Research on thermal conductivity modification of phase change microcapsules and its application in thermoregulation field
-
摘要: 相变微胶囊(microcapsule phase change materials,MPCM)是通过微胶囊化技术将相变材料包裹制备而成的,能够储存或释放大量热能,在许多领域具有良好的应用前景。但MPCM在实际应用中仍存在导热性能较差等问题,严重限制了其应用,因此越来越多的微胶囊导热改性方法被研究,用于制备导热性能增强的MPCM。本文通过阐述Pickering乳液、表面接枝、化学镀层和物理掺杂等改性方法的原理与特点,总结了微胶囊壳材导热改性方法,并概述了微胶囊在调温领域的相关进展。最后,展望了MPCM壳材导热改性的研究方向以及其在调温领域的未来前景与挑战。Abstract: Microcapsule phase change materials (MPCM) are prepared by encapsulating phase change materials through microencapsulation technology and are capable of storing or releasing large amounts of thermal energy, which has good application prospects in many fields. However, MPCM still have problems in practical applications such as poor thermal conductivity which seriously limits their applications. So more and more microcapsule thermal conductivity modification methods have been studied to enhance thermal conductivity. This paper summarized the thermal conductivity modification methods of microcapsule shells by describing the principles and characteristics of modification methods such as Pickering emulsion, surface grafting, chemical plating and physical doping. And the relevant progress of microcapsules in the fields of thermoregulation was introduced. Finally, the research direction was mentioned for MPCM of shells thermal conductivity modification, and the future prospects of phase change microcapsules in the fields of thermoregulation were envisioned.
-
图 2 微胶囊壳材导热改性的研究趋势(检索方式: Web of Science; 检索关键词: Phase change microcapsules、Shell thermal conductivity; 关键词检索范围: 标题、摘要和关键词;检索时间:2015-2023)
Figure 2. Research trends in thermal conductivity modification of microcapsule phase change materials shells (Search method: Web of Science; Search terms: Phase change microcapsules, Shell thermal conductivity; Keyword search scope: Title, Abstract, and Keywords; Search date: 2015-2023)
图 4 (a) GNPs导热微胶囊的制备原理(b) GNPs导热微胶囊SEM图(c)不同含量GNPs微胶囊的导热率[52];(d) CuS/MF壳材微胶囊的制备原理(e) CuS/MF壳材微胶囊SEM图(f) CuS、MF和不同含量CuS微胶囊导热率[54];(g) BN-TiO2/PMMA壳材微胶囊的制备原理(h) BN-TiO2/PMMA壳材微胶囊SEM图(i)石蜡和不同含量BN-TiO2微胶囊的导热率[55]
Figure 4. (a) Preparation principle of GNPs thermally conductive microcapsules (b) SEM of GNPs thermally conductive microcapsules (c) Thermal conductivity of microcapsules with different contents of GNPs [52]; (d) Preparation principle of CuS/MF microcapsules (e) SEM of CuS/MF microcapsules (f) Thermal conductivity of CuS, MF and different contents of CuS microcapsules [54]; (g) Preparation principle of BN-TiO2/PMMA microcapsules (h) SEM of BN-TiO2/PMMA microcapsules (i) Thermal conductivity of paraffin wax and different contents of BN-TiO2 microcapsules [55]
图 5 (a)不同类型的Janus纳米粒子结构;(b) Ag Janus/PDVB壳材微胶囊合成机制(1)为用 Ag Janus稳定的石蜡/水乳液(2)为通过聚合形成壳材后的微胶囊(c)哑铃状含Ag的Janus纳米粒子(d) Ag Janus/PDVB壳材微胶囊SEM图(e)微胶囊破损壳层SEM图[60]
Figure 5. (a) Structures of different types of Janus nanoparticles; (b) Synthesis mechanism of Ag Janus/PDVB shell material microcapsules (1) for paraffin/water emulsion stabilized with Ag-Janus (2) for microcapsules after shell material formation by polymerization (c) Dumbbell shaped Ag-containing Janus nanoparticles (d) SEM of Ag Janus/PDVB shell material microcapsules (e) SEM of broken shell layer of the microcapsules [60]
图 9 (a) MF-PSS/CNTs壳材微胶囊制备原理(b) MF-PSS/CNTs壳材微胶囊SEM图[76];(c) SiO2-TiC/PMMA壳材微胶囊制备原理(d)SiO2-TiC/PMMA壳材微胶囊SEM图[48]
Figure 9. (a) Principle of MF-PSS/CNTs microcapsules preparation (b) SEM of MF-PSS/CNTs microcapsules [76]; (c) Principle of SiO2-TiC/PMMA microcapsules preparation (d) SEM of SiO2-TiC/PMMA microcapsules [48].
图 13 (a)(I)房间微腔模型示意图 (II)红外成像测试(b)RPUF、RPUF-MPCM、RPUF- CNTs MPCM和 RPUF- LDH/CNTs MPCM在(I)升温过程(II)降温过程中的红外热成像测试(c)RPUF、RPUF-MPCM、RPUF- CNTs MPCM和 RPUF- LDH/CNTs MPCM的(a、c、e)第1次、第50次、第100次壁温和(b、d、f) 第1次、第50次、第100次内部中心温度曲线[84]Fig.13 (a) Schematic diagram of (I) room microcavity model (II) IR imaging test (b) IR thermography test of RPUF、RPUF-MPCM、RPUF- CNTs MPCM和 RPUF- LDH/CNTs MPCM during (I) warming up (II) cooling down (c) IR thermography test of RPUF、RPUF-MPCM、RPUF- CNTs MPCM和 RPUF- LDH/CNTs MPCM for (a, c, e) 1 st, 50 th, 100 th wall temperature and (b, d, f) 1 st, 50 th, 100 th internal centre temperature[84]
图 15 (a)光热转换实验装置示意图(b)不同SiC含量微胶囊的光热转换曲线(c)不同SiC含量微胶囊的能量图和光热转换效率图(d)光热转换原理图[94]
Figure 15. (a) Schematic diagram of the experimental setup for photothermal conversion (b) Photothermal conversion curves of microcapsules with different SiC contents (c) Energy diagrams and photothermal conversion efficiencies of microcapsules with different SiC contents (d) Schematic diagram of photothermal conversion [94]
表 1 相变微胶囊(MPCM)常见芯材物质及其特点
Table 1. Common microcapsule phase change materials (MPCM) and their characteristics
Categorization Phase change materials Characteristics Organic compound Hydrocarbons[9]: n-hexadecane, n-octadecane, liquid paraffins Advantages: good stability, less corrosive, no supercooling and phase separation, higher latent heat of phase transition, wider range of phase transition temperature
Disadvantages: low thermal conductivity, easy to volatilize, easy to burnAlcohols, esters[10, 11]: tetradecanol, cyclohexanol, butyl stearate Fatty acids[12]: lauric, capric, caprylic, dodecanoic acids Inorganic compound[13] Metal alloys, crystalline water and salts, molten salts Advantages: higher latent heat of phase change, higher thermal conductivity, lower cost
Disadvantages: susceptible to subcooling and phase separation, a certain degree of corrosiveness表 2 MPCM常见壳材物质及其特点
Table 2. Common shell materials and their characteristics
Categorization Shell materials Characteristics Organic polymer materials[14] Natural polymers: gelatin, gum arabic, pectin, chitosan, cellulose acetate, carboxymethyl cellulose, sodium carboxymethyl cellulose Advantages: denseness, chemical stability and flexibility, relatively simple preparation process, etc., of which natural polymer materials have good biodegradability, non-toxic, good film-forming properties
Disadvantages: low thermal conductivity, will delay the thermal response, while flammable and low mechanical strengthSynthetic polymers: PU, PMMA, melamine formaldehyde resin (MF), urea formaldehyde resin (UF), polystyrene (PS), polydiethylbenzene (PDVB) Inorganic materials[4, 15] SiO2、TiO2、CaCO3、Al、Cu、GN、GO、Copper Silicate, Clay, Sulfide Advantages: not easy to burn, thermal conductivity is usually higher, mechanical strength is also higher, and has a variety of functions, safety and environmental protection
Disadvantages: poor durability, poor flexibility, complex preparation processNotes:PU is polyurea; PMMA is polymethyl methacrylate; GN is graphene nanosheet; GO is graphene oxide. 表 3 MPCM壳材导热改性方法总结
Table 3. Summary of phase change microencapsulation shell modification methods
Phase change materials Shell materials Thermal conductive materials Thermal conductivity/
M(W·(m·K)−1)Enhancement effect Preparation method Characteristics Reference Paraffin MF Chitin nanocrystals 0.34 204.6% Pickering emulsion Simple method, green, thermal conductive materials are evenly distributed in the shell layer.
There is a problem of thermal conductive materials falling off.[6] Stearic acid Ag Ag 1.18 333.8% [23] Paraffin GN GN 0.71 35.4% [24] Paraffin PU GO 0.34 - [25] Paraffin GO/GN GO/GN 0.90 260.0% [26] Paraffin MF Nanodiamond 0.78 49.2% [27] N-octadecane PMMA TiO2 0.30 88.1% [28] Mg(NO3)2 SiO2 SiO2 1.40 700% [29] Paraffin MUF ZrC 0.49 225.2% Surface
graftingThermal conductive materials are connected to the shell materials through chemical bonds, which are more firm and less likely to fall off.
The method of modifying thermally conductive materials is complex and varied.[30] Paraffin SiO2 Modified GO 1.60 700% [31] N-octadecane / N-octacosane MF Octadecyl isocyanate grafted CNTs 0.33 71.4% [32] N-octadecane MF Octadecylamine grafted GO 0.26 38.52% [33] Capric PMMA Ammonium polyphosphate-modified halloysite nanotubes 0.36 88.6% [34] Capric PMMA Modified halloysite nanotubes - - [35] Paraffin MUF Cu - - Chemical plating Good thermal stability, high coating rate, uniform and firm distribution of thermal conductive materials on the shell materials. [36] Paraffin SiO2 Ag 0.80 42.62% [37] Paraffin SiO2 Ag/Pt - - [38] Paraffin SiO2 GN - 42.8% [39] N-octadecane Styrene-divinylbenzene copolymer Ti3C2 MXene 0.29 52.3% Physical doping The method is simple and easy to operate.
The shell layer is not stable in wrapping the thermal conductive materials, and the thermal conductive materials are not uniformly distributed.[40] N-hexadecane PDVB Cu 0.51 319.5% [41] Notes:MF is melamine formaldehyde resin; GN is graphene nanosheet; PU is polyurea; GO is graphene oxide; PMMA is polymethyl methacrylate; MUF is melamine urea formaldehyde; PDVB is polydiethylbenzene. -
[1] HAN L, ZHANG X, JI J, et al. Research progress on the influence of nano-additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 105807. doi: 10.1016/j.est.2022.105807 [2] WANG Y, HOU J, LI C, et al. Performance analysis of the phase-change heat-storage tank based on numerical simulation[J]. Applied Thermal Engineering, 2023, 235: 121370. doi: 10.1016/j.applthermaleng.2023.121370 [3] LIU Y, KANG M, LIN W, et al. Enhanced thermal performance of phase change material microcapsules using halloysite nanotubes[J]. Applied Thermal Engineering, 2023, 231: 120965. doi: 10.1016/j.applthermaleng.2023.120965 [4] ZHANG H, CHEN X, WANG F, et al. Dodecane/Silica phase change microcapsules: fabrication, structure and stability[J]. Science of Advanced Materials, 2023, 15(7): 887-893. doi: 10.1166/sam.2023.4480 [5] MENG X, QIN S, FAN H, et al. Long alkyl chain-grafted carbon nanotube-decorated binary-core phase-change microcapsules for heat energy storage: Synthesis and thermal properties[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110589. doi: 10.1016/j.solmat.2020.110589 [6] TAN C, HE Y, LUO B, et al. Microencapsulated phase change material with chitin nanocrystals stabilized Pickering emulsion for thermal energy storage[J]. International Journal of Biological, 2023, 240: 124374. [7] SEZER HICYILMAZ A, TEKE S, ISLEK CIN Z, et al. Development of thermo-regulating fabrics with enhanced heat dissipation via graphene-modified n-octadecane microcapsules[J]. Polymer Engineering and Science, 2022, 62(1): 210-219. doi: 10.1002/pen.25845 [8] GENG X, LI W, YIN Q, et al. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity[J]. Energy, 2018, 159: 857-869. doi: 10.1016/j.energy.2018.06.218 [9] HASL T, JIRICEK I. The prediction of heat storage properties by the study of structural effect on organic phase change materials[J]. Energy Procedia, 2014, 46: 301-309. doi: 10.1016/j.egypro.2014.01.186 [10] MO S, HE L, JIA L, et al. Thermophysical properties of a novel nanoencapsulated phase change material[J]. International Journal of Thermophysics, 2020, 41(5): 1-12. [11] ALPER AYDIN A. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters' homologous series[J]. Solar Energy Materials and Solar Cells, 2013, 113: 44-51. doi: 10.1016/j.solmat.2013.01.024 [12] AL-AHMED A, MAZUMDER M A J, SALHI B, et al. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A Review[J]. Journal of Energy Storage, 2021, 35: 102329. doi: 10.1016/j.est.2021.102329 [13] 王成君, 段志英, 王爱军, 等. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066. doi: 10.11896/cldb.20040110WANG C, DUAN Z, WANG A, et al. Research progress of eutectic phase change materials[J]. Materials Reports, 2021, 35(13): 13058-13066(in Chinese). doi: 10.11896/cldb.20040110 [14] 郝旭波, 牛宝联, 郭昊天, 等. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871.HAO X, NIU B, GUO H, et al. Modification of microencapsulated phase change material and its utilization in photothermal conversion[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871(in Chinese). [15] JI W, CHENG X, CHEN S, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. doi: 10.1016/j.powtec.2021.03.020 [16] WANG T, WANG S, GENG L, et al. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network[J]. Appl Energy, 2016, 179: 601-608. doi: 10.1016/j.apenergy.2016.07.026 [17] CHEN D, QIN S, TSUI G, et al. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage[J]. Composites: Part B, Engineering, 2019, 157: 239-247. doi: 10.1016/j.compositesb.2018.08.066 [18] LIU H, HAN Z, WANG Q, et al. Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response[J]. Applied Surface Science, 2021, 562: 150211. doi: 10.1016/j.apsusc.2021.150211 [19] LI L, HUANG Y, LI Y, et al. Tuning the thermal conductivity of organic-inorganic double-shell thermal storage microcapsules triggered by atomic layer deposition[J]. Journal of Alloys and Compounds, 2024, 990: 174449. doi: 10.1016/j.jallcom.2024.174449 [20] DENG H, GUO Y, HE F, et al. Paraffin@graphene/silicon rubber form-stable phase change materials for thermal energy storage[J]. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27(8): 626-631. doi: 10.1080/1536383X.2019.1624539 [21] KANG M, LIU Y, LIANG C, et al. Phase change material microcapsules with DOPO/Cu modified halloysite nanotubes for thermal controlling of buildings: Thermophysical properties, flame retardant performance and thermal comfort levels[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124045. doi: 10.1016/j.ijheatmasstransfer.2023.124045 [22] ZHAO L, WU X, HU X, et al. Enhanced thermal conductivity of phase change microcapsules based on boron nitride/graphene oxide composite sheets[J]. ACS Applied Polymer Materials, 2023, 5(5): 3835-3847. doi: 10.1021/acsapm.3c00403 [23] YUAN H, LIU S, HAO S, et al. Fabrication and properties of nanoencapsulated stearic acid phase change materials with Ag shell for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111653. doi: 10.1016/j.solmat.2022.111653 [24] ZHAO Q, HE F, ZHANG Q, et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110204. doi: 10.1016/j.solmat.2019.110204 [25] MAITHYA O M, ZHU X, LI X, et al. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 222: 110924. doi: 10.1016/j.solmat.2020.110924 [26] ZHOU Y, LI C, WU H, et al. Construction of hybrid graphene oxide/graphene nanoplates shell in para ffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020, 597: 124780. [27] XU L, ZHAO Q, LI Y, et al. Nanodiamond-modified microencapsulated phase-change materials with superhydrophobicity and high light-to-thermal conversion efficiency[J]. Industrial and Engineering Chemistry Research, 2020, 59(50): 21736-21744. doi: 10.1021/acs.iecr.0c03974 [28] LI C, YU H, SONG Y, et al. Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage[J]. Energy, 2019, 167: 1031-1039. doi: 10.1016/j.energy.2018.11.038 [29] GRAHAM M, SMITH J, BILTON M, et al. Highly stable energy capsules with nano-SiO2 Pickering shell for thermal energy storage and release[J]. ACS Nano, 2020, 14(7): 8894-8901. doi: 10.1021/acsnano.0c03706 [30] ZHANG Z, FANG J, MU J. ZrC nanoparticle-modified microencapsulated phase change materials with enhanced thermal conductivity and photo-thermal conversion performance[J]. International Journal of Energy Research, 2020, 44(9): 7283-7298. doi: 10.1002/er.5441 [31] ZHANG Z, LIU Y, LIANG Z, et al. High thermal storage ability and photothermal conversion capacity phase change capsule with graphene oxide covalently grafted silica shell[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2023, 657: 130594. [32] MENG X, QIN S, FAN H, et al. Long alkyl chain-grafted carbon nanotube-decorated binary-core phase-change microcapsules for heat energy storage: Synthesis and thermal properties[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110589. doi: 10.1016/j.solmat.2020.110589 [33] CHEN D, QIN S, TSUI G C P, et al. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage[J]. Composites: Part B, Engineering, 2019, 157: 239-247. doi: 10.1016/j.compositesb.2018.08.066 [34] KANG M, LIN W, LIANG C, et al. Construction of ammonium polyphosphate-modified halloysite nanotubes on phase change material microcapsules for the enhancement of thermophysical performance and flame retardant properties[J]. Applied Thermal Engineering, 2024, 239: 122160. doi: 10.1016/j.applthermaleng.2023.122160 [35] CHENG J, KANG M, LIN W, et al. Preparation and characterization of phase change material microcapsules with modified halloysite nanotube for controlling temperature in the building[J]. Construction and Building Materials, 2023, 362: 129764. doi: 10.1016/j.conbuildmat.2022.129764 [36] ZHOU X, MAO J, QIAO Z. Electroless plating of copper layer on surfaces of urea-formaldehyde microcapsule particles containing paraffin for low infrared emissivity[J]. Particuology, 2016, 24: 159-163. doi: 10.1016/j.partic.2014.12.006 [37] ZHANG D, YANG A, JIANG Z, et al. Paraffin@silica@poly(dopamine)/silver phase change microcapsules with efficient photothermal conversion performance[J]. Energy Fuels, 2023, 37(21): 16951-16961. doi: 10.1021/acs.energyfuels.3c02737 [38] FIAZ A. Metal-based composite microcapsule shells: development of new synthesis methods and characterisation of transport properties[D]. University of Leeds, 2019. [39] KANG L, NIU H, REN L, et al. Phase change composites with ultra-high through-plane thermal conductivity achieved by vertically-aligned graphite film and double-shelled microcapsules[J]. Composites Part A: Applied Science and Manufacturing, 2024, 182: 108162. doi: 10.1016/j.compositesa.2024.108162 [40] ZHAO K, GUO Z, WANG J, et al. E nhancing solar photothermal conversion and energy storage with titanium carbide (Ti3C2) MXene nanosheets in phase-change microcapsules[J]. Journal of Colloid and Interface Science, 2023, 650: 1591-1604. doi: 10.1016/j.jcis.2023.07.114 [41] PARVATE S, SINGH J, VENNAPUSA J R, et al. Copper nanoparticles interlocked phase-change microcapsules for thermal buffering in packaging application[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 69-85. doi: 10.1016/j.jiec.2021.06.029 [42] RAYEES R, GANI A, NOOR N, et al. General approaches to biopolymer-based Pickering emulsions[J]. International journal of biological macromolecules, 2024, 267: 131430. doi: 10.1016/j.ijbiomac.2024.131430 [43] XIA T, XUE C, WEI Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions[J]. Trends in Food Science and Technology, 2021, 107: 1-15. doi: 10.1016/j.jpgs.2020.11.019 [44] SUN W, WANG X, ZHANG X. Design and synthesis of microencapsulated phase-change materials with a poly(divinylbenzene)/dioxide titanium hybrid shell for energy storage and formaldehyde photodegradation[J]. The Journal of Physical Chemistry C, 2020, 124(38): 20806-20815. doi: 10.1021/acs.jpcc.0c06656 [45] LI M, MA Q. Performance improvement of phase change materials encapsulated with graphene oxide for thermal storage[J]. Journal of Energy Storage, 2024, 80: 110315. doi: 10.1016/j.est.2023.110315 [46] ZHAO Q, ZHANG F, FAN Q, et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110204. doi: 10.1016/j.solmat.2019.110204 [47] MAITHYA O M, LI X, FENG X, et al. Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion[J]. Journal of Materials Science, 2020, 55(18): 7731-7742. doi: 10.1007/s10853-020-04499-5 [48] WANG H, ZHAO L, SONG G, et al. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization[J]. Solar Energy Materials and Solar Cells, 2018, 175(1): 102-110. [49] BAKESHLOU Z, NIKFARJAM N. Thermoregulating papers containing fabricated microencapsulated phase change materials through pickering emulsion templating[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20253-20268. [50] ZHANG W, CHENG H, PAN R, et al. Phase change microcapsules with a polystyrene/boron nitride nanosheet hybrid shell for enhanced thermal management of electronics[J]. Langmuir, 2022, 38(51): 16055-16066. doi: 10.1021/acs.langmuir.2c02660 [51] LU T, GOU H, RAO H, et al. Recent progress in nanoclay-based Pickering emulsion and applications[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105941. doi: 10.1016/j.jece.2021.105941 [52] CHEN Y, YANG G, CHEN L, et al. Phase change microcapsules with graphene nanoplates embedded polyurea shell for enhanced thermal conductivity[J]. Materials Letters, 2023, 330: 133223. doi: 10.1016/j.matlet.2022.133223 [53] YANG W, ZHANG Y, LIU T, et al. Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression[J]. ACS Sustainable Chemistry and Engineering, 2017, 5(10): 9102-9113. doi: 10.1021/acssuschemeng.7b02012 [54] DU M, YU X, ZHANG Z, et al. CuS nanoparticle-based microcapsules for solar-induced phase-change energy storage[J]. ACS Applied Nano Materials, 2022, 5(9): 13009-13017. doi: 10.1021/acsanm.2c02804 [55] SUN N, XIAO Z. Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage[J]. Energy Fuels, 2017, 31(9): 10186-10195. doi: 10.1021/acs.energyfuels.7b01271 [56] LIANG F, ZHANG C, YANG Z. Rational design and synthesis of janus composites[J]. Advanced materials, 2014, 26(40): 6944-6949. doi: 10.1002/adma.201305415 [57] LIANG F, LIU B, CAO Z, et al. Janus colloids toward interfacial engineering[J]. Langmuir, 2018, 34(14): 4123-4131. doi: 10.1021/acs.langmuir.7b02308 [58] WALTHER A, MUELLER A H E. Janus particles: synthesis, self-assembly, physical properties, and applications[J]. Chemical Reviews, 2013, 113(7): 5194-5261. doi: 10.1021/cr300089t [59] LI Z, YUAN J. Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement[J]. Construction and Building Materials, 2021, 307: 124971. doi: 10.1016/j.conbuildmat.2021.124971 [60] GUI H, LI Y, DU D, et al. High-performance phase change material capsule by Janus particle[J]. Materials Today Energy, 2021, 20: 100702. doi: 10.1016/j.mtener.2021.100702 [61] FENG J, LIU Z, ZHANG D, et al. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications[J]. Carbon, 2019, 150: 551. [62] SARIER N, ONDER E, UKUSER G. Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles[J]. Thermochim Acta, 2015, 613: 17-27. doi: 10.1016/j.tca.2015.05.015 [63] WANG T, LU W, HE Z, et al. Tetradecyl octadecanoate phase change microcapsules incorporated with hydroxylated boron nitrides for reliable and durable heat energy storage[J]. Solar Energy, 2022, 245: 127-135. doi: 10.1016/j.solener.2022.09.001 [64] DO J Y, SON N, SHIN J, et al. n-Eicosane-Fe3O4@SiO2@Cu microcapsule phase change material and its improved thermal conductivity and heat transfer performance[J]. Materials and Design, 2021, 198: 109357. doi: 10.1016/j.matdes.2020.109357 [65] AL-SHANNAQ R, KURDI J, AL-MUHTASEB S, et al. Innovative method of metal coating of microcapsules containing phase change materials[J]. Solar Energy, 2016, 129: 54-64. doi: 10.1016/j.solener.2016.01.043 [66] YUAN S, YAN R, REN B, et al. Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage[J]. Renewable Energy, 2021, 180: 725-733. doi: 10.1016/j.renene.2021.08.128 [67] ZHA Z, YUE X, REN Q, et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Advanced Materials, 2012, 25(5): 777-782. [68] TSUNEYOSHI T, ONO T. Metal-coated microcapsules with tunable magnetic properties synthesized via electroless plating[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 222: 49-54. doi: 10.1016/j.mseb.2017.04.009 [69] PORNEA A M, KIM H. Design and synthesis of SiO2/TiO2/PDA functionalized phase change microcapsules for efficient solar-driven energy storage[J]. Energy Conversion and Management, 2021, 232: 113801. doi: 10.1016/j.enconman.2020.113801 [70] ZHU Y, CHI Y, LIANG S, et al. Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176(1): 212-221. [71] 张广平, 李远红, 陈俊豪, 等. 高热导率相变微胶囊的制备及性能[J]. 功能材料, 2023, 54(6): 6208-6214. doi: 10.3969/j.issn.1001-9731.2023.06.027ZHANG G, LI Y, CHEN J, et al. Preparation and performance of high thermal conductive phase change microcapsules[J]. Journal of Functional Materials, 2023, 54(6): 6208-6214(in Chinese). doi: 10.3969/j.issn.1001-9731.2023.06.027 [72] TSUNEYOSHI T, ONO T. Metal-coated microcapsules with tunable magnetic properties synthesized via electroless plating[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2017, 222: 49-54. [73] HUANG Q, WANG S, HE J, et al. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system[J]. Journal of Materials Science and Technology, 2023, 169: 124-136. [74] 王瑞, 孙艳丽, 刘星, 等. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(2): 119-125.WANG R, SUN Y, LIU X, et al. Mechanical and thermal properties of phase change microcapsules modified with carbon nanotubes[J]. Journal of Textile Research, 2018, 39(2): 119-125(in Chinese). [75] CHEN Z, WANG J, YU F, et al. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(21): 11624-11630. doi: 10.1039/C5TA01852H [76] HUANG Y, ZHANG H, WAN X, et al. Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage[J]. Journal of Materials Chemistry A, 2017, 5(16): 7482-7493. doi: 10.1039/C6TA09712J [77] CHEN S, LIU H, WANG X. Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention[J]. Journal of Energy Storage, 2022, 51: 104406. doi: 10.1016/j.est.2022.104406 [78] MU Q, LIU R, KIMURA H, et al. Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes[J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 2522-0128. [79] DANG C, MU Q, XIE X, et al. Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 606-626. doi: 10.1007/s42114-022-00500-8 [80] YIN H, GAO X, DING J, et al. Thermal management of electronic components with thermal adaptation composite material[J]. Applied Energy, 2010, 87(12): 3784-3791. doi: 10.1016/j.apenergy.2010.06.007 [81] YANG D, TU S, CHEN J, et al. Phase change composite microcapsules with low-dimensional thermally conductive nanofillers: Preparation, performance, and applications[J]. Polymers, 2023, 15(6): 1562. doi: 10.3390/polym15061562 [82] REN Q, GUO P, ZHU J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119199. doi: 10.1016/j.ijheatmasstransfer.2019.119199 [83] CHEN M, QIAN Z, LIU H, et al. Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2022, 640: 128470. [84] CHENG J, LIANG C, LIN W, et al. Preparation and characterization of phase change material microcapsules with carbon nanotubes loaded with Mg-Al layered double hydroxides for controlling temperature in the building[J]. Journal of Energy Storage, 2024, 80: 110357. doi: 10.1016/j.est.2023.110357 [85] NIU S, CHENG J, ZHAO Y, et al. Preparation and characterization of multifunctional phase change material microcapsules with modified carbon nanotubes for improving the thermal comfort level of buildings[J]. Construction and Building Materials, 2022, 347: 128628. doi: 10.1016/j.conbuildmat.2022.128628 [86] KANG M, LIU Y, LIN W, et al. Thermal comfort and flame retardant performance of novel temperature-control coatings with modified phase change material microcapsules[J]. Progress in Organic Coatings, 2023, 181: 107579. doi: 10.1016/j.porgcoat.2023.107579 [87] ALLAHBAKHSH A, ARJMAND M. Graphene-based phase change composites for energy harvesting and storage: State of the art and future prospects[J]. Carbon, 2019, 148: 441-480. doi: 10.1016/j.carbon.2019.04.009 [88] KANG Z, ZHAO J, CHEN Z, et al. Flame-retardant and phase-changing microcapsules incorporating black phosphorus for efficient solar energy storage[J]. Journal of Cleaner Production, 2024, 467: 143055. doi: 10.1016/j.jclepro.2024.143055 [89] ZHOU G, HOU M, REN Y, et al. Full-spectrum photo-thermal conversion enabled by plasmonic titanium carbide modified phase change microcapsules[J]. Journal of Energy Storage, 2023, 72: 108458. doi: 10.1016/j.est.2023.108458 [90] ZHANG S, ZHU Y, ZHANG H, et al. Cadmium sulfide-reinforced double-shell microencapsulated phase change materials for advanced thermal energy storage[J]. Polymers, 2023, 15(1): 106. [91] LI T, WU M, WU S, et al. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage[J]. Nano Energy, 2021, 89: 106338. doi: 10.1016/j.nanoen.2021.106338 [92] WANG Z, LI J, PENG F, et al. Monolithic robust hybrid sponge with enhanced light adsorption and ultrafast photothermal heating rate for rapid oil cleaning[J]. Journal of Colloid and Interface Science, 2022, 628: 233-241. doi: 10.1016/j.jcis.2022.08.016 [93] TANNLI Q, TAN Y, LIN C, et al. Preparation and properties of erythritol/exfoliated graphite nanoplatelets @polyaniline microencapsulated phase change materials with improved photothermal conversion efficiency[J]. Journal of Energy Storage, 2023, 72: 108553. doi: 10.1016/j.est.2023.108553 [94] WANG X, ZHANG C, WANG K, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science, 2021, 582: 30-40. doi: 10.1016/j.jcis.2020.08.014 [95] GOMEZ-GARCIA F, GONZALEZ-AGUILAR J, OLALDE G, et al. Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 648-658. doi: 10.1016/j.rser.2015.12.106 [96] FENG F, XU S, LIU H, et al. A novel application of titanium suboxide to enhance the flame retardancy, thermal stability, and thermal and electrical conductivity of silicone rubber[J]. Journal of Thermoplastic Composite Materials, 2024, 37(5): 1648-1666. doi: 10.1177/08927057231200003 [97] QIU X, ZHU J, LI Y, et al. Solar-driven interfacial evaporator with a self-powered detector based on the Gr@Ti4O7: Eu3+, Yb3+ fibrous membrane[J]. ACS Sustainable Chemistry and Engineering, 2023, 11(30): 11313-11320. doi: 10.1021/acssuschemeng.3c03161 [98] XU X, ZHAO Q, LIU Q, et al. Full-spectrum-responsive Ti4O7-PVA nanocomposite hydrogel with ultrahigh evaporation rate for efficient solar steam generation[J]. Desalination, 2024, 577: 117400. doi: 10.1016/j.desal.2024.117400 [99] ZHANG Y, LI X, LI J, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy, 2018, 53: 579-586. doi: 10.1016/j.nanoen.2018.09.018 [100] XU S, DU M, YU X, et al. Preparation of photothermal conversion and energy storage microcapsules based on Pickering emulsions with poly (p-phenylenediamine) as stabilizer and photothermal materials[J]. Journal of Energy Storage, 2023, 59: 106564. doi: 10.1016/j.est.2022.106564 [101] WANG F, PANG D, LIU X, et al. Progress in application of phase-change materials to cooling clothing[J]. Journal of Energy Storage, 2023, 60: 106606. doi: 10.1016/j.est.2023.106606 [102] KE W, WU X, ZHANG J. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 627: 127124. [103] ZHANG H, CAI J, SU J, et al. Calcium alginate/silver nanosheet microencapsulated phase change materials with controlled morphology for thermal energy storage and antibacterial application[J]. ACS Applied Nano Materials, 2024, 7(14): 16360-16371. doi: 10.1021/acsanm.4c02356 [104] LI Q, MA X, ZHANG X, et al. Al-10 wt. %Zn/Al2O3@ZnO microcapsules for high-temperature thermal storage: preparation and thermal properties[J]. Journal of Materials Engineering and Performance, 2022, 31(4): 2723-2731. doi: 10.1007/s11665-021-06388-7
计量
- 文章访问数: 29
- HTML全文浏览量: 13
- 被引次数: 0