留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强再生骨料固载混菌的混凝土裂缝自修复性能

花素珍 张家广 高沛 范月东 周爱娟

花素珍, 张家广, 高沛, 等. 增强再生骨料固载混菌的混凝土裂缝自修复性能[J]. 复合材料学报, 2023, 40(11): 6299-6310. doi: 10.13801/j.cnki.fhclxb.20230222.006
引用本文: 花素珍, 张家广, 高沛, 等. 增强再生骨料固载混菌的混凝土裂缝自修复性能[J]. 复合材料学报, 2023, 40(11): 6299-6310. doi: 10.13801/j.cnki.fhclxb.20230222.006
HUA Suzhen, ZHANG Jiaguang, GAO Pei, et al. Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6299-6310. doi: 10.13801/j.cnki.fhclxb.20230222.006
Citation: HUA Suzhen, ZHANG Jiaguang, GAO Pei, et al. Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6299-6310. doi: 10.13801/j.cnki.fhclxb.20230222.006

增强再生骨料固载混菌的混凝土裂缝自修复性能

doi: 10.13801/j.cnki.fhclxb.20230222.006
基金项目: 山西省高等学校科技成果转化培育项目(2020CG023);山西省应用基础研究计划面上青年项目(201901D211087)
详细信息
    通讯作者:

    张家广,博士,副教授,研究方向为微生物自修复混凝土 E-mail: zhangjiaguang@tyut.edu.cn

  • 中图分类号: TU528;TB332

Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates

Funds: Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (2020CG023); Scientific and Technological Project of Shanxi Province (201901D211087)
  • 摘要: 为解决当前微生物载体与混凝土基体兼容性差和费用高等问题,提出了一种基于增强再生骨料固载混菌的裂缝自修复混凝土。首先明确再生骨料合理矿化增强时间及其对混凝土抗压强度的影响,然后考察基于增强再生骨料固载混菌的混凝土裂缝自修复效果及其裂缝填充物成分。试验结果表明:混菌矿化增强再生骨料的合理时间为7天,增强处理后再生粗骨料吸水率和压碎指标降低幅度分别达到27%和20%,混凝土抗压强度提高幅度达到12.9%;裂缝修复平均宽度和裂缝完全修复率经28天修复养护后均达到0.28 mm和60%以上,最大修复裂缝宽度达到1.26 mm;渗水系数比未修复时降低了99.7%以上;裂缝部位沉淀晶体呈规则方块状,晶体类型为方解石。

     

  • 图  1  基于增强再生骨料(RA)固载微生物的混凝土裂缝自修复原理

    Figure  1.  Crack self-healing mechanism of concrete incorporating bacteria into recycled aggregate (RA) with enhancement

    图  2  裂缝初始宽度

    Figure  2.  Initial crack width

    图  3  增强RA吸水率与压碎指标

    Figure  3.  Water absorption and crushing index of enhanced RA

    图  4  混凝土坍落度与抗压强度

    Figure  4.  Slump and compressive strength of concrete

    图  5  混凝土裂缝修复过程表观图

    Figure  5.  Microscopic images of crack-healing processes of concrete specimens

    图  6  不同修复时间下混凝土裂缝自修复效果

    HP—Healing percentage of healed crack width; Dt—Average value of healed crack width; HPc—Completely healing percentage of healed crack width

    Figure  6.  Self-healing capacity of concrete cracks at different healing time

    图  7  不同修复时间下混凝土渗水系数k

    Figure  7.  Permeability coefficients k of concrete at different healing time

    图  8  再生粗骨料(RCA)表面矿化沉淀的SEM图像

    NB—Non-axenic bacteria; AB—Axenic bacteria

    Figure  8.  SEM images of bio-deposition on the surface of recycled coarse aggregate (RCA)

    图  9  再生细骨料(RFA)表面矿化沉淀的SEM图像

    Figure  9.  SEM images of bio-deposition on the surface of recycled fine aggregate (RFA)

    图  10  不同矿化微生物在混凝土裂缝部位沉淀物的SEM图像

    Figure  10.  SEM images of crack-filling precipitations induced by different cultures

    图  11  不同微生物矿化沉淀物的XRD图谱

    Figure  11.  XRD patterns of precipitations induced by different cultures

    表  1  混凝土配合比(kg·m−3)

    Table  1.   Mixing proportion of concrete (kg·m−3)

    SpecimenNatural coarse aggregateRCAEnhanced RCAEnhanced RFASandCementWaterPlasticizerCalcium lactate
    NAC 1140 0 0 0 588 457 215 3.63 9.68
    RCA-U/SHC 0 1140 0 0 588 457 215 3.63 9.68
    RCA-N3/SHC 0 0 1140 0 588 457 215 3.63 9.68
    RCA-N7/SHC 0 0 1140 0 588 457 215 3.63 9.68
    RCA-FN7/SHC 0 0 1140 294 294 457 215 3.63 9.68
    RCA-A7/SHC 0 0 1140 0 588 457 215 3.63 9.68
    Notes: RCA—Recycled coarse aggregate; RFA—Recycled fine aggregate; NAC—Normal concrete prepared by natural coarse aggregates; SHC—Self-healing concrete; RCA-U—Non-enhanced RCA; RCA-N3 and RCA-N7—RCA enhanced by biodeposition of non-axenic bacteria for 3 days and 7 days, respectively; RCA-FN7—RCA and RFA enhanced by biodeposition of axenic bacteria for 7 days; RCA-A7—RCA enhanced by biodeposition of axenic bacteria for 7 days; The residual nutrient solution after bio-deposition treatments of SHC was directly used as mixing water to prepare RCA-N3/SHC、RCA-N7/SHC、RCA-FN7/SHC and RCA-A7/SHC specimens.
    下载: 导出CSV
  • [1] SHEN D J, WANG X, WU S X. Determining hydration mechanisms for initial fall and main hydration peak in tricalcium silicate hydration using a two-scale hydration simulation model[J]. Cement and Concrete Research,2022,156:106763. doi: 10.1016/j.cemconres.2022.106763
    [2] ZHANG J G, LIU Y Z, FENG T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Construction and Building Materials,2017,148:610-617. doi: 10.1016/j.conbuildmat.2017.05.021
    [3] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites,2011,33(7):763-770. doi: 10.1016/j.cemconcomp.2011.03.012
    [4] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cement and Concrete Research,2014,64:1-10. doi: 10.1016/j.cemconres.2014.06.003
    [5] GARCÍA-GONZÁLEZ J, RODRÍGUEZ-ROBLES D, WANG J Y, et al. Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate[J]. Construction and Building Materials,2017,154:1015-1023. doi: 10.1016/j.conbuildmat.2017.08.039
    [6] WANG J Y, VAN TITTELBOOM K, DE BELIE N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Construction and Building Materials,2012,26(1):532-540. doi: 10.1016/j.conbuildmat.2011.06.054
    [7] LI P L, LU Y Q, LAI J X, et al. A comparative study of protective schemes for shield tunneling adjacent to pile groups[J]. Advances in Civil Engineering,2020,2020:6964314.
    [8] WANG J Y, MIGNON A, SNOECK D, et al. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing[J]. Frontiers in Microbiology,2015,6:1088.
    [9] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research,2014,56:139-152. doi: 10.1016/j.cemconres.2013.11.009
    [10] LIU Z W, CHIN C S, XIA J. Novel method for enhancing freeze-thaw resistance of recycled coarse aggregate concrete via two-stage introduction of denitrifying bacteria[J]. Journal of Cleaner Production,2022,346:131159. doi: 10.1016/j.jclepro.2022.131159
    [11] DA SILVA F B, DE BELIE N, BOON N, et al. Production of non-axenic ureolytic spores for self-healing concrete applications[J]. Construction and Building Materials,2015,93:1034-1041. doi: 10.1016/j.conbuildmat.2015.05.049
    [12] ZHANG J G, ZHAO C, ZHOU A J, et al. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs[J]. Construction and Building Materials,2019,224:815-822. doi: 10.1016/j.conbuildmat.2019.07.129
    [13] ZHANG J G, ZHOU A J, LIU Y Z, et al. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete[J]. Scientific Reports,2017,7:14600. doi: 10.1038/s41598-017-15177-z
    [14] 刘士雨, 俞缙, 刘文强, 等. 基于MICP的珊瑚砂砂浆裂缝自修复新型细菌载体[J]. 建筑材料学报, 2021, 24(4):687-693. doi: 10.3969/j.issn.1007-9629.2021.04.003

    LIU Shiyu, YU Jin, LIU Wenqiang, et al. New bacterial carrier for the crack self-healing in coral sand mortar based on MICP[J]. Journal of Building Materials,2021,24(4):687-693(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.04.003
    [15] LIU C, XU X Y, LYU Z Y, et al. Self-healing of concrete cracks by immobilizing microorganisms in recycled aggregate[J]. Journal of Advanced Concrete Technology,2020,18(4):168-178. doi: 10.3151/jact.18.168
    [16] 刘超, 吕振源, 肖建庄, 等. 再生骨料的微生物载具性及其在自修复混凝土中的应用[J]. 建筑材料学报, 2020, 23(6):1337-1344. doi: 10.3969/j.issn.1007-9629.2020.06.011

    LIU Chao, LYU Zhenyuan, XIAO Jianzhuang, et al. Carrier properties of recycled aggregates and its application in self-healing concrete[J]. Journal of Building Materials,2020,23(6):1337-1344(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.06.011
    [17] RAIS M S, KHAN R A. Experimental investigation on the strength and durability properties of bacterial self-healing recycled aggregate concrete with mineral admixtures[J]. Construction and Building Materials,2021,306:124901. doi: 10.1016/j.conbuildmat.2021.124901
    [18] 李文贵, 肖建庄, 黄靓, 等. 再生混凝土界面过渡区纳观力学性能试验研究[J]. 湖南大学学报(自然科学版), 2014, 41(12):31-39.

    LI Wengui, XIAO Jianzhuang, HUANG Liang, et al. Experimental study on mechanical properties of interfacial transition zones in recycled aggregate concrete[J]. Jour-nal of Hunan University: Natural Sciences,2014,41(12):31-39(in Chinese).
    [19] 黄嘉钰, 刘元珍, 王朝旭, 等. 再生保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10):4788-4800.

    HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete[J]. Acta Materiae Compositae Sinica,2022,39(10):4788-4800(in Chinese).
    [20] 陈宇良, 李浩, 叶培欢, 等. 循环荷载作用下钢纤维再生混凝土力学性能试验[J]. 复合材料学报, 2022, 39(11):5574-5585.

    CHEN Yuliang, LI Hao, YE Peihuan, et al. Experimental study on mechanical behavior of steel fiber recycled concrete under cyclic compression[J]. Acta Materiae Compo-sitae Sinica,2022,39(11):5574-5585(in Chinese).
    [21] XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China[J]. Construction and Building Materials, 2012, 31: 364-383.
    [22] ROYCHAND R, GRAVINA R J, YAN Z G, et al. A comprehensive review on the mechanical properties of waste tire rubber concrete[J]. Construction and Building Materials,2020,237:117651. doi: 10.1016/j.conbuildmat.2019.117651
    [23] XIAO J Z. Recycled aggregate concrete structures[M]. Berlin: Springer Berlin Heidelberg, 2018: 569-610.
    [24] 钱春香, 罗勉, 潘庆峰, 等. 自修复混凝土中微生物矿化方解石的形成机理[J]. 硅酸盐学报, 2013, 41(5):620-626.

    QIAN Chunxiang, LUO Mian, PAN Qingfeng, et al. Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society,2013,41(5):620-626(in Chinese).
    [25] HAN R K, XU S S, ZHANG J G, et al. Insights into the effects of microbial consortia-enhanced recycled concrete aggregates on crack self-healing in concrete[J]. Construction and Building Materials,2022,343:128138. doi: 10.1016/j.conbuildmat.2022.128138
    [26] 张家广, 陈景琦, 孟庆玲, 等. 混菌矿化增强再生粗骨料的物理力学性能[J]. 建筑材料学报, 2022, 25(10):1027-1033.

    ZHNAG Jiaguang, CHEN Jingqi, MENG Qingling, et al. Research on physical and mechanical properties of recycled coarse aggregates enhanced by mixed bacterial mineralization[J]. Journal of Building Materials,2022,25(10):1027-1033(in Chinese).
    [27] 范月东, 王玉珍, 许顺顺, 等. 基于混菌矿化增强粗骨料的再生混凝土裂缝自修复性能[J]. 硅酸盐通报, 2022, 41(2):479-487. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202013

    FAN Yuedong, WANG Yuzhen, XU Shunshun, et al. Self-healing performance of cracks in recycled concrete based on coarse aggregates enhanced by MICP of mixed cultures of bacteria[J]. Bulletin of the Chinese Ceramic Society,2022,41(2):479-487(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202013
    [28] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [29] 中华人民共和国住房和城乡建设部. 混凝土和砂浆用再生细骨料: GB/T 25176—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled fine aggregate for concrete and mortar: GB/T 25176—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [30] LIU C, ZHANG R F, LIU H W, et al. Experimental and analytical study on the flexural rigidity of microbial self-healing concrete based on recycled coarse aggregate (RCA)[J]. Construction and Building Materials,2021,285:122941. doi: 10.1016/j.conbuildmat.2021.122941
    [31] 中华人民共和国国家质量监督检验检疫总局. 建设用卵石、碎石: GB/T 14685—2011[S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Pebble and crushed stone for construction: GB/T 14685—2011[S]. Beijing: Standards Press of China, 2012(in Chinese).
    [32] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Building Industry Press, 2017(in Chinese).
    [33] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [34] 胡彬彬. 产氢菌株的筛选及其利用木质纤维素发酵产氢机理研究[D]. 广州: 华南理工大学, 2018.

    HU Binbin. Isolation of hydrogen producing bacterium and investigation on mechanism of hydrogen production from lignocellulose by thermophilic bacteria[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
    [35] DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research,2008,38(7):1005-1014. doi: 10.1016/j.cemconres.2008.03.005
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  345
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-01-19
  • 录用日期:  2023-01-29
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回