):49-52. doi: 10.3969/j.issn.1000-7008.2021.08.007

    ZHOU Jingwen, HUANG Jiuchao, YANG Ye, et al, CHEN Yan. Analysis of surface integrity during end milling of unidirectional lamination and woven fabric structure CFRP[J]. Tool Engineering,2021,55(8):49-52(in Chinese). doi: 10.3969/j.issn.1000-7008.2021.08.007
    [20] HINTZE W, CORDES M, KOERKEL G. Influence of weave structure on delamination when milling CFRP[J]. Journal of Materials Processing Technology,2015,216:199-205. doi: 10.1016/j.jmatprotec.2014.09.004
    [21] MARIATTI M, NASIR M, ISMAIL H. Effect of sample cutting direction on mechanical properties of woven thermoplastic prepreg[J]. Polymer testing,2000,19(6):617-624. doi: 10.1016/S0142-9418(99)00032-X
    [22] LI H N, WANG J P, WU C Q. Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single-and multiple-pass strategies[J]. Composites Part B:Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774
    [23] 李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究 [J/OL]. 复合材料学报: 1-12

    2022-11-14]. LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects [J/OL]. Acta Materiae Compositae Sinica, 1-12[2022-11-14](in Chinese).
    [24] 苏飞. 碳纤维增强复合材料切削加工技术及其应用研究 [D]. 南京: 南京理工大学, 2015.

    SU Fei. The cutting process technology and its application of carbon fiber-reinforced plastic [D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [25] 邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析 [D]. 南昌: 南昌大学, 2018.

    SHAO Bing. The mesomechanical analysis of stresses near central hole in big carbon tow plain-woven composite [D]. Nanchang University, 2018 (in Chinese).
    [26] 周井文, 陈燕, 傅玉灿, 等. 纤维切削角对CFRP加工缺陷的影响规律[J]. 哈尔滨工业大学学报, 2015, 47(7):110-116. doi: 10.11918/j.issn.0367-6234.2015.07.018

    ZHOU Jingwen, CHEN Yan, FU Yuchan, et al. Influence of fiber cutting angle on the machining defects during slotting of CFRP[J]. Journal of Harbin Institute of Technology,2015,47(7):110-116(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.07.018
    [27] 张勋, 陈燕, 徐九华, 等. 大厚径碳纤维复合材料三维钻削有限元仿真及试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010

    ZHANG Xun, CHEN Yan, XU Jiuhua, et al. Finite element simulation of and experimental study on three - dimensional drilling of large diameter carbon fiber composites[J]. Diamond & Abrasives Engineering,2020,40(2):53-60(in Chinese). doi: 10.13394/j.cnki.jgszz.2020.2.0010
    [28] SANTIUSTE C, SOLDANI X, MIGUELEZ M H. Machining FEM model of long fiber composites for aeronautical components[J]. Composite structures,2010,92(3):691-698. doi: 10.1016/j.compstruct.2009.09.021
    [29] 齐振超, 刘书暖, 程晖, 等. 基于三维多相有限元的CFRP细观切削机理研究[J]. 机械工程学报, 2016, 52(15):170-176. doi: 10.3901/JME.2016.15.170

    QI Zhenchao, LIU Shunuan, CHEN Hui, et al. Research on the Mesoscopic Cutting Mechanism of CFRP Based onThree-dimensional Multiphase Finite Element Models[J]. Journal of Mechanical Engineering,2016,52(15):170-176(in Chinese). doi: 10.3901/JME.2016.15.170
    [30] Liu Y, Li Q, Qi Z, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. doi: 10.1016/j.compstruct.2021.114710
    [31] 杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1):132-139. doi: 10.13801/j.cnki.fhclxb.20190324.002

    YANG Guangmeng, WAN Xiaopeng, HOU Chi. Damage behavior of plain woven composites considering undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica,2020,37(1):132-139(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190324.002
    [32] BEDNARCYK B A, STIER B, SIMON J W, et al. Meso-and micro-scale modeling of damage in plain weave composites[J]. Composite Structures,2015,121:258-270. doi: 10.1016/j.compstruct.2014.11.013
  • 加载中
计量
  • 文章访问数:  262
  • HTML全文浏览量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-18
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-19

目录

    /

    返回文章
    返回