留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高度可控的激光雕刻技术构建的准Z方向“环氧钉”增强铝合金-碳纤维复合材料的粘接性能研究

左世豪 程飞 黄文艺 杨光明 何佳鑫 崔学军 胡云森 胡晓智

左世豪, 程飞, 黄文艺, 等. 基于高度可控的激光雕刻技术构建的准Z方向“环氧钉”增强铝合金-碳纤维复合材料的粘接性能研究[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 左世豪, 程飞, 黄文艺, 等. 基于高度可控的激光雕刻技术构建的准Z方向“环氧钉”增强铝合金-碳纤维复合材料的粘接性能研究[J]. 复合材料学报, 2024, 42(0): 1-12.
ZUO Shihao, CHENG Fei, HUANG Wenyi, et al. Constructing quasi-Z-directional epoxy-pins on aluminum alloy surface via highly controllable laser engraving for stronger adhesive bonding with carbon fiber composite[J]. Acta Materiae Compositae Sinica.
Citation: ZUO Shihao, CHENG Fei, HUANG Wenyi, et al. Constructing quasi-Z-directional epoxy-pins on aluminum alloy surface via highly controllable laser engraving for stronger adhesive bonding with carbon fiber composite[J]. Acta Materiae Compositae Sinica.

基于高度可控的激光雕刻技术构建的准Z方向“环氧钉”增强铝合金-碳纤维复合材料的粘接性能研究

基金项目: 国家自然科学基金(Grant No. 52102115);中国高端外国专家引进计划(Grant No. G2023036002L);四川省玄武岩纤维与复合材料重点实验室(Grant No. XXKFJJ202308);四川省工程材料与结构冲击振动重点实验室(Grant No. 23kfgk06)
详细信息
    通讯作者:

    程飞,副教授,硕士生导师,研究方向:碳纤维复合材料、相变储能材料 E-mail: feicheng@swust.edu.cn

  • 中图分类号: TB333

Constructing quasi-Z-directional epoxy-pins on aluminum alloy surface via highly controllable laser engraving for stronger adhesive bonding with carbon fiber composite

Funds: the National Natural Science Foundations of China (Grant No. 52102115); the High-end Foreign Expert Recruitment Plan of China (Grant No. G2023036002L); the Basalt Fiber and Composite Key Laboratory of Sichuan Province (Grant No. XXKFJJ202308); Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province (Grant No. 23kfgk06)
  • 摘要: 本研究设计了激光雕刻、常压等离子喷涂和树脂预涂(RPC)技术处理铝合金表面构建准Z方向“环氧钉”,实现铝合金与碳纤维增强树脂(CFRP)复合材料的粘接强度提升。采用激光雕刻处理铝合金表面形成凹坑结构,为浸渍环氧树脂提供了较大的垂直空间,同时获得了更高的润湿性。使用常压等离子喷涂技术去除铝合金表面污染物,增加极性官能团的吸附量。进一步运用RPC技术将高粘度环氧树脂引入预制坑道结构,减少环氧树脂胶与基体之间的缺陷,增强机械互锁效应。经联合处理后,试样最高的粘接强度比未处理的强度提高了130.5%,复合材料的破坏模式由铝合金表面的粘接失效转变为CFRP复合材料的分层失效。简单有效的联合处理技术方案有望在异质粘接结构的高性能化发展获得应用。

     

  • 图  1  常压等离子体喷涂提高粘接强度的作用机制

    Figure  1.  Mechanism of action of atmospheric pressure plasma spraying to improve bonding strength

    图  2  铝合金-碳纤维增强树脂(CFRP)复合材料制备工艺示意图以及制备、单搭接剪切过程的实物图

    Figure  2.  Schematic diagram of the preparation process of aluminum- carbon fiber reinforce polymer (CFRP) composites and appearance images of preparation and single lap shear test.

    图  3  不同凹坑尺寸激光雕刻试件的截面光学显微镜图像

    Figure  3.  Cross-section optical microscope images of laser engraved specimens with different pit dimension.

    图  4  不同激光雕刻处理条件下的铝合金表面SEM图像:(a) (b) 激光雕刻处理一次 (直径0.8 mm) + 等离子体喷涂 + RPC;(c) (d) 激光雕刻处理两次 (直径0.8 mm) + 等离子体喷涂 + RPC;(e) (f) 激光雕刻处理两次 (直径0.08 mm) + 等离子体喷涂 + RPC

    Figure  4.  SEM images of aluminum alloy surfaces obtained from different laser engraving treatment conditions:(a) (b) Laser engraving once (Diameter 0.8 mm) + plasma spraying + RPC; (c) (d) Laser engraving twice (Diameter 0.8 mm) + plasma spraying + RPC; (e) (f) Laser engraving twice (Diameter 0.08 mm) + plasma spraying + RPC.

    图  5  不同激光雕刻参数处理和仅丙酮清洗的铝合金的GIXRD图

    Figure  5.  GIXRD patterns of aluminums treated with different laser engraving parameters and cleaned by acetone.

    图  6  不同激光雕刻参数处理和丙酮清洗试样的静态接触角

    Figure  6.  Static contact angles of specimens treated by different laser engraving parameters and cleaned by acetone.

    图  7  (a) 铝合金-CFRP胶接接头的荷载-位移曲线;(b) 铝合金-CFRP胶接接头的粘结强度;(c) 激光雕刻处理后铝合金的正面光学显微镜图像

    Figure  7.  (a) Load-displacement curves of aluminum alloy-CFRP adhesive joint; (b) Bonding strength of aluminum alloy-CFRP adhesive joint; (c) The front optical microscope images of laser engraved aluminum alloy.

    图  8  铝合金-CFRP复合材料失效后铝合金表面的SEM图像:(a)从CFRP撕裂下的碳纤维;(b)铝合金-CFRP胶接接头失效界面;(c)残留的环氧胶粘剂

    Figure  8.  SEM images of aluminum alloy surface after bonding failure of aluminum alloy-CFRP composites: (a) Ripped carbon fibers from CFRP; (b) failure interface of aluminum alloy-CFRP adhesive joint; (c) Residual epoxy adhesive.

    图  9  不同条件下铝合金-CFRP胶接接头的三种破坏模式:(a)铝合金/环氧胶粘剂界面脱粘失效;(b)环氧树脂粘结失效;(c)CFRP复合材料分层失效

    Figure  9.  Three failure models for aluminum alloy-CFRP adhesive joints with various conditions: (a) debonding failure at the aluminum alloy/epoxy adhesive interface; (b) cohesive failure of epoxy resin; (c) delamination failure of CFRP composites.

    图  10  联合处理下铝合金-CFRP接头的增强机制

    Figure  10.  Reinforcing mechanisms of the combined treatments to enhance aluminum-CFRP adhesive joints.

    表  1  主要原材料及其相关特性

    Table  1.   Main raw materials and their relevant properties.

    Materials Special feature Origin
    Al alloy 6061 T4 aluminum flat bars Guangdong New Central Asia Aluminum Co., Ltd.
    Carbon fiber composite T300; 3K twill weave; cross-ply [0/90]10 s carbon fiber plates Carbonwiz Technology Co., Ltd.
    Epoxy resin Araldite® AW106 epoxy resin Huntsman Advanced
    Chemical Materials (Guangdong) Co., Ltd.
    Hardener HV953 U hardener (polyurethane type) Huntsman Advanced
    Chemical Materials (Guangdong) Co., Ltd.
    Acetone AR (toxic, boiling point around 56℃) Shanghai Aladdin Biochemical Technology Co., Ltd
    下载: 导出CSV

    表  2  不同表面处理条件下设计的铝合金-CFRP复合材料

    Table  2.   Designed aluminum alloy -CFRP composites with various surface treatments and conditions.

    Specimens 6061 aluminum alloy treating CFRP treating Specimen number
    A-C Acetone cleaning Grinding + RPC 5
    L0.8-1 Laser engraving once (Diameter 0.8 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.8-2 Laser engraving twice (Diameter 0.8 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.6-1 Laser engraving once (Diameter 0.6 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.6-2 Laser engraving twice (Diameter 0.6 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.4-1 Laser engraving once (Diameter 0.4 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.4-2 Laser engraving twice (Diameter 0.4 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.2-1 Laser engraving once (Diameter 0.2 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.2-2 Laser engraving twice (Diameter 0.2 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.08-1 Laser engraving once (Diameter 0.08 mm) + plasma spraying + RPC Grinding + RPC 5
    L0.08-2 Laser engraving twice (Diameter 0.08 mm) + plasma spraying + RPC Grinding + RPC 5
    下载: 导出CSV
  • [1] YANG G M, CHENG F, ZUO S H, et al. Growing Carbon Nanotubes In Situ Surrounding Carbon Fiber Surface via Chemical Vapor Deposition to Reinforce Flexural Strength of Carbon Fiber Composites[J]. Polymers (Basel), 2023, 15: 2309. doi: 10.3390/polym15102309
    [2] CHENG F, YANG G M, HU Y S, et al. Improvement of interleaving Aramid pulp micro-fibers on compressive strengths of carbon fiber reinforced polymers with and without impact[J]. Chinese Journal of Aeronautics, 2023, 36: 459-470. doi: 10.1016/j.cja.2023.08.009
    [3] ZHENG Y P, ZHANG C Y, TIE Y, et al. Tensile properties analysis of CFRP-titanium plate multi-bolt hybrid joints[J]. Chinese Journal of Aeronautics, 2022, 35: 464-474. doi: 10.1016/j.cja.2021.07.006
    [4] DUAN L M, LIANG W, HOU Y A, et al. Investigation on shear and fatigue performance of CFRP/aluminum alloy single-lap adhesive joint[J]. Thin-Walled Structures, 2024, 196: 111421. doi: 10.1016/j.tws.2023.111421
    [5] LIU Y, ZHUANG W M, WU S J. Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP[J]. Composite Structures, 2020, 234: 111710. doi: 10.1016/j.compstruct.2019.111710
    [6] WANG J, YU Y, FU C Y, et al. Experimental investigation of clinching CFRP / aluminum alloy sheet with prepreg sandwich structure[J]. Journal of Materials Processing Technology, 2020, 277: 116422. doi: 10.1016/j.jmatprotec.2019.116422
    [7] WANG Z Y, ZHANG N, WANG Q Y. Tensile behaviour of open-hole and bolted steel plates reinforced by CFRP strips[J]. Composites Part B: Engineering, 2016, 100: 101-113. doi: 10.1016/j.compositesb.2016.06.038
    [8] CHENG F, HU Y S, ZHANG X G, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106427. doi: 10.1016/j.compositesa.2021.106427
    [9] WANG B H, HU X Z, HUI J Z, et al. CNT-reinforced adhesive joint between grit-blasted steel substrates fabricated by simple resin pre-coating method[J]. The Journal of Adhesion, 2018, 94: 529-540. doi: 10.1080/00218464.2017.1301255
    [10] 段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10): 1-10.

    DUAN Y T, WU X P, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 1-10 (in Chinese).
    [11] WANG B H, HU X Z, LU P M. Improvement of adhesive bonding of grit-blasted steel substrates by using diluted resin as a primer[J]. International Journal of Adhesion and Adhesives, 2017, 73: 92-99. doi: 10.1016/j.ijadhadh.2016.11.012
    [12] TAN B, HU Y S, YUAN B Y, et al. Optimizing adhesive bonding between CFRP and Al alloy substrate through resin pre-coating by filling micro-cavities from sandblasting[J]. International Journal of Adhesion and Adhesives, 2021, 110: 102952. doi: 10.1016/j.ijadhadh.2021.102952
    [13] HU Y S, ZHANG J H, WANG L, et al. A simple and effective resin pre-coating treatment on grinded, acid pickled and anodised substrates for stronger adhesive bonding between Ti-6Al-4V titanium alloy and CFRP[J]. Surface & Coatings Technology, 2022, 432: 128072.
    [14] 程飞, 胡云森. 铝合金-碳纤维复合材料液氮温度下弯曲强度的强化研究[J]. 复合材料学报, 2022, 39(6): 3009-3019.

    Cheng F, HU Y S. Flexural strength enhancement study of aluminum and carbon fiber composite at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019 (in Chinese).
    [15] SUN G, LIU X, ZHENG G, et al. On fracture characteristics of adhesive joints with dissimilar materials – An experimental study using digital image correlation (DIC) technique[J]. Composites Structure, 2018, 201: 1056-1075. doi: 10.1016/j.compstruct.2018.06.018
    [16] HU Y S, YUAN B Y, CHENG F, et al. NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B Engineering, 2019, 178: 107478. doi: 10.1016/j.compositesb.2019.107478
    [17] ZAIN N M, AHMAD S H, ALI E S. Effect of surface treatments on the durability of green polyurethane adhesive bonded aluminium alloy[J]. International Journal of Adhesion and Adhesives, 2014, 55: 43-55. doi: 10.1016/j.ijadhadh.2014.07.007
    [18] ZHANG J H, CHENG F, WANG L, et al. Reinforcement study of anodizing treatment with various temperatures on aluminum substrates for stronger adhesive bonding with carbon fiber composites[J]. Surface & Coatings Technology, 2023, 462: 129473.
    [19] HU Y S, ZHANG J H, WANG L, et al. Enhancing adhesive bond strength of CFRP/titanium joints through NaOH anodising and resin pre-coating treatments with optimised anodising conditions[J]. Chinese Journal of Aeronautics 2024, 37: 511–523.
    [20] 曹芳维, 李敏, 王绍凯, 等. 碳纤维与环氧树脂润湿和黏附作用[J]. 复合材料学报, 2011, 28(4): 23-28.

    CAO F W, LI M, WANG S K, et al. Wet-ting and adhesive interaction of the in-terface be-tween carbon fiber and epoxy resin[J]. Acta Ma-teriae Compositae Sinica, 2011, 28(4): 23-28.
    [21] CHENG F, HU Y S, ZHANG X G, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106427. doi: 10.1016/j.compositesa.2021.106427
    [22] CUI X J, NING C M, ZHANG G A, et al. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy[J]. Journal of Magnesium and Alloys, 2021, 9: 1285-1296. doi: 10.1016/j.jma.2020.04.009
    [23] ZUO S H, CHENG F, YANG G M, et al. An effective micro-arc oxidation (MAO) treatment on aluminum alloy for stronger bonding joint with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107919. doi: 10.1016/j.compositesa.2023.107919
    [24] MA R Q, JIANG H Q, WANG C, et al. Multivariate MOFs for laser writing of alloy nanoparticle patterns[J]. Chemical Communications, 2020, 56: 2715-2718. doi: 10.1039/C9CC09144K
    [25] WANG Y H, QIN Z L, XU J K, et al. Microstructure control of the wettability and adhesion of Al alloy surfaces[J]. RSC Advances, 2020, 10: 38788-38797. doi: 10.1039/D0RA07892A
    [26] Szymański M, Przestacki D, Szymański P. The Influence of Selected Laser Engraving Parameters on Surface Conditions of Hybrid Metal Matrix Composites[J]. Materials, 2023, 16: 6575. doi: 10.3390/ma16196575
    [27] NAKAMURA S, YAMAMOTO S, TSUJI Y, et al. Theoretical Study on the Contribution of Interfacial Functional Groups to the Adhesive Interaction between Epoxy Resins and Aluminum Surfaces[J]. Langmuir, 2022, 38: 6653-6664. doi: 10.1021/acs.langmuir.2c00529
    [28] TEMESI T, CZIGANY T. Laser-joined aluminium–polypropylene sheets: the effect of the surface preparation of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 6907-6920. doi: 10.1007/s00170-022-09790-0
    [29] SCHRICKER K, BERGMANN J P, HOPFELD M, et al. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum[J]. Welding in the World, 2021, 65: 699-711. doi: 10.1007/s40194-020-01048-1
    [30] ZHANG D W, HUANG Y. The bonding performances of carbon nanotube (CNT)-reinforced epoxy adhesively bonded joints on steel substrates[J]. Progress in Organic Coatings, 2021, 159: 106407. doi: 10.1016/j.porgcoat.2021.106407
    [31] ATTA A M, EZZAT A O, EL-SAEED A M, et al. Self-healing of chemically bonded hybrid silica/epoxy for steel coating[J]. Progress in Organic Coatings, 2020, 141: 105549. doi: 10.1016/j.porgcoat.2020.105549
    [32] CHENG F, XU Y, ZHANG J H, et al. Growing carbon nanotubes in-situ via chemical vapor deposition and resin pre-coating treatment on anodized Ti-6Al-4V titanium substrates for stronger adhesive bonding with carbon fiber composites[J]. Surface & Coatings Technology, 2023, 457: 129296.
    [33] CHENG F, HU Y S, Lv Z F, et al. Directing helical CNT into chemically-etched micro-channels on aluminum substrate for strong adhesive bonding with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105952. doi: 10.1016/j.compositesa.2020.105952
    [34] YANG G M, CHENG F, ZUO S H, et al. Constructing quasi-vertical fiber bridging behaviors of aramid pulp at interlayer of laminated basalt fiber reinforced polymer composites to improve flexural performances[J]. Chinese Journal of Aeronautics, 2023, 36: 477-488. doi: 10.1016/j.cja.2023.10.013
    [35] GERULLIS S, KRETZSCHMAR B S, PFUCH A, et al. Influence of atmospheric pressure plasma jet and diffuse coplanar surface barrier discharge treatments on wood surface properties: A comparative study[J]. Plasma Processes and Polymers, 2018, 15.
    [36] MUI T. S. M, SILVA L. L. G, PRYSIAZHNYI V, et al. Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties[J]. Surface & Coatings Technology, 2017, 312: 32-36.
    [37] HONG Q, WANG S Y, YIN S H. Influence of atmospheric pressure plasma modification on surface properties of aluminum alloy substrate and its interfacial adhesion strength with electrodeposited nickel coating[J]. Surface & Coatings Technology, 2023, 474: 130050.
    [38] HE Z R, SHEN Y Z, XIONG W B, et al. Uncovering the roles of laser action modes in surface mechanical properties of 2024 aluminum alloy[J]. Applied Surface Science, 2023, 613: 156032. doi: 10.1016/j.apsusc.2022.156032
    [39] REN Y, WANG L M, LI J F, et al. The Surface Properties of an Aviation Aluminum Alloy after Laser Cleaning[J]. Coatings, 2022, 12: 273. doi: 10.3390/coatings12020273
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-07-02
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回