留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展

李龙彪

李龙彪. 陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展[J]. 复合材料学报, 2024, 42(0): 1-35.
引用本文: 李龙彪. 陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展[J]. 复合材料学报, 2024, 42(0): 1-35.
LI Longbiao. Research progress on application and airworthiness compliance validation of ceramic-matrix composites in aeroengines[J]. Acta Materiae Compositae Sinica.
Citation: LI Longbiao. Research progress on application and airworthiness compliance validation of ceramic-matrix composites in aeroengines[J]. Acta Materiae Compositae Sinica.

陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展

详细信息
    通讯作者:

    李龙彪,讲师,研究方向:陶瓷基复合材料结构强度、可靠性与适航。 E-mail: llb451@nuaa.edu.cn

  • 中图分类号: TB332

Research progress on application and airworthiness compliance validation of ceramic-matrix composites in aeroengines

  • 摘要: 陶瓷基复合材料(Ceramic-Matrix Composite, CMC)继承了陶瓷材料耐高温、抗腐蚀等优点,克服了陶瓷材料的脆性,相较于高温合金密度更低、高温持久强度更优、可设计性更强,是新一代航空发动机热结构的理想材料。欧美等发达国家自20世纪80年代,经过上百万小时的测试、考核与验证,已经证明CMC代替高温合金的革命性改变已经到来。本文系统分析了CMC多种制备工艺及物理/力学性能,CMC在航空发动机燃烧室、涡轮、排气系统热端部件的结构设计、部件考核以及工程应用等,建立了CMC制备工艺、材料性能、部件设计与工程应用之间的关联关系。从适航角度出发,给出了CMC部件的适航认证要求、适航性设计及符合性验证方法等,并针对法国SAFRAN公司的CMC混合器和中心体、美国GE公司的CMC涡轮外环等进行了案例分析。

     

  • 图  1  SiC/SiC不同制备工艺过程[8]

    Figure  1.  Various fabrication processes of SiC/SiC[8]

    图  2  四种不同SiC/SiC代表性细观结构(a) CVI;(b) PIP;(c) CVI+PIP;(d) CVI+MI[9]

    Figure  2.  Representative microstructures of the four different SiC/SiC composites (a) CVI; (b) PIP; (c) CVI+PIP; (d) CVI+MI[9]

    图  3  NAS GRC提出的CVI+PIP混合制备工艺[10]

    Figure  3.  CVI+PIP hybrid fabrication process developed by NASA GRC[10]

    图  4  预浸料-熔渗与料浆浇注-熔渗工艺示意图[7]

    Figure  4.  Schematic representations of the prepreg MI and slurry cast MI composite performing fabrication processes[7]

    图  5  ATK-COIC公司氧化物/氧化物制备流程[7]

    Figure  5.  Oxide/Oxide processing flow chart from ATK-COIC[7]

    图  6  (a)制备的SiC/SiC燃烧室部件;(b)SiC/SiC燃烧室部件RQL测试图;(c)富油区火焰筒(RZL)测试后出现轴向和环向裂纹[11][12]

    Figure  6.  (a) Fabricated SiC/SiC combustor components; (b) RQL sector rig test image; (c) Axial and circumferential cracks of RZL after testing [11][12]

    图  7  (a)Solar Centaur 50 S燃气轮机及燃烧室构型;(b)CG NicalonTM SiC/SiC火焰筒;(c)覆盖环境障涂层的Hi-NicalonTM SiC/SiC火焰筒;(d)燃气轮机测试后的Hi-NicalonTM SiC/SiC火焰筒;(e)覆盖FGI的NextelTM 720/alumina火焰筒[13]

    Figure  7.  (a) Solar Centaur 50 S gas turbine and the configuration of the combustor; (b) CG NicalonTM SiC/SiC liner; (c) Hi-NicalonTM SiC/SiC liner with EBCs; (d) Hi-NicalonTM SiC/SiC liner after gas turbine testing; (e) NextelTM 720/alumina outer liner with FGI surface coating[13]

    图  8  (a)SiC/SiC外火焰筒;(b)SiC/SiC内火焰筒;(c)安装在HPBR的外火焰筒;(d)安装在HPBR的内火焰筒;(e)NASA格林研究中心的HPRB;(f)试验后的SiC/SiC内火焰筒[14]

    Figure  8.  (a) SiC/SiC outer combustor liner; (b) SiC/SiC inner combustor liner; (c) The outer combustor liner installed on HPBR; (d) The inner combustor liner installed on HPBR; (e) HPBR in NASA GRC; (f) The SiC/SiC inner combustor liner after testing [14]

    图  9  (a) PW 206回流式环形燃烧室及CMC部件;(b)装配后的CMC燃烧室;(c)PW 206燃烧室试验台;(d)试验后的CMC燃烧室;(e)试验后的CMC部件[15]

    Figure  9.  (a) PW 206 reverse-flow full annular combustor and CMC components; (b) Fully assembled CMC combustor; (c) PW 206 combustor rig; (d) CMC combustor after testing; (e) CMC components after testing [15]

    图  10  (a) GE 7 FA燃气轮机SiC/SiC燃烧室火焰筒[16];(b) GE与Allison研制的SiC/SiC燃烧室火焰筒[17];(c) GE公司研制的用于CFM56发动机的多斜孔冷却SiC/SiC燃烧室火焰筒[18];(d) GE为NASA先进亚音速燃烧装置研制的SiC/SiC燃烧室火焰筒[19]

    Figure  10.  (a) SiC/SiC combustor liner of GE 7 FA gas turbine[16]; (b) SiC/SiC combustor liner developed by GE and Allison[17]; (c) Low emission SiC/SiC combustor liner for CFM 56 engine developed by GE[18]; (d) SiC/SiC combustor sector rig for the NASA ASCR developed by GE[19]

    图  11  (a) CERASEP® A415内火焰筒;(b) CERASEP® A415外火焰筒;(c) CERASEP® A415火焰筒在CFM56发动机上测试[20]

    Figure  11.  (a) CERASEP® A415 inner combustor liner; (b) CERASEP® A415 outer combustor liner; (c) CERASEP® A415 combustor liners tested on CFM56 engine [20]

    图  12  (a) UMOXTM NextelTM 610/alumina管式燃烧室;(b) UMOXTM燃烧室的装配检查;(c)测试后的UMOXTM燃烧室[21]

    Figure  12.  (a) UMOXTM NextelTM 610/alumina tubular combustion chamber; (b) Fit check with the UMOXTM combustion chamber;(c) UMOXTM combustion chamber after testing[21]

    图  13  (a) WHIPOX管式燃烧室;(b) WHIPOX测试后表面出现裂纹;(c) WHIPOX测试后CT检测[22]

    Figure  13.  (a) WHIPOX tubular combustion chamber; (b) Surface cracks on WHIPOX combustion chamber after testing; (c) CT detection of WHIPOX combustion chamber after testing[22]

    图  14  (a)回流式环形燃烧室及SiC/SiC火焰筒;(b)燃烧室环境测试设备;(c)内火焰筒稀释孔周围出现基体裂纹[24]

    Figure  14.  (a) Reverse-flow annular combustor and SiC/SiC combustor liner; (b) Test facility for combustor environmental testing; (c) Cracks occurred around the dilution holes after testing [24]

    图  15  GE公司制造的LEAP-1 A和1 B发动机SiC/SiC涡轮外环[25]

    Figure  15.  SiC/SiC turbine shroud manufactured by GE for LEAP-1 A and 1 B engine [25]

    图  16  (a) F7-10涡扇发动机及涡轮外环使用环境;(b) SiC/SiC涡轮外环几何形状、温度场及应力场分析;(c) SiC/SiC涡轮外环支撑结构强度试验及热疲劳试验;(d) SiC/SiC涡轮外环发动机地面测试[26]

    Figure  16.  (a) F7-10 turbofan engine and operating environment of turbine shroud; (b) Geometry, temperature field, and stress field of SiC/SiC turbine shroud; (c) Hook strength test and thermal fatigue test of SiC/SiC turbine shroud; (d) Ground engine testing of SiC/SiC turbine shroud [26]

    图  17  (a) NASA GRC设计与制备的SiC/SiC涡轮导向叶片;(b) NASA GRC在发动机燃烧环境台架测试EBC-SiC/SiC涡轮导向叶片并进行无损检测[27][28]

    Figure  17.  (a) SiC/SiC turbine guide vane developed by NASA GRC; (b) Rig testing EBC-SiC/SiC turbine guide vane in gas turbine environment and CT scanning of the tested vanes [27][28]

    图  18  (a)SiC/SiC涡导叶片示意图;(b)MI/CVI SiC/SiC涡导叶片截面CT扫描图;(c)SiC/SiC涡导叶片几何尺寸;(d)NASA GRC 模拟涡轮环境测试台;(e)CVI-SiC/SiC涡导叶片在1371℃模拟涡轮环境测试31小时后表面形貌;(f)MI-SiC/SiC涡导叶片在1371℃模拟涡轮环境测试21小时后表面形貌;(g)MI-SiC/SiC涡导叶片在1371℃模拟涡轮环境测试75小时后表面形貌[29][30][31]

    Figure  18.  (a) Schematic of SiC/SiC turbine guide vane; (b) CT scan of the cross-section of MI/CVI SiC/SiC turbine guide vanes; (c) Dimensions of SiC/SiC turbine guide vane; (d) Rig testing at NASA GRC; (e) Surface morphology of CVI-SiC/SiC turbine guide vane after 31 h test at 1371℃; (f) Surface morphology of MI-SiC/SiC turbine guide vane after 21 h test at 1371℃; (g) Surface morphology of MI-SiC/SiC turbine guide vane after 75 h test at 1371℃ [29][30][31]

    图  19  EBC-SiC/SiC涡导叶身在P&W发动机测试台上完成了1482℃部件试验[32]

    Figure  19.  EBC-SiC/SiC turbine guide vane subelements testing at 1482℃ on the rig provided by P&W[32]

    图  20  (a)外壳&撑杆结构的SiC/SiC涡轮导向叶片;(b)SiC/SiC涡轮导向叶片进行发动机燃烧环境测试[33]

    Figure  20.  (a) SiC/SiC turbine guide vane with shell & spar structure; (b) Burer rig test of SiC/SiC turbine guide vane [33]

    图  21  NASA GRC研制和测试了CMC/陶瓷涡轮导向叶片(a)涡导叶片构型及金属涡导叶片;(b)涡导叶片结构及组成;(c)涡导叶片CMC叶身及内部陶瓷冷却通道;(d)涡导叶片内部冷却孔分布;(e)涡导叶片有限元应力分析;(f)涡导叶片叶身及内部冷却结构;(g)制备成型的涡导叶身;(h)涡导叶片开展燃烧环境测试[34]

    Figure  21.  CMC/Ceramic turbine guide vane developed and tested by NASA GRC (a) Configuration of turbine guide vane and the metal vane used in the engine; (b) Components of the guide turbine vane; (c) The CMC airfoil and ceramic cooling channel of the guide vane; (d) The distribution of the cooling holes inside of the vane; (e) The stress analysis of the guide vane; (f) The airfoil and inner cooling structure of the guide vane; (g) The airfoil of the guide vane after fabrication; (h) The combustion environment testing of the guide vane [34]

    图  22  RTRC设计的混合陶瓷/CMC涡导叶片[35]

    Figure  22.  Hybrid Ceramic/CMC turbine guide vane developed by RTRC [35]

    图  23  NASA GRC采用增材制造SiC/SiC高压涡轮单/双联/四联涡导叶片[36]

    Figure  23.  Single/Twin-aligned/Four aligned high-pressure turbine guide vanes fabricated using the additive manufacturing (AM) by NASA GRC[36]

    图  24  IHI公司制备并测试了空心SiC/SiC涡导叶片(a)涡导叶片织物结构;(b)制备成型的涡导叶片;(c)加工成型的涡导叶片;(d)涡导叶片CT扫描成像;(e)涡导叶片热循环测试;(f)涡导叶片热冲击测试;(g)IHI公司的IM270燃气轮机;(h)涡导叶片发动机测试[37]

    Figure  24.  IHI fabricated and tested hollow SiC/SiC turbine guide vane (a) fabric arrangement of the guide vane; (b) the guide vane after molded; (c) the guide vane after machining; (d) CT diagram of the guide vane; (e) Thermal cyclic test of the guide vane; (f) thermal shock of the guide vane; (g) IM270 gas turbine engine; (h) engine testing of the guide vane [37]

    图  25  IHI公司设计、制备并测试了实心SiC/SiC涡导叶片(a)涡导叶片三维几何设计图;(b)制备加工成型的涡导叶片;(c)第一次400小时发动机测试、测试后涡导叶片及CT扫描图;(d)第二次862小时发动机测试、测试后涡导叶片及CT扫描图[38]

    Figure  25.  Solid SiC/SiC turbine guide vane designed, fabricated and tested by IHI (a) 3D geometry diagram of guide vane; (b) Guide vane after fabrication and machining; (c) Guide vane and CT scanning after the 1st engine testing; (d) Guide vane and CT scanning after the 2nd engine testing [38]

    图  26  通用电气燃机公司设计与制备的金属/CMC涡导叶片(a)涡导叶片的组成结构;(b)铺层工艺;(c)SiC基体沉积过程;(d)制备加工过程;(e)加工成型并沉积EBC后的涡导叶片[39]

    Figure  26.  Metal/CMC turbine guide vane developed by GE gas power (a) Component and assembly of guide turbine vane; (b) Ply lamination of guide vane; (c) Densification of SiC matrix; (d) Fabrication and processing of guide vane; (e) Guide turbine vane with EBC after machining [39]

    图  27  西北工业大学制备与测试SiC/SiC双联涡导叶片(a)制备加工后的涡导叶片;(b)CT扫描图;(c)热冲击试验;(d)1400℃热冲击试验及试验后涡导叶片形貌;(e)1480℃热冲击试验及试验后涡导叶片形貌[40]

    Figure  27.  SiC/SiC twin turbine guide vane fabricated by Northwestern Polytechnical University (a) Twin guide vane after fabrication and machining; (b) CT scanning diagram of the guide vane; (c) Cyclic thermal shock testing of the guide vane; (d) Surface morphology of the guide vane after 1400 ℃ cyclic thermal shock testing; (e) Surface morphology of the guide vane after 1480 ℃ cyclic thermal shock testing [40]

    图  28  (a)SiC/SiC低压涡轮导叶;(b)涡轮导叶的热疲劳试验;(c)温度载荷谱;(d)试验后导叶表面出现基体凹坑;(e)凹坑附近扫描电镜分析图;(f)裸露的SiC纤维发生氧化[41]

    Figure  28.  (a) SiC/SiC low pressure turbine guide vane; (b) Thermal fatigue experiments of turbine guide vane; (c) Temperature load spectrum;(d) Matrix pits occurred on the vane surface after thermal fatigue experiments; (e) Scanning electronic microscopy photo of the damage region around the matrix pits; (f) Oxidation of exposed SiC fibers [41]

    图  29  (a)无冷却MI-SiC/SiC涡轮转子叶片(淡黄色叶片是有涂层;灰色叶片无涂层);(b)低压涡轮SiC/SiC涡轮转子叶片在F414发动机进行测试(淡黄色叶片是有涂层;灰色叶片无涂层);(c)在巴黎航展展示的涡轮转子叶片[42]

    Figure  29.  (a) Uncooled MI-SiC/SiC turbine blade (yellowish blades are EBC-coated, and gray blades are uncoated); (b) Full stage SiC/SiC blades installed on F414 engine for testing (yellowish blades are EBC-coated, and gray blades are uncoated); (c) SiC/SiC turbine blade presented by GE at the Paris Air Show in[42]

    图  30  SAFRAN公司研发的CERASEP® A40 C低压涡轮转子叶片[43]

    Figure  30.  CERASEP® A40 C low pressure turbine blade developed by SAFRAN[43]

    图  31  NASA GRC与GE公司研制的带冷却涡轮转子叶片(a)叶片内部双腔冷却结构;(b)叶片榫头拔出试验试样;(c)叶片榫头拔出破坏模式1;(d)叶片榫头拔出破坏模式2[44]

    Figure  31.  Cooled turbine blade developed by NASA GRC and GE (a) Airfoil cross-section with double cavity; (b) Flat airfoil with dovetail for pull testing; (c) Damage mode 1 for the blade pull testing; (d) Damage mode 2 for the blade pull testing [44]

    图  32  (a)低压涡轮转子叶片构型;(b)三种榫头设计方案;(c)两种叶身设计方案;(d)叶冠的旋转测试;(e)SiC/SiC低压涡轮转子叶片;(f)转子叶片旋转测试;(g)转子叶片振动疲劳测试[45]

    Figure  32.  (a) Configuration of low pressure turbine blade; (b) Three types of dovetail; (c) Two types of airfoil; (d) Spin test of tip shroud; (e) SiC/SiC low pressure turbine blade; (f) Spin test of blade; (g) Vibration fatigue test of blade[45]

    图  33  (a)涡轮叶片拉伸强度测试试验系统;(b)叶片-A拉伸测试及榫头变形DIC图;(c)叶片-B拉伸测试机榫头变形DIC图[46]

    Figure  33.  (a) Tensile strength test rig for turbine blade; (b) Tensile testing of Blade-A and the deformation of dovetail using DIC; (c) Tensile testing of Blade-B and the deformation of dovetail using DIC [46]

    图  34  (a) C/SiC轮盘CT扫描图;(b) C/SiC叶盘CT扫描图;(c) C/SiC叶盘表面形貌;(d)极向叶盘试验后形貌;(e)准各向同性叶盘试验后形貌;(f)叶根处出现裂纹[47]

    Figure  34.  (a) CT scanning of C/SiC disk; (b) CT scanning of C/SiC blisk; (c) Surface morphology of C/SiC blisk; (d) Surface morphology of polar blisk after testing; (e) Surface morphology of quasi-isotropic blisk after testing; Cracks at blade [47]

    图  35  (a) 3D SiC/SiC涡轮叶盘;(b) 3D SiC/SiC涡轮叶盘旋转测试[48]

    Figure  35.  (a) 3D SiC/SiC turbine blisk; (b) Spin test of 3D SiC/SiC turbine blisk [48]

    图  36  C/C叶盘达到破裂转速瞬间出现周向裂纹[49]

    Figure  36.  Circle crack appearing on C/C turbine blisk approaching burst rotation speed[49]

    图  37  Rolls-Royce公司提出的分体式CMC涡轮叶盘设计[50]

    Figure  37.  Split CMC turbine blisk developed by Rolls-Royce [50]

    图  38  (a) SiC/SiC涡轮叶盘制备(a-1:SiC/SiC涡轮叶盘SiC纤维预制体设计方案;a-2:SiC纤维预制体SiC基体致密化;a-3和a-4:SiC/SiC涡轮叶盘在线加工成型过程);(b) SiC/SiC涡轮叶盘室温超转试验(b-1: 超转破坏后的残骸;b-2:碎块体视镜照片);(c) SiC/SiC涡轮叶盘发动机台架试验考核(c-1:安装在发动机内的SiC/SiC涡轮叶盘;c-2:N=994次n=60000 r/min试验后的轮盘表面状态;c-3: 表面氧化形貌; c-4: 叶盘CT扫描图)[51]

    Figure  38.  (a) Fabrication of SiC/SiC turbine blisk (a-1: Design of SiC fiber preform in SiC/SiC turbine blisk; a-2 SiC matrix densification on the SiC fiber preform; a-3 and a-4: On-line machining process of SiC/SiC turbine blisk); (b) Overspeed rotation testing of SiC/SiC turbine blisk (b-1: Fragments after over rotation damage; b-2: Fragment stereoscopic photo); (c) Engine bench testing of SiC/SiC turbine blisk (c-1: SiC/SiC turbine blisk installed in the test engine; c-2: Surface morphology of SiC/SiC turbine blisk after N=994 tests at n=60000 r/min; c-3: Surface oxidation morphology; c-4: CT scanning of blisk after testing) [51]

    图  39  (a) M53-2发动机CERASEP®A373喷管内调节片(b) M88-2发动机SEPCARBINOX®A262喷管外调节片[52]

    Figure  39.  (a) M53-2 engine exhaust CERASEP®A373 inner flap; (b) M88-2 engine exhaust SEPCARBINOX® A262 outer flap [52]

    图  40  CERASEP® A410和SEPCARBINOX® A500 密封片地面发动机试验与飞行试验 (a) CMCs密封片安装在F100-PW-229发动机上进行地面测试[57];(b) CMCs密封片经过发动机地面测试后表面形貌及热成像图[57];(c) CMCs密封片发动机地面测试后剩余强度试验[57];(d) SEPCARBINOX® A500密封片首次在F16战斗机上进行了测试[58];(e) SEPCARBINOX® A500密封片在F15战斗机上进行了飞行测试[58];(f) SEPCARBINOX® A500密封片表面光学观察[58];(g) SEPCARBINOX® A500密封片热成像观察[58];(h)剩余强度测试11个试样的拉伸应力应变曲线[58];(i) 试样拉伸断口显微形貌[58]

    Figure  40.  Ground engine testing and flight testing of CERASEP® A410 and SEPCARBINOX® A500 seals (a) Ground F100-PW-229 engine testing of CMCs seals[57]; (b) Surface morphology and thermography image of CMCs seals after engine testing[57]; (c) Residual strength testing of CMCs seals after engine testing[57]; (d) First flight testing of SEPCARBINOX® A500 seals on F16 fighter aircraft[58]; (e) Flight testing of SEPCARBINOX® A500 seals on F15 fighter aircraft[58]; (f) Optical photograph of SEPCARBINOX® A500 seal[58]; (g) Thermography image of SEPCARBINOX® A500 seal[58]; (h) Tensile stress-strain curves of 11 samples for residual strength testing[58]; (i) Microstructure morphology of fracture tensile specimen[58]

    图  41  (a) F414-GE-400发动机尾喷口调整片与密封片工作示意图;(b) F414-GE-400发动机尾喷口安装SiC/C调节片与密封片;(c) F414-GE-400发动机安装GE公司的氧化物/氧化物密封片与调节片[53]

    Figure  41.  (a) Schematic of nozzle flap and seal on F414-GE-400; (b) SiC/C flaps and seals installed on F414-GE-400; and (c) Oxide/Oxide flaps and seals installed on F414-GE-400[53]

    图  42  (a) CERASEP® A40 C混合器;(b) CERASEP® A40 C混合器在CFM56-5 C发动机上进行地面测试;(c) CERASEP® A40 C中心体;(d)CERASEP® A40 C中心体在A320飞机进行飞行验证[43][59]

    Figure  42.  (a) CERASEP® A40 C mixer; (b) Ground testing of CERASEP® A40 C mixer on CFM56-5 C engine; (c) CERASEP® A40 C centerbody; (d) Flight demonstration of CERASEP® A40 C centerbody on A320[43][59]

    图  43  (a)氧化物/氧化物中心体;(b)氧化物/氧化物外环;(c)组装后的排气系统;(d)Trent 1000发动机地面试车台;(e)氧化物/氧化物排气系统在Trent 1000发动机开展地面测试;(f)氧化物/氧化物排气系统在B787飞机进行飞行测试[60][61]

    Figure  43.  (a) Oxide/Oxide centerbody; (b) Oxide/Oxide outer ring; (c) Oxide/Oxide exhaust system assembly; (d) Trent 1000 ground engine bench; (e) Ground testing of Oxide/Oxide exhaust system on Trent 1000; (f) Flight testing of Oxide/Oxide exhaust system on B787[60][61]

    图  44  缩比和全尺寸氧化物/氧化物排气系统无损检测、性能测试、声测试、振动测试(室温/高温)[62]

    Figure  44.  Nondestructive detection, performance testing, acoustic testing and vibration testing (room temperature/elevated temperature) of subscale and fullscale Oxide/Oxide exhaust system [62]

    图  45  (a)采用氧化物/氧化物排气系统的Passport 20发动机及环球7500和8000公务机;(b)金属模具经过特殊脱模处理后,按照指定的铺层要求铺放在混合器模具上;(c)将铺设好的叠层抽真空,转移到热压罐中,在高温高压下固化;(d)固化后,取出真空袋,将零件脱模,然后转移到烧结炉;(e)将零件从烧结炉中取出并冷却,在五轴数控铣床上进行加工;(f)对零件进行表面测量等质量控制;(g)对零件进行无损检测;(h)在固化、加工、检查后,将金属零件与CMC部件连接起来;(i)氧化物/氧化物排气系统安装在Passport 20发动机上[63]

    Figure  45.  (a) The Passport 20 engine adopting Oxide/Oxide exhaust system powering Global 7500 and 8000 business jet; (b) After the metal molds are treated with a special mold release, the cut patterns are hand-laid on the mixer molds in the specified ply schedule; (c) The finished layups are vacuum bagged and transferred to an autoclave for cure under high heat and pressure; (d) After cure, the vacuum bag is removed, the parts are de-molded and then transferred to the sintering oven; (e) After the parts are removed from the sintering furnace and cooled, they are machined on this 5-axis CNC milling machine; (f) Quality control inspection includes surface measurements on the parts; (g) Nondestructive inspection on the parts; (h) Following cure, machining and inspection, metal details and ceramic components are joined; (i) Oxide/Oxide exhaust system is installed on the Passport 20 engine [63]

    图  46  (a)CERASEP®A410火焰稳定器;(b)热疲劳测试;(c)力学性能测试[43]

    Figure  46.  (a) CERASEP®A410 flame holder; (b) Thermal fatigue testing;(c) Mechanical testing[43]

    图  47  CMC部件适航性设计及符合性验证方法[65]

    Figure  47.  Airworthiness compliance design and validation methods for CMC components[65]

    图  48  料浆浇注-熔渗SiC/SiC涡轮导向叶片适航性设计及符合性验证流程[65]

    Figure  48.  Airworthiness design and compliance validation of slurry cast-MI SiC/SiC turbine guide vane[65]

    表  1  陶瓷基复合材料(CMC)在航空发动机热端部件的应用以及采用的制备工艺

    Table  1.   Application of Ceramic-Matrix Composite (CMC) in hot-section components of aero engines and related fabrication process

    YearCountryProgramsInstitute & CompanyCMCsFabricationEnginesComponentsTRL
    1989FranceSociété Européenne de Propulsion (SEP)CERASEP® A373 NicalonTM SiC/[Si-B-C]Chemical Vapor Infiltration (CVI)M53-2Nozzle Inner Flap8
    1990USAHSCTNASA Gleen Research Center (GRC),
    P&W, Honeywell
    2 D SylramicTM SiC/SiCSlurry Cast- Melt Infiltration (MI)Combustor Liner, Heatshield, Sidewall4
    1992-2004USACSGTDoE, Solar Turbines, B.F. Goodrich Aerospace (BFG), Dupont Lanxide Composites, Inc. (DLC), UTRC, AlliedSignal Composites, Inc. (ACI), Honeywell Advanced Composites, Inc. (HACI), ACK-COCI2 D CG NicalonTM SiC/SiC
    2 D Hi-NicalonTM SiC/SiC 2 D
    2 D NextelTM 720/Alumina
    CVI
    Slurry Cast MI, Slurry Infiltration
    Solar Centaur 50 sCombustor Liner5
    1994JapanResearch Institute of Advanced Material Gas-Generator Co., LtdTyrannoTM SiC/SiCCVI+PIP (polymer infiltration and pyrolysis)Turbine Blisk4
    1996FranceSEPSEPCARBINOX® A262 C/SiCCVIM88-2Nozzle Outer Flap9
    1998-1999USAGESiC/SiCPrepreg-MIGE 7 FACombustor Liner5
    1999JapanIshikawajima-Harima Heavy Industries (IHI)3D Si-Ti-C-O TyrannoTM SiC/SiCCVI+PIPTurbine Blisk4
    2000USAIHPTETGE, AllisonSiC/SiCPrepreg-MIXTC76/3Combustor Liner4
    2000USANASA GRC,
    NASA Marshall Space Flight Center (MSFC)
    C/SiCCVITurbine Blisk4
    2001JapanJapan Defense Agency - Propulsion Division
    Kawasaki Heavy Industries Ltd.
    3D TyrannoTM ZMI SiC/SiCPIP50 kN-thrust class augmented turbofan engineReverse-flow annular combustor liner4
    2001JapanJapan Aerospace Exploration Agency (JAXA)3D C/CCVI+PIPTurbine Blisk4
    2003USAUEET
    TECH56
    GEHyperComp® SiC/SiCSlurry Cast-MICFM56Combustor liner5
    2004-2006USAUEETNASA GRC, GE, GoodrichY-woven SylramicTM SiC/SiCSlurry Cast-MITurbine Guide Vane5
    2005USAUEETP&W,
    United Technologies Research Center (UTRC)
    Y-woven SylramicTM SiC/SiCSlurry Cast-MIFT8Turbine Guide Vnae (Hollow)5
    2005FranceSnecma Propulsion Solide (SPS)SEPCARBINOX® A500 C/[Si-B-C]CVIF100-PW-229Nozzle Flap8
    2005-2015FranceSAFRANCERASEP® A40 C SiC/SiCCVICFM56Mixer & Centebody9
    2007FranceSAFRANCERASEP® A410 Hi-NicalonTM SiC/[Si-B-C]CVIFlame holder in Afterburner5
    2008-2010FranceSAFRANCERASEP® A40 C SiC/SiCCVICFM56-5 BLPT blade6
    2008-2015USAGE, US Army Aviation Applied Technology Directorate (AATD)SiC/SiCPrepreg-MIF414LPT blade5
    2009FranceTECH56SAFRANCERASEP®A410CVICFM56Combustor Liner6
    2009GermanyHiPOCRolls-Royce Germany
    EADS Innovation Works
    ASTRIUM Space Transportation
    German Aerospace Center, DLR
    WHIPOX(Wound Highly Porous Oxide Matrix CMC)
    UMOXTM
    OXIPOL®(Oxide CMC based on Polymers)
    Slurry Infiltration MI
    PIP
    Tubular Combustor Liner4
    2010USAEPRNASA GRC, GE, P&WHiPerCompTM Gen-II 2 D Hi-NicalonTM Type S SiC/SiCPrepreg-MIOuter and Inner Combustor Liners4
    2010USAUTRC, P&W Canada2 D TyrannoTM SA SiC/SiCSlurry-Cast MIPW 206Combustor Dome, Large Entry Duct (LED), Small Entry Duct (SED)4
    2010USAERANASA GRC, GE, HyperthermHi-NicalonTM Type S SiC/SiCPrepreg-MI
    CVI
    HPT Guide Vane5
    2010USAERANASA GRC, Rolls-Royce LibertyWorks®(RRLW)
    AFRL, ATK-COIC, Support Service LLC
    2 D NextelTM 610/ASSlurry InfiltrationMixer6
    2010-2012JapanIHI2 D/3D TyrannoTM ZMI SiC/SiCCVI+SPI(solid phase infiltration)+PIPIM270Turbine Guide Vane (Hollow)5
    2011USAGE2 D NextelTM 720/AluminaSlurry InfiltrationF414Nozzle Seals9
    2014USAT3NASA GRCSylramicTM-iBN/SiCCVI+PIPTurbine Guide Vane (Hollow)5
    2014USACLEENBoeing, ATK-COIC, Albany Engineered Composites (AEC), Rolls-Royce2 D NextelTM 610/ASSlurry InfiltrationTrent 1000Nozzle & Centerbody7
    2015USAGEHyperComp® SiC/SiCPrepreg-MILEAP-1 ATurbine Shroud9
    2015-2019ChinaAECC Commercial Aircraft Engine Co., LtdSiC/SiCCVIHPT Guide Vane3
    2015-2021JapanIHI, JAXAHi-NicalonTM Type S SiC/SiCCVI+MIF7-10Turbine Shroud5
    2015JapanIHI3D TyrannoTM ZMI SiC/SiCCVI+SPI+PIPIM270Turbine Guide Vane (Solid)5
    2015USAA Fully NonmetallicGas Turbine Engine Enabled by Additive ManufacturingNASA GRCSiC/SiCBinder Jet ProcessSingle/Twin-aligned/Four aligned HPT Guide Vane3
    2016USAGEHyperComp® SiC/SiCPrepreg-MILEAP-1 BTurbine Shroud9
    2016JapanIHITyrannoTM ZMI SiC/SiCCVI+SPI+PIPLPT blade4
    2016
    2018
    USAGE2 D NextelTM 720/AluminaSlurry InfiltrationPassport 20Mixer, Centerbody, Cowling9
    2018USARaytheon Technologies Research Center (RTRC)SiC/SiCFT4000Turbine Guide Vane (Hollow)4
    2018USAGEHyperComp® SiC/SiCPrepreg-MIGE-9 XInner and Outer Combustor Liner, Turbine Shroud9
    2020ChinaBeihang University (BUAA)2 D plain-woven SiC/SiCCVILPT Guide Vane3
    2021USAGE Gas PowerSiC/SiCPrepreg-MIHATurbine Guide Vane (Hollow)3
    2021ChinaNorthwestern Polytechnical University (NPU)
    AECC Hunan Aviation Powerplant Research Institute
    Nanjing University of Aeronautics and Astronautics (NUAA)
    Xiangtan University
    Nanchang Hangkong University
    2 D plain-woven Amosic-3TM SiC/SiCCVITwin-aligned HPT Turbine Guide Vane (Hollow)4
    2022ChinaNorthwestern Polytechnical University (NPU)
    AECC Hunan Aviation Powerplant Research Institute
    Nanjing University of Aeronautics and Astronautics (NUAA)
    Wuhan University of Technology
    Nanchang Hangkong University
    Spider Web Structure (SWS) SiC/SiCCVITurbine Blisk7
    2023ChinaBeihang University (BUAA)SiC/SiCCVILPT blade4
    下载: 导出CSV

    表  2  典型CVI/PIP/MI SiC/SiC物理和力学属性

    Table  2.   Physical and mechanical properties of CVI/PIP/MI SiC/SiC

    Parameters CERASEP®A400 CERASEP®A410 CERASEP®A415 CERASEP®A416 N22® N24® N26® HiperComp®/
    Slurry Cast
    HiperComp®/
    Prepreg
    AS-720 N
    Fiber NicalonTM Hi-NicalonTM Hi-NicalonTM Hi-NicalonTM S Sylramic Sylramic-iBN Sylramic-iBN Hi-Nicalon Hi-Nicalon Nextel 720
    Matrix Si-B-C Si-B-C Si-B-C Si-B-C SiC SiC SiC SiC SiC AS
    Fiber volume fraction/(%) 35 35 40 40 36 36 36 35-38 22-24 44
    Density/(g/cm3) 2.2-2.3 2.2-2.3 2.4-2.5 2.4-2.5 2.85 2.76 2.52 2.70
    2.66(1200℃)
    2.80
    2.76(1200℃)
    2.73
    Porosity/(%) 12-14 12-14 5-7 5-7 2 2 14 6 <2 48
    Elastic Modulus /(GPa) 180(RT) 220(RT)
    210(873 K)
    205(1473 K)
    230(RT) 240(RT) 250(RT) 220(RT) 200(RT) 196(RT)
    144(1200℃)
    285(RT)
    243(1200℃)
    76(RT)
    Ultimate Tensile Strength/(MPa) 300(RT) 315(RT)
    320(873 K)
    325(1473 K)
    370(RT) 360(RT) 400(RT) 310(RT) 330(RT) 358(RT)
    271(1200℃)
    321(RT)
    224(1200℃)
    195(RT)
    Fracture strain/(%) 0.5(RT) 0.5(RT)
    0.6(873 K)
    0.6(1473 K)
    0.6(RT) 0.52(RT) 0.35(RT) 0.30(RT) 0.40(RT) 0.74(RT)
    0.52(1200℃)
    0.89(RT)
    0.31(1200℃)
    Interlaminar Shear Strength/(MPa) 30 ± 5 70(RT) 135(RT)
    124(1200℃)
    Thermal Expansion Coefficient
    (//)/(10-6/K)
    4.5(RT) 4.5(RT) 4.5(RT) 4.5(RT) 4.34(RT) 3.73(RT) 6.3(RT)
    Thermal Conductivity Coefficient (//) /(W/m.K) 7(1000℃) 7(1000℃) 8(1000℃) 9(1000℃) 30.8(RT)
    14.8(1200℃)
    33.8(RT)
    14.7(1200℃)
    2.0(RT)
    Thermal Conductivity Coefficient (⊥)/(W/m.K) 2(1000℃) 2(1000℃) 5(1000℃) 6(1000℃) 24(204℃)
    15(1204℃)
    41(204℃)
    17(1204℃)
    26(204℃)
    10(1204℃)
    22.5(RT)
    11.8(1200℃)
    24.7(RT)
    11.7(1200℃)
    2.0(RT)
    下载: 导出CSV

    表  3  陶瓷基复合材料适航规章、咨询通告、工业手册/技术出版物与力学/物理性能测试标准

    Table  3.   Airworthiness Regulations, Advisory Circular, Industry Specifications and Technical Reports, and Mechanical Physical Properties Testing Standards for CMCs

    Airworthiness Regulations
    CFR 33.15[67] Materials
    CFR 33.19[67] Durability
    CFR 33.27[67] Turbine, compressor, fan and turbosupercharger rotor overspeed
    CFR 33.62[67] Stress analysis
    CFR 33.70[67] Engine life – limited parts
    CFR 33.75[67] Safety analysis
    Advisory Circular
    AC 20-107 B[68] Composite Aircraft Structure
    AC 21-26 A[69] Quality Control for the Manufacture of Composite Structures
    AC 25.571-1 D[70] Damage Tolerance and Fatigue Evaluation of Structure
    AC 25.1309-1 A[71] System Design and Analysis
    Industry Specifications and Technical Reports
    CMH−17 Vol. 5[7] Ceramic Matrix Composites
    ARP 5150 A [72] Safety Assessment of Transport Airplanes in Commercial Service
    PS-ANM-25-05[73] Transport Airplane Risk Assessment Methodology Handbook
    Mechanical Testing Standards
    ASTM C1275-18[74] Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature
    ASTM C1359-13[75] Standard Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Elevated Temperatures
    ASTM C1468-19 a[76] Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
    ASTM C1292-22[77] Standard Test Method for Shear Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures
    ASTM C1425-19[78] Standard Test Method for Interlaminar Shear Strength of 1 D and 2 D Continuous Fiber-Reinforced Advanced Ceramics at Elevated Temperatures
    ASTM C1292-22[79] Standard Test Method for Shear Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures
    ASTM C1358-18[80] Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross Section Test Specimens at Ambient Temperatures
    ASTM C1341-13[81] Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites
    Physical Properties Testing Standards
    CEN ENV 1159-1[82] Advanced technical ceramics - Ceramic composites - Thermophysical properties - Part 1: Determination of thermal expansion
    CEN ENV 1159-2[83] Advanced technical ceramics - Ceramic composites - Thermophysical properties - Part 2: Determination of thermal diffusivity
    CEN ENV 1159-3[84] Advanced Technical Ceramics - Ceramic Composites, Thermophysical Properties - Part 3: Determination of Specific Heat Capacity
    下载: 导出CSV
  • [1] PADTURE NP. Advanced structural ceramics in aerospace propulsion[J]. Nature Mateirals, 2016, 15: 804-809. doi: 10.1038/nmat4687
    [2] SCARPONI C. Carbon-carbon composites in aerospace engineering [M]// RANA S, FANGUEIRO R. Advanced composite materials for aerospace engineering. Amsterdam: Elsevier, 2016: 385-395.
    [3] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science & Technology, 2004, 64(2): 155-170.
    [4] LI LB. Ceramic matrix composites: Lifetime and strength prediction under static and stochastic loading [M]. Amsterdam: Elsevier, 2023: 10-30.
    [5] STEIBEL J. Ceramic Matrix Composites taking flight at GE Aviation[J]. American Ceramic Society Bulletin, 2019, 98(3): 30-33.
    [6] Li LB. High temperature mechanical behavior of ceramic-matrix composites [M]. Weinheim: Wiley, 2021: 25-40.
    [7] CMH-17 Organization. Composite materials handbook Volume 5: Ceramic matrix composites [M]. SAE International, Warrendale, PA, USA, 2017.
    [8] MORSCHER GN. Fiber-reinforced ceramic matrix composites for aero engines [M] // Encyclopedia of aerospace engineering. Weinheim: Wiley, 2010: 1-10.
    [9] MORSCHER GN. Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications[J]. Journal of the European Ceramic Society, 2010, 30: 2209-2211. doi: 10.1016/j.jeurceramsoc.2010.01.030
    [10] BHATT RT. Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix [C]. // YUTAKA K. Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. New York: ECI, 2017: 1-17.
    [11] BREWER D, OJARD G, GIBLER M. Ceramic matrix composite combustor liner rig test [C]// ASME Turbo Expo 2010: Power for Land, Sea and Air. New York: ASME, 2000: 1-6.
    [12] VERRILLI MJ, MARTIN LC, BREWER DN. RQL sector rig testing of SiC/SiC combustor liners: NASA/TM-2002-211509, [R]. Washington: NASA, 2002.
    [13] VAN ROODE M, PRICE J, KIMMEL J, MIRIYALA N, et al. Ceramic matrix composite combustor liners: a summary of field evaluations[J]. Journal of Engineering Gas Turbines Power 2007, 129: 21–30.
    [14] ZHU DM, HALBIG MC, HURST JB. Development and high pressure burner rig demonstration of SiC/SiC ceramic matrix composite combustor liners with environmental barrier coatings [C]// OPEKA M. The 37th Annual Conference on Composites, Materials, and Structures, Washington, DC: USACA. 2013: 1-12.
    [15] BHATIA T, JARMON D, SHI J, et al. CMC combustor liner demonstration in a small helicopter engine [C]// ASME Turbo Expo 2010: Power for Land, Sea and Air. New York: ASME, 2010: 509-513.
    [16] MISRA AK. Development of advanced engine materials in NASA ultra efficient engine technology program [C]// The 15th International Symposium on Air Breathing Engines Conference. Indianapolis: ISABE, 2001.
    [17] NOE ME. CMC combustor liner demonstration [C]// NASA Seal/Secondary Air System Workshop, Washington: NASA, 2000.
    [18] DICARLO JA, VAN ROODE M. CMC developments for gas turbine engine hot section components [C]// ASME Turbo Expo 2006: Power for Land, Sea and Air. New York: ASME, 2006: 1-11.
    [19] LEE CM, CHANG C, KRAMER S, et al. NASA project develops next generation low-emissions combustor technologies [C]// The 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 1-17.
    [20] LACOMBE A, SPRIET P, ALLARIA A, et al. Ceramic matrix composites to make breakthroughs in aircraft engine performance [C]// The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston: AIAA, 2009: 1-11.
    [21] GERENDAS M, WILHELMI C, MACHRY T, et al. Development and validation of oxide/oxide CMC combustors within the HiPOC program [C]// ASME Turbo Expo 2013: Power for Land, Sea and Air. New York: ASME, 2013: 1-18.
    [22] BEHRENDT T, HACKEMANN S, MECHNICH P, et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(3): 031507. doi: 10.1115/1.4034515
    [23] SUZUKI Y, SATOH T, KAWANO M. Combustion test results of an uncooled combustor with ceramic matrix composite liner [C]// ASME Turbo Expo 2001: Power for Land, Sea and Air. New York: ASME, 2001: 1-8.
    [24] MATSUDA T, AKIKAWA N, SATOH T. Manufacturing of 3-D woven SiCf/SiC composite combustor liner[J]. Ceramic Engineering and Science Proceedings, 2001, 22: 463-470.
    [25] LUTHRA KL. Development and commercialization of GE’s ceramic matrix composites (CMCs) for aircraft engines [C]// YUTAKA K. Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. New York: ECI, 2017.
    [26] WATANABE F, YAMANAKA S, NAKAMURA T. Demonstration testing for 1400 ℃ class CMC shroud with JAXA F7 turbofan engine[J]. IHI Engineering Review, 2023, 26(2): 1-6.
    [27] CALOMINO A, VERRILLI M. Ceramic matrix composite vane subelement fabrication [C]// ASME Turbo Expo 2004: Power for Land, Sea and Air. New York: ASME, 2004: 401-407.
    [28] VERRILLI M, CALOMINO A, Craig Robinson R. Ceramic matrix composite vane subelement testing in a gas turbine environment [C]// ASME Turbo Expo 2004: Power for Land, Sea and Air. New York: ASME, 2004: 393-399.
    [29] HALBIG M, JASKOWIAK MH, KISER JD, ZHU DM. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications [C]// The 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Reston: AIAA, 2013: 1-11.
    [30] ZHU DM. Environmental barrier coating development for SiC/SiC ceramic matrix composites: Recent advances and future directions: NASA/20160010286 [R]. Washington: NASA, 2016.
    [31] ZHU DM, HARDER B, BHATT R, KISER D, WIESNER VL. Advanced environmental barrier coating development for SiC/SiC ceramic matrix composite components: NASA/20170009570 [R]. Washington: NASA, 2017.
    [32] HURST J. NASA Transformational tools and technologies project: 2700 ℃ CMC/EBC technology challenge [C]// ASME Turbo Expo 2018: Power for Land, Sea and Air. New York: ASME, 2018: 1-12.
    [33] VEDULA V, SHI J, JARMON D, et al. Ceramic matrix composite turbine vanes for gas turbine engines [C]// ASME Turbo Expo 2005: Power for Land, Sea and Air. New York: ASME, 2005: 247-251.
    [34] ZHU DM, HALBIG M. Advanced environmental barrier coating and SA Tyrannohex SiC composites integration for improved thermomechanical and environmental durability NASA/20180002072 [R]. Washington: NASA, 2018.
    [35] HOLOWEZAK J, ATTRIDGE P, CROTEAU P, KENNEDY M, MARTIN T. Progress in design of novel hybrid CMC turbine vanes for advanced turbines [C]// the 45th Annual Composites, Materials and Structures Conference, East Hartford: United Technologies Research Center, 2022.
    [36] HALBIG MC, GRADY JE, SINGH M, RAMSEY J, PATTERSON C, SANTELLE T. A fully nonmetallic gas turbine engine enabled by additive manufacturing. Part III: Additive manufacturing and characterization of ceramic composites: NASA/TM-2015-218892 [R]. Washington: NASA, 2015.
    [37] WATANABE F, NAKAMURA T, MIZOKAMI Y. Design and testing for ceramic matrix composite turbine vane [C]// ASME Turbo Expo 2017: Power for Land, Sea and Air. New York: ASME, 2017: 1-8.
    [38] WATANABE F, MANABE T. Engine testing for the demonstration of a 3D-woven based ceramic matrix composite turbine vane design concept [C]// ASME Turbo Expo 2018: Power for Land, Sea and Air. New York: ASME, 2018: 1-9.
    [39] DELVAUS J, WEBER J. High temperature CMC nozzles for 65% efficiency: DE-FE0024006 [R]. Washington: DoE, 2021.
    [40] LIU X, GUO X, XU Y, LI L, ZHU W, ZENG Y, et al. Cyclic thermal shock damage behavior in CVI SiC/SiC high-pressure turbine twin guide vanes[J]. Materials, 2021, 14: 6104. doi: 10.3390/ma14206104
    [41] 刘鑫, 乔逸飞, 董少静, 申秀丽. SiCf/SiC陶瓷基复合材料涡轮导叶热疲劳试验研究与损伤分析[J]. 燃气涡轮试验与研究, 2020, 33(4): 26-30. doi: 10.3969/j.issn.1672-2620.2020.04.005

    LIU X, QIAO YF, DONG SJ, SEHN XL. Therma fatigue test and damage analysis of SiCf/SiC ceramic matrix composite turbine guide vane[J]. Gas Turbine Experiment and Research, 2020, 33(4): 26-30. doi: 10.3969/j.issn.1672-2620.2020.04.005
    [42] CORMAN GS, LUTHRA KL. Development history of GE's prepreg melt infiltrated ceramic matrix composite material and applications [M]// BEAUMONT PWR, ZWEBEN CH. Comprehensive composite materials II. Amsterdam: Elsevier, 2018: 325-338.
    [43] SPRIET P. CMC applications to gas turbines [M]. BANSAL NP, LAMON J. Ceramic Matrix Composites - Materials, Modeling and Technology. New York: John Wiley & Sons, Inc. , 2014: 593-608.
    [44] DALE D, RUSCHAU A. NASA HyTEC CMC turbine blade durability: NASA/20230008139 2023 [R]. Washington: NASA, 2023.
    [45] WATANBE F, NAKAMURA T, SHINOHARA K. The application of ceramic matrix composite to low pressure turbine blade [C]// ASME Turbo Expo 2016: Power for Land, Sea and Air. New York: ASME, 2016: 1-9.
    [46] 石多奇, 刘长奇, 程震, 等. SiC/SiC 复合材料涡轮叶片结构设计及静强度评价[J]. 航空动力学报, 2023, 38(1): 1-12.

    SHI Duoqi, LIU Changqi, CHENG Zhen, et al. Structural design and static strength evaluation of SiC/SiC-composite turbine blade[J]. Journal of Aerospace Power, 2023, 38(1): 1-12.
    [47] EFFINGER MR, CLINTON RG, DENNIS J, et al. Fabrication and testing of ceramic matrix composite rocket propulsion components: NASA/20010067258 [R]. Washington: NASA, 2001.
    [48] ARAKI T, SUZUMURA N, MASAKI S, NATSUMURA T, et al. Manufacturing of ceramic matrix composite rotor for advanced gas-generator[J]. Ceramic Engineering and Science Proceedings, 1998, 19(4): 241-248.
    [49] OGAWA A, HASHINOTO R, ZHOU F. Rotational test of C/C blisk rotators [C]// Proceedings of the 2001 International Conference on Composite Materials, ICCM, 2001: ID-1442.
    [50] FREEMAN T J, ENGEL T Z. Turbine blisk including ceramic matrix composite blades and methods of manufacture [P]. US Patent: 10280768B2, 2019-05-07.
    [51] 刘小冲, 徐友良, 李坚, 等. 陶瓷基复合材料涡轮叶盘设计、制备与考核验证[J]. 复合材料学报, 2023, 40(3): 1696-1706.

    LIU X, XU Y, LI J, et al. Design, fabrication and testing of ceramic-matrix composite turbine blisk[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1696-1706(in Chinese).
    [52] LACOMBE A, SPRIET P, ALLARIA A, BOUILLON E, HABAROU G. Ceramic matrix composites to make breakthroughs in aircraft engine performance [C]. // The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston: AIAA, 2009: 1-11.
    [53] STAEHLER JM, ZAWADA LP. Performance of four ceramic-matrix composite divergent flap inserts following ground testing on an F110 turbofan engine[J]. Journal of the American Ceramic Society, 2000, 83: 1727-1738. doi: 10.1111/j.1151-2916.2000.tb01457.x
    [54] BOUILLON EP, OJARD GC, HABAROU G, SPRIET PC, et al. Characterization and nozzle test experience of a self sealing ceramic matrix composite for gas turbine applications [C] // ASME Turbo Expo 2002: Power for Land, Sea and Air. New York: ASME, 2002: 15-21.
    [55] BOUILLON EP, SPRIET PC, HABAROU G, ARNOLD T, et al. Engine test experience and characterization of self sealing ceramic matrix composites for nozzle applications in gas turbine engines [C] // ASME Turbo Expo 2003: Power for Land, Sea and Air. New York: ASME, 2003: 677-683.
    [56] BOUILLON EP, SPRIET PC, HABAROU G, LOUCHET C, et al. Engine test and post engine test characterization of self sealing ceramic matrix composites for nozzle applications in gas turbine engines [C] // ASME Turbo Expo 2004: Power for Land, Sea and Air. New York: ASME, 2004: 409-416.
    [57] BOUILLON E, OJARD G, OUYANG Z, ZAWADA L, et al. Post engine test characterization and flight test experience of self sealing ceramic matrix composites for nozzle seals in gas turbine engines [C] // ASME Turbo Expo 2005: Power for Land, Sea and Air. New York: ASME, 2005: 1-8.
    [58] ZAWADA L, OJARD G, BOUILLON E, SPRIET P. Evaluation of ceramic matrix composite exhaust nozzle divergent seals [C] // The 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Reston: AIAA, 2007: 1-10.
    [59] LACOMBE A, SPRIET P, ALLARIA A, BOUILLON E, HABAROU G. Ceramic matrix composites to make breakthroughs in aircraft engine performance [C] // The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston: AIAA, 2009.
    [60] STEYER TE. Shaping the future of ceramics for aerospace applications[J]. International Journal of Applied Ceramic Technology, 2013, 10(3): 389-394. doi: 10.1111/ijac.12069
    [61] WILSEY C, KOLDEN J. Boeing CLEEN II program update [R]. Washington: FAA, 2021.
    [62] KISER JD, BANSAL NP, SOKHEY J, HEFFERNAN T, et al. Oxide/Oxide ceramic matrix composite (CMC) exhaust mixer development in the NASA environmentally responsible aviation (ERA) project [C]// ASME Turbo Expo 2015: Power for Land, Sea and Air. New York: ASME, 2015: 1-15.
    [63] CompositesWorld: Ceramic matrix composites: Hot engine solution. [EB/OL]. https://www.compositesworld.com/articles/ceramic-matrix-composites-hot-enginesolution, 2017, 21.12.2021
    [64] LI LB, TINIAKOV D. Airworthiness design of composite structures [M]. Beijing: Beihang University Press, 2021: 10-30.
    [65] LI LB. Durability of ceramic matrix composites [M]. Amsterdam: Elsevier, 2020: 25-50.
    [66] LI LB. Micromechanics of ceramic-matrix composites at elevated temperatures [M]. Singapore: Springer Nature, 2024: 1-25.
    [67] Federal Aviation Administration. Part 33 Airworthiness standards: aircraft engines [S]. Washington, D. C. , USA: Federal Aviation Administration, 2024.
    [68] Federal Aviation Administration. AC 20-107B, Composite aircraft structure [S]. Washington, D. C. , USA: Federal Aviation Administration, 2009.
    [69] Federal Aviation Administration. AC 21-26A, Quality control for the manufacture of composite structures [S]. Washington, D. C. , USA: Federal Aviation Administration, 2010.
    [70] Federal Aviation Administration. AC 25.571-1D, Damage tolerance and fatigue evaluation of structure [S]. Washington, D. C. , USA: Federal Aviation Administration, 2011.
    [71] Federal Aviation Administration. AC 25.1309-1A, System design and analysis [S]. Washington, D. C. , USA: Federal Aviation Administration, 1988.
    [72] SAE International. ARP 5150A: Safety assessment of transport airplanes in commercial service [S]. Warrendale, PA, USA: SAE International, 2019.
    [73] Federal Aviation Administration. PS-ANM-25-05, Transport airplane risk assessment methodology handbook [S]. Washington, D. C. , USA: Federal Aviation Administration, 2015.
    [74] ASTM International. ASTM C1275-18. Standard test method for monotonic tensile behavior of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperature [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2018.
    [75] ASTM Intnertaional. ASTM C1359-13, Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at elevated temperatures [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2013.
    [76] ASTM Intnertaional. ASTM C1468-19a, Standard test method for transthickness tensile strength of continuous fiber-reinforced advanced ceramics at ambient temperature [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2019.
    [77] ASTM International. ASTM C1292-22, Standard test method for shear strength of continuous fiber-reinforced advanced ceramics at ambient temperatures [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2022.
    [78] ASTM International. ASTM C1425-19, Standard test method for interlaminar shear strength of 1D and 2D continuous fiber-reinforced advanced ceramics at elevated temperatures [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2019.
    [79] ASTM International. ASTM C1292-22, Standard test method for shear strength of continuous fiber-reinforced advanced ceramics at ambient temperatures [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2022.
    [80] ASTM International. ASTM C1358-18, Standard test method for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross section test specimens at ambient temperatures [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2018.
    [81] ASTM International. ASTM C1341-13, Standard test method for flexural properties of continuous fiber-reinforced advanced ceramic composites [S]. West Conshohocken, PA, USA: ASTM Intnertaional, 2013.
    [82] Comite Europeen de Normalisation. CEN ENV 1159-1, Advanced technical ceramics - Ceramic composites - Thermophysical properties - Part 1: Determination of thermal expansion [S]. Brussels, Belgium: Comite Europeen de Normalisation, 2022.
    [83] Comite Europeen de Normalisation. CEN ENV 1159-2, Advanced technical ceramics - Ceramic composites - Thermophysical properties - Part 2: Determination of thermal diffusivity [S]. Brussels, Belgium: Comite Europeen de Normalisation, 2003.
    [84] Comite Europeen de Normalisation. CEN ENV 1159-3, Advanced Technical Ceramics - Ceramic Composites, Thermophysical Properties - Part 3: Determination of Specific Heat Capacity [S]. Brussels, Belgium: Comite Europeen de Normalisation, 2003.
  • 加载中
计量
  • 文章访问数:  290
  • HTML全文浏览量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-09
  • 录用日期:  2024-06-18
  • 网络出版日期:  2024-07-01

目录

    /

    返回文章
    返回