Constructing quasi-Z-directional epoxy-pins on aluminum alloy surface via highly controllable laser engraving for stronger adhesive bonding with carbon fiber composite
-
摘要: 本研究设计了激光雕刻、常压等离子喷涂和树脂预涂(RPC)技术处理铝合金表面构建准Z方向“环氧钉”,实现铝合金与碳纤维增强树脂(CFRP)复合材料的粘接强度提升。采用激光雕刻处理铝合金表面形成凹坑结构,为浸渍环氧树脂提供了较大的垂直空间,同时获得了更高的润湿性。使用常压等离子喷涂技术去除铝合金表面污染物,增加极性官能团的吸附量。进一步运用RPC技术将高粘度环氧树脂引入预制坑道结构,减少环氧树脂胶与基体之间的缺陷,增强机械互锁效应。经联合处理后,试样最高的粘接强度比未处理的强度提高了130.5%,复合材料的破坏模式由铝合金表面的粘接失效转变为CFRP复合材料的分层失效。简单有效的联合处理技术方案有望在异质粘接结构的高性能化发展获得应用。Abstract: This study designed laser engraving, atmospheric pressure plasma spraying and resin pre-coating (RPC) on aluminum alloy surface to construct quasi-Z-directional “epoxy-pins” for improving bonding strength with carbon fiber reinforce polymer (CFRP). The laser engraving treatment was used to create pitted structure on the aluminum alloy surface, higher wettability was acquired and greater vertical spaces were formed to impregnate epoxy resin for stronger mechanical interlocking. Atmospheric pressure plasma spraying was then utilized to remove surface contaminants of aluminum alloy surface and increase the quantity of adsorbed polar functional groups. RPC technique was further adopted to guide high-viscosity epoxy resin into pits to minimize defects between the resin and the substrate and reinforce the mechanical interlocking. The bonding strength of the specimen with the combined treatments of L0.08-1 yielded up to 130.5% increment than the base in bonding strength. The failure modes of composites were changed from adhesive failure of aluminum alloy surface to delamination-dominated failure of laminated CFRP composites. Simple and effective combined treatment method is expected to gain application in the development of high performance of heterogeneous material bonding.
-
图 4 不同激光雕刻处理条件下的铝合金表面SEM图像:(a) (b) 激光雕刻处理一次 (直径0.8 mm) + 等离子体喷涂 + RPC;(c) (d) 激光雕刻处理两次 (直径0.8 mm) + 等离子体喷涂 + RPC;(e) (f) 激光雕刻处理两次 (直径0.08 mm) + 等离子体喷涂 + RPC
Figure 4. SEM images of aluminum alloy surfaces obtained from different laser engraving treatment conditions:(a) (b) Laser engraving once (Diameter 0.8 mm) + plasma spraying + RPC; (c) (d) Laser engraving twice (Diameter 0.8 mm) + plasma spraying + RPC; (e) (f) Laser engraving twice (Diameter 0.08 mm) + plasma spraying + RPC.
图 8 铝合金-CFRP复合材料失效后铝合金表面的SEM图像:(a)从CFRP撕裂下的碳纤维;(b)铝合金-CFRP胶接接头失效界面;(c)残留的环氧胶粘剂
Figure 8. SEM images of aluminum alloy surface after bonding failure of aluminum alloy-CFRP composites: (a) Ripped carbon fibers from CFRP; (b) failure interface of aluminum alloy-CFRP adhesive joint; (c) Residual epoxy adhesive.
图 9 不同条件下铝合金-CFRP胶接接头的三种破坏模式:(a)铝合金/环氧胶粘剂界面脱粘失效;(b)环氧树脂粘结失效;(c)CFRP复合材料分层失效
Figure 9. Three failure models for aluminum alloy-CFRP adhesive joints with various conditions: (a) debonding failure at the aluminum alloy/epoxy adhesive interface; (b) cohesive failure of epoxy resin; (c) delamination failure of CFRP composites.
表 1 主要原材料及其相关特性
Table 1. Main raw materials and their relevant properties.
Materials Special feature Origin Al alloy 6061 T4 aluminum flat bars Guangdong New Central Asia Aluminum Co., Ltd. Carbon fiber composite T300; 3K twill weave; cross-ply [0/90]10 s carbon fiber plates Carbonwiz Technology Co., Ltd. Epoxy resin Araldite® AW106 epoxy resin Huntsman Advanced
Chemical Materials (Guangdong) Co., Ltd.Hardener HV953 U hardener (polyurethane type) Huntsman Advanced
Chemical Materials (Guangdong) Co., Ltd.Acetone AR (toxic, boiling point around 56℃) Shanghai Aladdin Biochemical Technology Co., Ltd 表 2 不同表面处理条件下设计的铝合金-CFRP复合材料
Table 2. Designed aluminum alloy -CFRP composites with various surface treatments and conditions.
Specimens 6061 aluminum alloy treating CFRP treating Specimen number A-C Acetone cleaning Grinding + RPC 5 L0.8-1 Laser engraving once (Diameter 0.8 mm) + plasma spraying + RPC Grinding + RPC 5 L0.8-2 Laser engraving twice (Diameter 0.8 mm) + plasma spraying + RPC Grinding + RPC 5 L0.6-1 Laser engraving once (Diameter 0.6 mm) + plasma spraying + RPC Grinding + RPC 5 L0.6-2 Laser engraving twice (Diameter 0.6 mm) + plasma spraying + RPC Grinding + RPC 5 L0.4-1 Laser engraving once (Diameter 0.4 mm) + plasma spraying + RPC Grinding + RPC 5 L0.4-2 Laser engraving twice (Diameter 0.4 mm) + plasma spraying + RPC Grinding + RPC 5 L0.2-1 Laser engraving once (Diameter 0.2 mm) + plasma spraying + RPC Grinding + RPC 5 L0.2-2 Laser engraving twice (Diameter 0.2 mm) + plasma spraying + RPC Grinding + RPC 5 L0.08-1 Laser engraving once (Diameter 0.08 mm) + plasma spraying + RPC Grinding + RPC 5 L0.08-2 Laser engraving twice (Diameter 0.08 mm) + plasma spraying + RPC Grinding + RPC 5 -
[1] YANG G M, CHENG F, ZUO S H, et al. Growing Carbon Nanotubes In Situ Surrounding Carbon Fiber Surface via Chemical Vapor Deposition to Reinforce Flexural Strength of Carbon Fiber Composites[J]. Polymers (Basel), 2023, 15: 2309. doi: 10.3390/polym15102309 [2] CHENG F, YANG G M, HU Y S, et al. Improvement of interleaving Aramid pulp micro-fibers on compressive strengths of carbon fiber reinforced polymers with and without impact[J]. Chinese Journal of Aeronautics, 2023, 36: 459-470. doi: 10.1016/j.cja.2023.08.009 [3] ZHENG Y P, ZHANG C Y, TIE Y, et al. Tensile properties analysis of CFRP-titanium plate multi-bolt hybrid joints[J]. Chinese Journal of Aeronautics, 2022, 35: 464-474. doi: 10.1016/j.cja.2021.07.006 [4] DUAN L M, LIANG W, HOU Y A, et al. Investigation on shear and fatigue performance of CFRP/aluminum alloy single-lap adhesive joint[J]. Thin-Walled Structures, 2024, 196: 111421. doi: 10.1016/j.tws.2023.111421 [5] LIU Y, ZHUANG W M, WU S J. Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP[J]. Composite Structures, 2020, 234: 111710. doi: 10.1016/j.compstruct.2019.111710 [6] WANG J, YU Y, FU C Y, et al. Experimental investigation of clinching CFRP / aluminum alloy sheet with prepreg sandwich structure[J]. Journal of Materials Processing Technology, 2020, 277: 116422. doi: 10.1016/j.jmatprotec.2019.116422 [7] WANG Z Y, ZHANG N, WANG Q Y. Tensile behaviour of open-hole and bolted steel plates reinforced by CFRP strips[J]. Composites Part B: Engineering, 2016, 100: 101-113. doi: 10.1016/j.compositesb.2016.06.038 [8] CHENG F, HU Y S, ZHANG X G, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106427. doi: 10.1016/j.compositesa.2021.106427 [9] WANG B H, HU X Z, HUI J Z, et al. CNT-reinforced adhesive joint between grit-blasted steel substrates fabricated by simple resin pre-coating method[J]. The Journal of Adhesion, 2018, 94: 529-540. doi: 10.1080/00218464.2017.1301255 [10] 段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10): 1-10.DUAN Y T, WU X P, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 1-10 (in Chinese). [11] WANG B H, HU X Z, LU P M. Improvement of adhesive bonding of grit-blasted steel substrates by using diluted resin as a primer[J]. International Journal of Adhesion and Adhesives, 2017, 73: 92-99. doi: 10.1016/j.ijadhadh.2016.11.012 [12] TAN B, HU Y S, YUAN B Y, et al. Optimizing adhesive bonding between CFRP and Al alloy substrate through resin pre-coating by filling micro-cavities from sandblasting[J]. International Journal of Adhesion and Adhesives, 2021, 110: 102952. doi: 10.1016/j.ijadhadh.2021.102952 [13] HU Y S, ZHANG J H, WANG L, et al. A simple and effective resin pre-coating treatment on grinded, acid pickled and anodised substrates for stronger adhesive bonding between Ti-6Al-4V titanium alloy and CFRP[J]. Surface & Coatings Technology, 2022, 432: 128072. [14] 程飞, 胡云森. 铝合金-碳纤维复合材料液氮温度下弯曲强度的强化研究[J]. 复合材料学报, 2022, 39(6): 3009-3019.Cheng F, HU Y S. Flexural strength enhancement study of aluminum and carbon fiber composite at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019 (in Chinese). [15] SUN G, LIU X, ZHENG G, et al. On fracture characteristics of adhesive joints with dissimilar materials – An experimental study using digital image correlation (DIC) technique[J]. Composites Structure, 2018, 201: 1056-1075. doi: 10.1016/j.compstruct.2018.06.018 [16] HU Y S, YUAN B Y, CHENG F, et al. NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B Engineering, 2019, 178: 107478. doi: 10.1016/j.compositesb.2019.107478 [17] ZAIN N M, AHMAD S H, ALI E S. Effect of surface treatments on the durability of green polyurethane adhesive bonded aluminium alloy[J]. International Journal of Adhesion and Adhesives, 2014, 55: 43-55. doi: 10.1016/j.ijadhadh.2014.07.007 [18] ZHANG J H, CHENG F, WANG L, et al. Reinforcement study of anodizing treatment with various temperatures on aluminum substrates for stronger adhesive bonding with carbon fiber composites[J]. Surface & Coatings Technology, 2023, 462: 129473. [19] HU Y S, ZHANG J H, WANG L, et al. Enhancing adhesive bond strength of CFRP/titanium joints through NaOH anodising and resin pre-coating treatments with optimised anodising conditions[J]. Chinese Journal of Aeronautics 2024, 37: 511–523. [20] 曹芳维, 李敏, 王绍凯, 等. 碳纤维与环氧树脂润湿和黏附作用[J]. 复合材料学报, 2011, 28(4): 23-28.CAO F W, LI M, WANG S K, et al. Wet-ting and adhesive interaction of the in-terface be-tween carbon fiber and epoxy resin[J]. Acta Ma-teriae Compositae Sinica, 2011, 28(4): 23-28. [21] CHENG F, HU Y S, ZHANG X G, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106427. doi: 10.1016/j.compositesa.2021.106427 [22] CUI X J, NING C M, ZHANG G A, et al. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy[J]. Journal of Magnesium and Alloys, 2021, 9: 1285-1296. doi: 10.1016/j.jma.2020.04.009 [23] ZUO S H, CHENG F, YANG G M, et al. An effective micro-arc oxidation (MAO) treatment on aluminum alloy for stronger bonding joint with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107919. doi: 10.1016/j.compositesa.2023.107919 [24] MA R Q, JIANG H Q, WANG C, et al. Multivariate MOFs for laser writing of alloy nanoparticle patterns[J]. Chemical Communications, 2020, 56: 2715-2718. doi: 10.1039/C9CC09144K [25] WANG Y H, QIN Z L, XU J K, et al. Microstructure control of the wettability and adhesion of Al alloy surfaces[J]. RSC Advances, 2020, 10: 38788-38797. doi: 10.1039/D0RA07892A [26] Szymański M, Przestacki D, Szymański P. The Influence of Selected Laser Engraving Parameters on Surface Conditions of Hybrid Metal Matrix Composites[J]. Materials, 2023, 16: 6575. doi: 10.3390/ma16196575 [27] NAKAMURA S, YAMAMOTO S, TSUJI Y, et al. Theoretical Study on the Contribution of Interfacial Functional Groups to the Adhesive Interaction between Epoxy Resins and Aluminum Surfaces[J]. Langmuir, 2022, 38: 6653-6664. doi: 10.1021/acs.langmuir.2c00529 [28] TEMESI T, CZIGANY T. Laser-joined aluminium–polypropylene sheets: the effect of the surface preparation of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 6907-6920. doi: 10.1007/s00170-022-09790-0 [29] SCHRICKER K, BERGMANN J P, HOPFELD M, et al. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum[J]. Welding in the World, 2021, 65: 699-711. doi: 10.1007/s40194-020-01048-1 [30] ZHANG D W, HUANG Y. The bonding performances of carbon nanotube (CNT)-reinforced epoxy adhesively bonded joints on steel substrates[J]. Progress in Organic Coatings, 2021, 159: 106407. doi: 10.1016/j.porgcoat.2021.106407 [31] ATTA A M, EZZAT A O, EL-SAEED A M, et al. Self-healing of chemically bonded hybrid silica/epoxy for steel coating[J]. Progress in Organic Coatings, 2020, 141: 105549. doi: 10.1016/j.porgcoat.2020.105549 [32] CHENG F, XU Y, ZHANG J H, et al. Growing carbon nanotubes in-situ via chemical vapor deposition and resin pre-coating treatment on anodized Ti-6Al-4V titanium substrates for stronger adhesive bonding with carbon fiber composites[J]. Surface & Coatings Technology, 2023, 457: 129296. [33] CHENG F, HU Y S, Lv Z F, et al. Directing helical CNT into chemically-etched micro-channels on aluminum substrate for strong adhesive bonding with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105952. doi: 10.1016/j.compositesa.2020.105952 [34] YANG G M, CHENG F, ZUO S H, et al. Constructing quasi-vertical fiber bridging behaviors of aramid pulp at interlayer of laminated basalt fiber reinforced polymer composites to improve flexural performances[J]. Chinese Journal of Aeronautics, 2023, 36: 477-488. doi: 10.1016/j.cja.2023.10.013 [35] GERULLIS S, KRETZSCHMAR B S, PFUCH A, et al. Influence of atmospheric pressure plasma jet and diffuse coplanar surface barrier discharge treatments on wood surface properties: A comparative study[J]. Plasma Processes and Polymers, 2018, 15. [36] MUI T. S. M, SILVA L. L. G, PRYSIAZHNYI V, et al. Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties[J]. Surface & Coatings Technology, 2017, 312: 32-36. [37] HONG Q, WANG S Y, YIN S H. Influence of atmospheric pressure plasma modification on surface properties of aluminum alloy substrate and its interfacial adhesion strength with electrodeposited nickel coating[J]. Surface & Coatings Technology, 2023, 474: 130050. [38] HE Z R, SHEN Y Z, XIONG W B, et al. Uncovering the roles of laser action modes in surface mechanical properties of 2024 aluminum alloy[J]. Applied Surface Science, 2023, 613: 156032. doi: 10.1016/j.apsusc.2022.156032 [39] REN Y, WANG L M, LI J F, et al. The Surface Properties of an Aviation Aluminum Alloy after Laser Cleaning[J]. Coatings, 2022, 12: 273. doi: 10.3390/coatings12020273
计量
- 文章访问数: 84
- HTML全文浏览量: 48
- 被引次数: 0