留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能

杨娜 苏韬 黄锴荻 王文俊

杨娜, 苏韬, 黄锴荻, 等. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能[J]. 复合材料学报, 2022, 41(0): 1-9
引用本文: 杨娜, 苏韬, 黄锴荻, 等. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能[J]. 复合材料学报, 2022, 41(0): 1-9
Na YANG, Tao SU, Kaidi HUANG, Wenjun WANG. Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene[J]. Acta Materiae Compositae Sinica.
Citation: Na YANG, Tao SU, Kaidi HUANG, Wenjun WANG. Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene[J]. Acta Materiae Compositae Sinica.

通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能

详细信息
    通讯作者:

    王文俊,博士,副教授,硕士生导师,研究方向为聚合物基复合材料 E-mail: wangwenjun@bit.edu.cn

  • 中图分类号: (TB332)

Modification of silicon-containing arylacetylene resin and its composite properties by copolymerization with styrene

  • 摘要: 含硅芳炔树脂(PSA)/石英纤维(QF)复合材料是一种新型耐高温透波材料,在航空航天领域具有广阔的应用前景。但由于PSA树脂质脆、极性低,加上石英纤维表面光滑,导致两者间界面粘结弱,突出表现为复合材料层间性能(如层间剪切强度)低,成为限制其应用的瓶颈问题。本文采用一种简便低成本的路径,使苯乙烯(ST)与PSA树脂共聚,通过降低树脂体系的交联密度,达到降低树脂脆性、进而提高复合材料层间剪切强度的目的。这种改性方法的优势体现在:ST不会影响树脂的固化规律和工艺;随着苯乙烯添加量的增加,改性PSA树脂的耐热性有所降低,但其Td5均接近500℃,仍具有良好的耐热性;其次,改性后的复合材料保持了良好的介电性能,ε为3.09,tan δ为2×10-3;复合材料在保持较高弯曲强度的同时,层间剪切强度得到显著提升。当ST添加量为15%时,QF/PSA-15ST复合材料在室温下的层间剪切强度提高了53.0%,350℃下提高了98.3%;350℃下层间剪切强度保留率为78.3%,高于改性前的60.4%。QF/PSA复合材料改性前后的力学性能

     

  • 1  MDPES的结构式

    1.  The structural formula of MDPES

    图  1  添加不同比例苯乙烯(ST)的MDPES树脂的DSC曲线

    Figure  1.  DSC curves of MDPES resin with different ratio of styrene (ST)

    2  MDPES的固化机制

    2.  Curing mechanism of MDPES

    图  2  PSA0 和PSA15的流变行为

    Figure  2.  Rheology behaviors of PSA0 and PSA15

    图  3  添加不同比例ST的MDPES树脂固化物在N2中的TGA(a)和DTG(b)曲线;分别在空气(c)和在氮气(d)中350℃下恒温30 min的热重曲线

    Figure  3.  TGA and DTG curves (a),(b) of the cured MDPES resin adding with different ratio of Styrene in N2 ; thermostatic TG at 350℃ for 30 min in air (c) and N2 (d).

    图  4  QF/PSA复合材料改性前后的DMA曲线

    Figure  4.  DMA curves of QF/PSA composites before and after modification

    图  5  QF/PSA复合材料改性前后的DSC曲线

    Figure  5.  DSC curves of QF/PSA composites before and after modification

    图  6  QF/PSA复合材料改性前后的力学性能

    Figure  6.  Mechanical properties of QF/PSA composites before and after modification

    图  7  改性前(a)后(b)树脂浇注体断面的SEM图

    Figure  7.  SEM images of resin castings before and after modification (a) (b)

    图  8  短梁弯曲实验后复合材料层合板的CT图

    Figure  8.  CT image of composite laminate after short beam bending test

    图  9  短梁弯曲载荷示意图

    Figure  9.  Illustration of short beam shear loading

    表  1  添加不同比例ST的MDPES树脂的DSC数据

    Table  1.   DSC data of MDPES resin adding with different ratio of styrene

    Ti /℃Tp /℃Tf /℃ΔH/(J·g−1)
    PSA0210.6257.7334.7196.5
    PSA10206.1257.9316.4191.3
    PSA15205.7247.6317.4191.7
    PSA20201.9245.9318.9196.9
    Notes:Ti, Tp, and Tf are initial temperature, peak temperature and final temperature of cure exotherm; and ΔH is the enthalpy of cure exotherm
    下载: 导出CSV

    表  2  添加不同比例ST的MDPES固化树脂的热重数据

    Table  2.   TGA data of the cured MDPES resin adding with different ratio of Styrene

    Tonset/℃Td5/℃Tmax/Y350℃%
    PSA-0 ST424504547100.0
    PSA-10 ST37549755199.6
    PSA-15 ST37749455199.6
    PSA-20 ST37448055299.6
    Notes:Tonset, Td5, and Tmax are the starting decomposition temperature, the temperature at 5% mass decomposition and the temperature corresponding to the maximum decomposition rate and Y350℃ is the mass residual rate at 350°C
    下载: 导出CSV

    表  3  QF/PSA复合材料改性前后的力学性能和介电性能

    Table  3.   Mechanical and Dielectric properties of QF/PSA compsites before and after modification

    Flexural Strength/MPaILSS/MPaDielectric properties
    RT350℃RT350℃εtan δ
    Before modification66.38
    ±6.33
    40.22±5.005.02±
    1.07
    3.03±0.223.05±0.020.004±
    0.001
    After modification83.83
    ±8.96
    58.68
    ±2.54
    7.68
    ±0.73
    6.01±1.153.09±0.010.003±
    0.001
    下载: 导出CSV

    表  4  改性前后树脂浇注体薄片的洛氏硬度测试结果

    Table  4.   Rockwell hardness values of flake resin casts before and after modification

    HDR/ Damage to specimens’ surfaceAverage of HDR
    Before modification78.5/SV69.1/SV62.0/SV−/SV−/SV69.9
    After modification94.4/IT94.3/IT92.9/IT88.6/SL68.3/SV87.7
    Notes:HDR are Rockwell hardness values; SV-Severe damage; SL-Slight damage; IT-Intact
    下载: 导出CSV
  • [1] ZU Y, ZHANG F F, CHEN D, et a1. Wave-transparent Composites Based on Phthalonitrile Resins with Commendable Hermal Properties and Dielectric Perfomance[J]. Polymer,2020,12(24):166-198.
    [2] 姚琪, 张振林, 宫剑. 耐高温/隐身/透波一体化天线罩材料的研究进展[J]. 当代化工研究, 2018, 12:6-7. doi: 10.3969/j.issn.1672-8114.2018.07.004

    YAO Qi, ZHANG Zhenlin, Gong Jian. Research progress of high temperature resistant/stealth/wave transmitting integrated radome materials[J]. Modern Chemical Reserrch,2018,12:6-7(in Chinese). doi: 10.3969/j.issn.1672-8114.2018.07.004
    [3] 张明习, 轩立新, 徐晓燕, 等. 军用透波复合材料的研究进展[C]. //2005年南京复合材料技术发展研讨会论文集. 中国航空工业集团公司济南特种结构研究所, 2005: 13-19.

    ZHANG Mingxi, XUAN Lixin, XU Xiaoyan, et al. Process in the research of military transparent composites [C]. // Proceedings of the 2005 Nanjing Symposium on Composites Technology Development, AVIC Research Institute for Special Structures of Aeronautical composite, 2005: 13-19.
    [4] KISHORE K K, NAGAVENI T, SURYA P R C. Development of Silicon Nitride-Based Ceramic Radomes A Review[J]. International Journal of Applied Ceramic Technology,2015,12(5):l-12.
    [5] 王飞, 石佩洛. 树脂基复合材料在雷达天线罩领域的应用及发展[J]. 宇航材料工艺, 2017, 47(2):10-13. doi: 10.12044/j.issn.1007-2330.2017.02.003

    WANG Fei, SHI Peiluo. Application and development of resin matrix composites[J]. Aerospace Materials& Technology,2017,47(2):10-13(in Chinese). doi: 10.12044/j.issn.1007-2330.2017.02.003
    [6] KUROKI S, OKITA K, KAKIGANO T, et al. Thermosetting Mechanism Study of Poly[(phenylsilylene)ethynylene-1, 3-phenyleneethynylene] by Solid-State NMR Spectroscopy and Computational Chemistry[J]. Macromolecules,1998,31(9):2804-2808. doi: 10.1021/ma971133g
    [7] YOU X T, DENG S F, HUANG Y C, et al. Thermosetting mechanism study of silicon-containing polyarylacetylene via in situ FTIR and solid-state NMR spectroscopy[J]. Journal of Applied Polymer Science,2019,136(13):47301. doi: 10.1002/app.47301
    [8] 包建文. 耐高温树脂基复合材料及其应用[J]. 北京:航空工业出版社, 2018:374-414.

    BAO Jianwen. High temperature resistant resin matrix composites and their applications[J]. Beijing:Aviation Industry Press,2018:374-414(in Chinese).
    [9] 陈梦怡, 嵇培军, 蔡良元, 等. 石英纤维织物增强复合材料性能研究[J]. 玻璃钢/复合材料, 2004(1):12-13. doi: 10.3969/j.issn.1003-0999.2004.01.004

    CHEN Mengyi, JI Peijun, CAI Liangyuan, et al. Property study of quartz fabric reinforced composites[J]. Fiber Reinforced Plastics/Composites,2004(1):12-13(in Chinese). doi: 10.3969/j.issn.1003-0999.2004.01.004
    [10] 孟庆杰, 石军威, 徐亮, 等. 空心石英玻璃纤维增强氰酸酯基低介电复合材料的制备及性能分析[J]. 材料导报, 2018(S1).

    MENG Qingjie, SHI Junwei, XU Liang, et al. Fabrication and properties of hollow silica fiber reinforced cyanate ester composites with low dielectric property[J]. Materials Review, 2018(S1)(in Chinese).
    [11] 郑锡涛, 罗贵, 李宇徒. 复合材料层间性能改善方法研究进展[J]. 航空制造技术, 2013, 15:26-29. doi: 10.3969/j.issn.1671-833X.2013.04.001

    ZHENG Xitao, LUO Gui, LI Yutu. Review of methods on improving interlaminar properties of composites laminate[J]. Aeronautical Manufacturing Technology,2013,15:26-29(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.04.001
    [12] ITOH M, MITSUZUKA M, KENJI W, et a1. A novel synthesis and extremely high thermal stability of poly[(phenylsilylene)-ethynylene-1, 3-phenyleneethynylene][J]. Macro-molecules,1994,27:7917-7919. doi: 10.1021/ma00104a056
    [13] ITOH M, INOUE K, IWATA K, et a1. A heat-resistant silicon-based polymer[J]. Advanced Materials,1997,9:1187-1190. doi: 10.1002/adma.19970091514
    [14] ITOH M, IWATA K, ISHIKAWA J, et al. Various silicon-containing polymers with Si (H)-C≡C units[J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39:2658-2669. doi: 10.1002/pola.1242
    [15] ZHANG J, HUANG J, YU X, et al. Preparation and properties of modified silicon-containing arylacetylene resin with bispropargyl ether[J]. Bulletin of the Korean Chemical Society,2012,33(11):3706-3710. doi: 10.5012/bkcs.2012.33.11.3706
    [16] 王林靖, 扈艳红, 杜磊, 等. 乙炔基芳酰胺酸硅烷改进石英纤维/含硅芳炔复合材料高温界面性能[J]. 复合材料学报, 2016, 33(2):287-296.

    WANG Linjing, HU Yanhong, DU Lei, et al. High-temperature interfacial property of quartz fiber/silicon-containing arylacetylene composites with aromatic amic acid-containing alkyne-terminated silane[J]. Acta Materiae Compositae Sinica,2016,33(2):287-296(in Chinese).
    [17] 杨海荟, 扈艳红, 杜磊, 等. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性[J]. 玻璃钢/复合材料, 2016(8):9. doi: 10.3969/j.issn.1003-0999.2016.08.002

    YANG Haihui, HU Yanhong, DU lei, et al. Reinforcing and toughening of quartz fiber(QF)/silicon-containing arylacetylene(PSA) composites with new silane coupling agent[J]. Fiber Reinforced Plastics/Composites,2016(8):9(in Chinese). doi: 10.3969/j.issn.1003-0999.2016.08.002
    [18]
    [19] 陈麒, 李扬, 戴泽亮, 等. 甲基二苯乙炔基硅烷及其网络聚合物的合成与表征[J]. 化学学报, 2005(3):254-258+178. doi: 10.3321/j.issn:0567-7351.2005.03.015

    CHEN Qi, Li Yang, DAI Zeliang, et al. Synthesis and characterization of methyl-di(phenylethynyl)silane and its network polymer[J]. Acta Chimica Sinica,2005(3):254-258+178(in Chinese). doi: 10.3321/j.issn:0567-7351.2005.03.015
    [20] 周权, 倪礼忠. 双马来酰亚胺改性甲基二苯乙炔基硅烷复合材料的制备及性能研究[J]. 材料工程, 2009(S2):336-339+344.

    ZHOU Quan, NI Lizhong. Preparation and properties of bismaleimide-modified methyl-Di(phenylethynyl)silane composites[J]. Journal of Materials Engineering,2009(S2):336-339+344(in Chinese).
    [21] ASTM D790-2017, Standard Test Methods for Flexural Properties of Unreinforced Plastics and Electrical Insulating Materials. [S].
    [22] ASTM D2344 M-2016, Standard Test Method for Short-Beam Strength of Polymer Mat. [S].
    [23] SUN Y J, WU Y Y, CHEN L G, et al. Thermal Self-Initiation in Stable Free-Radical Polymerization of Styrene[J]. Polymer Journal,2009(41):954-960.
    [24] HUI A W, HAMIELEC A E. Thermal polymerization of styrene at high conversions and temperatures. An experimental study[J]. Journal of Applied Polymer Science,2010,16(3):749-769.
    [25] KIM H D, ISHIDA H. Model compounds study on the network structure of polybenzoxazines[J]. Macromolecules,2003,36:8320-8329. doi: 10.1021/ma030108+
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-11-17
  • 录用日期:  2022-12-06
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回