留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能

杨娜 苏韬 黄锴荻 王文俊

杨娜, 苏韬, 黄锴荻, 等. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能[J]. 复合材料学报, 2023, 40(9): 5002-5010. doi: 10.13801/j.cnki.fhclxb.20221219.001
引用本文: 杨娜, 苏韬, 黄锴荻, 等. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能[J]. 复合材料学报, 2023, 40(9): 5002-5010. doi: 10.13801/j.cnki.fhclxb.20221219.001
YANG Na, SU Tao, HUANG Kaidi, et al. Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5002-5010. doi: 10.13801/j.cnki.fhclxb.20221219.001
Citation: YANG Na, SU Tao, HUANG Kaidi, et al. Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5002-5010. doi: 10.13801/j.cnki.fhclxb.20221219.001

通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能

doi: 10.13801/j.cnki.fhclxb.20221219.001
详细信息
    通讯作者:

    王文俊,博士,副教授,硕士生导师,研究方向为聚合物基复合材料 E-mail: wangwenjun@bit.edu.cn

  • 中图分类号: TB332

Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene

  • 摘要: 含硅芳炔树脂(PSA)/石英纤维(QF)复合材料是极具潜力的新型耐高温透波材料,但由于PSA树脂质脆、极性低,加上石英纤维表面光滑,导致两者间界面粘结弱,突出表现为复合材料层间性能(如层间剪切强度)低。本文采用苯乙烯(ST)对含硅芳炔树脂进行改性,通过ST与PSA分子间发生共聚反应,降低体系的交联密度,均匀化其交联网络结构,提高树脂抗压损伤阻抗,最终达到了改善PSA基复合材料层间剪切强度的目的。通过DSC、TG、DMA等手段测试和表征了改性前后PSA树脂及其复合材料的固化反应性能、流变性能、耐热性能、介电性能和力学性能等,结果表明:添加苯乙烯不会影响PSA树脂的固化规律和工艺。随着ST添加量的增加,改性PSA树脂的耐热性有所下降,但其失重5wt%温度Td5均接近500℃,远高于应用要求的350℃。改性后复合材料保持了良好的介电性能,介电常数为3.09,损耗因子tanδ为2×10−3;在保持较高弯曲强度的同时,改性后复合材料层间剪切强度得到显著提升。当ST质量比为15%时,QF/PSA-15ST在室温下的层间剪切强度提高了53.0%,350℃下提高了98.3%;350℃下层间剪切强度保留率为78.3%,高于改性前的60.4%。

     

  • 图  1  添加不同比例ST的甲基二苯乙炔基硅烷(MDPES)树脂的DSC曲线

    Figure  1.  DSC curves of methyldiphenylacetylidene-silane (MDPES) resin with different ratio of ST

    图  2  PSA-0ST和PSA-15ST的流变行为

    Figure  2.  Rheology behaviors of PSA-0ST and PSA-15ST

    图  3  添加不同比例ST的MDPES树脂固化物在N2中的TGA (a) 和DTG (b) 曲线;分别在空气 (c) 和在N2 (d) 中350℃下恒温30 min的TG曲线

    Figure  3.  TGA (a) and DTG (b) curves of the cured MDPES resin adding with different ratio of ST in N2; Thermostatic TG at 350℃ for 30 min in air (c) and N2 (d)

    图  4  石英纤维(QF)/PSA复合材料改性前后的DMA曲线

    Figure  4.  DMA curves of quartz fiber (QF)/PSA composites before and after modification

    图  5  QF/PSA复合材料改性前后的DSC曲线

    Figure  5.  DSC curves of QF/PSA composites before and after modification

    图  6  QF/PSA复合材料改性前后的力学性能

    Figure  6.  Mechanical properties of QF/PSA composites before and after modification

    图  7  改性前 (a) 后 (b) 树脂浇注体断面的SEM图像

    Figure  7.  SEM images of resin castings before (a) and after (b) modification

    图  8  短梁弯曲实验后复合材料层合板的CT图像

    Figure  8.  CT image of composite laminate after short beam bending test

    图  9  短梁弯曲载荷示意图

    Figure  9.  Illustration of short beam shear loading

    P—Load; Span between supports is fixed for any one test

    表  1  含硅芳炔树脂(PSA)-苯乙烯(ST)树脂浇注体的命名

    Table  1.   Naming of poly(silica-containing arylacetylene) (PSA)-styrene (ST) resin castable

    SampleMass ratio of ST/%Mass ratio of MDPES/%
    PSA-0ST 0 100
    PSA-10ST 10 90
    PSA-15ST 15 85
    PSA-20ST 20 80
    Note: MDPES—Methyldiphenylacetylidene-silane.
    下载: 导出CSV

    表  2  添加不同比例ST的MDPES树脂的DSC数据

    Table  2.   DSC data of MDPES resin adding with different ratio of styrene

    Ti/℃Tp/℃Tf/℃ΔH/(J·g−1)
    PSA-0ST210.6257.7334.7196.5
    PSA-10ST206.1257.9316.4191.3
    PSA-15ST205.7247.6317.4191.7
    PSA-20ST201.9245.9318.9196.9
    Notes: Ti, Tp and TfInitial temperature, peak temperature and final temperature of cure exotherm; ΔH—Enthalpy of cure exotherm.
    下载: 导出CSV

    表  3  添加不同比例ST的MDPES固化树脂的热重数据

    Table  3.   TGA data of the cured MDPES resin adding with different ratio of Styrene

    Tonset/℃Td5/℃Tmax/Y350℃/%
    PSA-0ST424504547100.0
    PSA-10ST375497551 99.6
    PSA-15ST377494551 99.6
    PSA-20ST374480552 99.6
    Notes: Tonset, Td5 and Tmax—Starting decomposition temperature, the temperature at 5wt% mass decomposition and the temperature corresponding to the maximum decomposition rate; Y350℃—Mass residual rate at 350°C.
    下载: 导出CSV

    表  4  QF/PSA复合材料改性前后的力学性能和介电性能

    Table  4.   Mechanical and dielectric properties of QF/PSA compsites before and after modification

    Flexural strength/MPaILSS/MPaDielectric properties
    RT350℃RT350℃εtanδ
    Before modification66.38
    ±6.33
    40.22±5.005.02±
    1.07
    3.03±0.223.05±0.020.004±
    0.001
    After modification83.83
    ±8.96
    58.68
    ±2.54
    7.68
    ±0.73
    6.01±1.153.09±0.010.003±
    0.001
    Notes: ILSS—Interlaminar shear strength; RT—Room temperature; ε—Dielectric constant; tanδ—Loss factor.
    下载: 导出CSV

    表  5  改性前后树脂浇注体薄片的洛氏硬度测试结果

    Table  5.   Rockwell hardness values of flake resin casts before and after modification

    HDR/Damage to specimens’ surfaceAverage of HDR
    Before modification78.5/SV69.1/SV62.0/SV−/SV−/SV69.9
    After modification94.4/IT94.3/IT92.9/IT88.6/SL68.3/SV87.7
    Notes: HDR—Rockwell hardness values; SV—Severe damage; SL—Slight damage; IT—Intact.
    下载: 导出CSV
  • [1] ZU Y, ZHANG F F, CHEN D D, et al. Wave-transparent composites based on phthalonitrile resins with commendable thermal properties and dielectric performance[J]. Polymer,2020,12(24):166-198.
    [2] 姚琪, 张振林, 宫剑. 耐高温/隐身/透波一体化天线罩材料的研究进展[J]. 当代化工研究, 2018, 12:6-7. doi: 10.3969/j.issn.1672-8114.2018.07.004

    YAO Qi, ZHANG Zhenlin, GONG Jian. Research progress of high temperature resistant/stealth/wave transmitting integrated radome materials[J]. Modern Chemical Research,2018,12:6-7(in Chinese). doi: 10.3969/j.issn.1672-8114.2018.07.004
    [3] 张明习, 轩立新, 徐晓燕, 等. 军用透波复合材料的研究进展[C]//2005年南京复合材料技术发展研讨会论文集. 南京: 中国航空工业集团公司济南特种结构研究所, 2005: 13-19.

    ZHANG Mingxi, XUAN Lixin, XU Xiaoyan, et al. Process in the research of military transparent composites[C]//Proceedings of the 2005 Nanjing Symposium on Composites Technology Development. Nanjing: AVIC Research Institute for Special Structures of Aeronautical Composite, 2005: 13-19(in Chinese).
    [4] KANDI K K, THALLAPALLI N, CHILAKALAPALLI S P R. Development of silicon nitride-based ceramic radomes-A review[J]. International Journal of Applied Ceramic Technology,2015,12(5):909-920.
    [5] 王飞, 石佩洛. 树脂基复合材料在雷达天线罩领域的应用及发展[J]. 宇航材料工艺, 2017, 47(2):10-13. doi: 10.12044/j.issn.1007-2330.2017.02.003

    WANG Fei, SHI Peiluo. Application and development of resin matrix composites[J]. Aerospace Materials & Technology,2017,47(2):10-13(in Chinese). doi: 10.12044/j.issn.1007-2330.2017.02.003
    [6] KUROKI S, OKITA K, KAKIGANO T, et al. Thermosetting mechanism study of poly[(phenylsilylene)ethynylene-1, 3-phenyleneethynylene] by solid-state NMR spectroscopy and computational chemistry[J]. Macromolecules,1998,31(9):2804-2808. doi: 10.1021/ma971133g
    [7] YOU X T, DENG S F, HUANG Y C, et al. Thermosetting mechanism study of silicon-containing polyarylacetylene via in situ FTIR and solid-state NMR spectroscopy[J]. Journal of Applied Polymer Science,2019,136(13):47301. doi: 10.1002/app.47301
    [8] 包建文. 耐高温树脂基复合材料及其应用[M]. 北京: 航空工业出版社, 2018: 374-414.

    BAO Jianwen. High temperature resistant resin matrix composites and their applications[M]. Beijing: Aviation Industry Press, 2018: 374-414(in Chinese).
    [9] 陈梦怡, 嵇培军, 蔡良元, 等. 石英纤维织物增强复合材料性能研究[J]. 玻璃钢/复合材料, 2004(1):12-13. doi: 10.3969/j.issn.1003-0999.2004.01.004

    CHEN Mengyi, JI Peijun, CAI Liangyuan, et al. Property study of quartz fabric reinforced composites[J]. Fiber Reinforced Plastics/Composites,2004(1):12-13(in Chinese). doi: 10.3969/j.issn.1003-0999.2004.01.004
    [10] 孟庆杰, 石军威, 徐亮, 等. 空心石英玻璃纤维增强氰酸酯基低介电复合材料的制备及性能分析[J]. 材料导报, 2018, 32(S1): 110-112.

    MENG Qingjie, SHI Junwei, XU Liang, et al. Fabrication and properties of hollow silica fiber reinforced cyanate ester composites with low dielectric property[J]. Materials Review, 2018, 32(S1): 110-112(in Chinese).
    [11] 郑锡涛, 罗贵, 李宇徒. 复合材料层间性能改善方法研究进展[J]. 航空制造技术, 2013, 56(15):26-29. doi: 10.3969/j.issn.1671-833X.2013.04.001

    ZHENG Xitao, LUO Gui, LI Yutu. Review of methods on improving interlaminar properties of composites laminate[J]. Aeronautical Manufacturing Technology,2013,56(15):26-29(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.04.001
    [12] ITOH M, MITSUZUKA M, IWATA K, et al. A novel synthesis and extremely high thermal stability of poly[(phenylsilylene)ethynylene-1, 3-phenyleneethynylene][J]. Macromolecules,1994,27(26):7917-7919. doi: 10.1021/ma00104a056
    [13] ITOH M, INOUE K, IWATA K, et al. A heat-resistant silicon-based polymer[J]. Advanced Materials,1997,9(15):1187-1190. doi: 10.1002/adma.19970091514
    [14] ITOH M, IWATA K, ISHIKAWA J I, et al. Various silicon-containing polymers with Si(H)-C≡C units[J]. Journal of Polymer Science Part A: Polymer Chemistry,2001,39(15):2658-2669. doi: 10.1002/pola.1242
    [15] ZHANG J A, HUANG J X, YU X J, et al. Preparation and properties of modified silicon-containing arylacetylene resin with bispropargyl ether[J]. Bulletin of the Korean Chemical Society,2012,33(11):3706-3710. doi: 10.5012/bkcs.2012.33.11.3706
    [16] 王林靖, 扈艳红, 杜磊, 等. 乙炔基芳酰胺酸硅烷改进石英纤维/含硅芳炔复合材料高温界面性能[J]. 复合材料学报, 2016, 33(2):287-296.

    WANG Linjing, HU Yanhong, DU Lei, et al. High-temperature interfacial property of quartz fiber/silicon-containing arylacetylene composites with aromatic amic acid-containing alkyne-terminated silane[J]. Acta Materiae Compositae Sinica,2016,33(2):287-296(in Chinese).
    [17] 杨海荟, 扈艳红, 杜磊, 等. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性[J]. 玻璃钢/复合材料, 2016(8):13-21. doi: 10.3969/j.issn.1003-0999.2016.08.002

    YANG Haihui, HU Yanhong, DU lei, et al. Reinforcing and toughening of quartz fiber(QF)/silicon-containing arylacetylene(PSA) composites with new silane coupling agent[J]. Fiber Reinforced Plastics/Composites,2016(8):13-21(in Chinese). doi: 10.3969/j.issn.1003-0999.2016.08.002
    [18] 张芳芳, 扈艳红, 杜磊, 等. 含噁嗪环硅烷偶联剂对石英纤维/含硅芳炔复合材料性能的影响[J]. 功能高分子学报, 2017, 30(03): 347-353. doi: 10.14133/j.cnki.1008-9357.2017.03.014

    ZHANG Fangfang, HU Yanhong, DU Lei, et al. Effects of benzoxazine-containing silane coupling agent on properties of QF/PSA composites. [J]. Journal of Functional Polymers, 2017, 30(03): 347-353(in Chinese). _ doi: 10.14133/j.cnki.1008-9357.2017.03.014
    [19] 陈麒, 李扬, 戴泽亮, 等. 甲基二苯乙炔基硅烷及其网络聚合物的合成与表征[J]. 化学学报, 2005, 63(3):254-258. doi: 10.3321/j.issn:0567-7351.2005.03.015

    CHEN Qi, LI Yang, DAI Zeliang, et al. Synthesis and characterization of methyl-di(phenylethynyl)silane and its network polymer[J]. Acta Chimica Sinica,2005,63(3):254-258(in Chinese). doi: 10.3321/j.issn:0567-7351.2005.03.015
    [20] 周权, 倪礼忠. 双马来酰亚胺改性甲基二苯乙炔基硅烷复合材料的制备及性能研究[J]. 材料工程, 2009, 37(S2):336-339, 344.

    ZHOU Quan, NI Lizhong. Preparation and properties of bismaleimide-modified methyl-di(phenylethynyl)silane composites[J]. Journal of Materials Engineering,2009,37(S2):336-339, 344(in Chinese).
    [21] ASTM. Standard test methods for flexural properties of unreinforced plastics and electrical insulating materials: ASTM D790-2017[S]. West Conshohocken: ASTM, 2017.
    [22] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344 M-2016[S]. West Conshohocken: ASTM, 2016.
    [23] SUN Y J, WU Y Y, CHEN L G, et al. Thermal self-initiation in stable free-radical polymerization of styrene[J]. Polymer Journal,2009,41(11):954-960.
    [24] HUI A W, HAMIELEC A E. Thermal polymerization of styrene at high conversions and temperatures: An experimental study[J]. Journal of Applied Polymer Science,2010,16(3):749-769.
    [25] KIM H D, ISHIDA H. Model compounds study on the network structure of polybenzoxazines[J]. Macromolecules,2003,36(22):8320-8329. doi: 10.1021/ma030108+
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  278
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-11-17
  • 录用日期:  2022-12-06
  • 网络出版日期:  2022-12-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回