Compressive-shear composite mechanical properties of coral seawater sea sand concrete
-
摘要: 为研究珊瑚海水海砂混凝土(CSSC)在压剪复合作用下的力学性能,以压应力比为变化参数设计并制作21个珊瑚海水海砂混凝土试件进行压剪试验,观察了试件在压-剪复合作用下的破坏形态,深入分析了压应力比对CSSC剪切强度的影响,并提出了剪切强度计算公式和破坏准则。研究结果表明,随着压应力比k的增大,CSSC剪切强度近似呈幂函数状增大,试件脆性破坏特征逐渐减弱。当k以0.1为增量从0增加到0.5时,剪切强度分别提升了1.53、2.81、3.60、4.32、4.67倍。珊瑚海水海砂混凝土剪切强度主要由黏聚强度、骨料咬合强度和界面摩擦强度组成,其分别占剪切强度的10%~22%、19%~30%和50%~69%;随着压应力比的增大,黏聚强度先增加后减小,骨料咬合强度总体呈上升趋势,界面摩擦强度近似呈线性增加。根据试验数据提出CSSC剪切强度计算公式,计算值与试验值吻合较好;使用不同的破坏准则对试验数据进行分析,发现基于主应力空间的破坏准则与试验结果吻合最好。Abstract: In order to study the mechanical properties of coral seawater and sea sand concrete (CSSC) under the combined action of compression and shear, 21 coral seawater and sea sand concrete specimens were designed and manufactured with the compressive stress ratio as the variable parameter. The failure modes of the specimens under the combined action of compression and shear were observed. The influence of compressive stress ratio on the shear strength of CSSC was analyzed in depth, and the shear strength calculation formula and failure criterion were proposed. The results show that with the increase of compressive stress ratio k, the shear strength of CSSC increases approximately in a power function, and the brittle failure characteristics of the specimen gradually weaken. When k increases from 0 to 0.5 with an increment of 0.1, the shear strength increases by 1.53, 2.81, 3.60, 4.32 and 4.67 times, respectively. The shear strength of coral seawater and sea sand concrete is mainly composed of cohesive strength, aggregate interlocking strength and interfacial friction strength, which account for 10%~22%,19%~30% and 50%~69% of the shear strength, respectively. With the increase of the compressive stress ratio, the cohesive strength first increases and then decreases, the aggregate occlusion strength generally shows an upward trend, and the interface friction strength increases approximately linearly. According to the experimental data, the calculation formula of CSSC shear strength is proposed, and the calculated value is in good agreement with the experimental value. Different failure criteria are used to analyze the test data, and it is found that the failure criteria based on the principal stress space are in good agreement with the test results.
-
表 1 珊瑚骨料基本物理性能
Table 1. Basic physical properties of coral aggregate
Property Bulk density/
(kg·m−3)Apparent density/
(kg·m−3)Water content
(by mass) /%1 h water
absorption (by mass) /%Cylinder pressure
strength/MPaValue 879.9 1667 0.67 12.79 4.11 表 2 珊瑚海水海砂混凝土配合比
Table 2. Coral seawater sea sand concrete mix ratio
Cement/
(kg·m−3)Coral/
(kg·m−3)Sea sand/
(kg·m−3)Sea water/
(kg·m−3)Additional sea
water/(kg·m−3)Superplasticizer/
(kg·m−3)fc/
MPa535 655.8 760.1 214 75.1 1.4 30.42 Note:fc is the compressive strength of CSSC cube. 表 3 CSSC压-剪作用特征点参数
Table 3. Characteristic point parameters of CSSC compression shear action
k Peak shear stress τp/MPa Peak shear displacement sp/mm τp,1 τp,2 τp,3 τp,ave sp,1 sp,2 sp,3 sp,ave 0 2.60 2.87 3.61 3.03 0.97 1.03 0.43 0.81 0.1 9.06 6.78 7.19 7.68 1.04 1.80 2.03 1.62 0.2 12.04 10.79 11.77 11.53 1.23 2.18 1.02 1.47 0.3 16.06 14.01 11.77 13.95 1.18 1.11 1.46 1.25 0.4 16.94 15.52 15.92 16.13 1.31 1.54 1.71 1.52 0.5 19.87 15.29 16.38 17.18 1.93 1.88 2.09 1.97 Notes: τp,1, τp,2, τp,3 are the shear strength of three specimens with the same compressive stress ratio, τp,ave is the average shear strength; sp,1, sp,2, sp,3 are the peak shear displacement of three specimens with the same compressive stress ratio, sp,ave is the average peak shear displacement. -
[1] Zhang J, Wang L, Yi J, et al. Experimental study on stress-strain relationship of high strength coral con-crete (HSCC)[J]. Journal of Building Engineering, 2024, 87: 109090. doi: 10.1016/j.jobe.2024.109090 [2] Yang Z, Zhan X, Zhu H, et al. Mesoscopic investigation of the matrix pores and ITZ effects on the mechanical properties of seawater sea-sand coral aggregate concrete[J]. Journal of Building Engineering, 2024, 90: 109375. doi: 10.1016/j.jobe.2024.109375 [3] Wang F, Sun Y, Xue X, et al. Mechanical properties of modified coral aggregate seawater sea-sand concrete: Experimental study and constitutive model[J]. Case Studies in Construction Materials, 2023, 18: e02095. doi: 10.1016/j.cscm.2023.e02095 [4] 达波, 冯基恒, 倪雷, 等. 岛礁全珊瑚混凝土的力学性能及提升措施[J]. 哈尔滨工程大学学报, 2023, 44(2): 204-210.DA Bo, FENG Jiheng, NI Lei, et al. Mechanical properties and improvement measures of all coral aggregate concrete in island engineering[J]. Journal of Harbin Engineering University, 2023, 44(2): 204-210(in Chinese). [5] 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2022, 40: 1-11.CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 40: 1-11(in Chinese). [6] 吴彰钰, 余红发, 麻海燕, 等. C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J]. 东南大学学报(自然科学版), 2020, 50(3): 488-495. doi: 10.3969/j.issn.1001-0505.2020.03.011WU Zhangyu, YU Hongfa, MA Haiyan, et al. Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 488-495(in Chinese). doi: 10.3969/j.issn.1001-0505.2020.03.011 [7] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703. doi: 10.11896/cldb.18070094YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experiment Study on Dynamic Impact Properties of Coral Aggregate Seawater Concrete[J]. Materials Reports, 2019, 33(16): 2697-2703(in Chinese). doi: 10.11896/cldb.18070094 [8] Zhang H, Liu X, Ma L, et al. Effects of poly-propylene fibers and aggregate contents on the impact performance of coral aggregate concrete[J]. Journal of Building Engineering, 2024, 81: 108140. doi: 10.1016/j.jobe.2023.108140 [9] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8): 1753-1764.CAI Xinguang, ZHAO Qing, CHEN Huisu. Research Progress in Coral Concrete[J]. J Chin Ceram Soc, 2021, 49(8): 1753-1764(in Chinese). [10] Su W, Liu J, Liu L, et al. Progresses of high-performance coral aggregate concrete (HPCAC): A review[J]. Cement and Concrete Composites, 2023: 105059. [11] 韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4): 881-886. doi: 10.3969/j.issn.1007-9629.2021.04.028HAN Yudong, WANG Zhenbo, LIU Weikang, et al. Comparative Study on Fracture Properties of Seawater Coral Aggregate Concrete with Different Strengths[J]. Journal of Building Materials, 2021, 24(4): 881-886(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.04.028 [12] Wang Z, Li P, Han Y, et al. Dynamic compressive properties of seawater coral aggregate concrete (SCAC) reinforced with mono or hybrid fibers[J]. Construction and Building Materials, 2022, 340: 127801. doi: 10.1016/j.conbuildmat.2022.127801 [13] Huang Y, He X, Sun H, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 192: 330-347. doi: 10.1016/j.conbuildmat.2018.10.111 [14] 邓志恒, 李作华, 杨海峰, 等. 再生混凝土压-剪复合受力性能研究[J]. 建筑结构学报, 2019, 40(5): 174-180.DENG Zhiheng, LI Zuohua, YANG Haifeng, et al. Mechanic behavior of recycled aggregate concrete subjected to compression-shear loading[J]. Journal of Building Structures, 2019, 40(5): 174-180(in Chinese). [15] Liu B, Zhou J, Wen X, et al. Mechanical performance and failure criterion of coral concrete under combined compression-shear stresses[J]. Construction and Building Materials, 2021, 288: 123050. doi: 10.1016/j.conbuildmat.2021.123050 [16] Yang H, Yang Q, Luo J, et al. Shear strength and failure criterion of geopolymer coral aggregate concrete under compression-shear loading[J]. Journal of Building Engineering, 2023, 76: 107241. doi: 10.1016/j.jobe.2023.107241 [17] 陈宇良, 张绍松, 叶培欢, 等. 再生卵石混凝土剪切力学性能试验研究[J]. 建筑材料学报, 2023, 26(5): 457-464. doi: 10.3969/j.issn.1007-9629.2023.05.002CHEN Yuliang, ZHANG Shaosong, YE Peihuan, et al. Experimental Study on Shear Mechanical Properties of Recycled Pebble Aggregate Concrete[J]. Journal of Building Materials, 2023, 26(5): 457-464(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.05.002 [18] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T12-2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [19] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694-2020[S]. 中国计划出版社, 2020.China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694−2020[S]. Beijing: China Planning Press, 2020(in Chinese). [20] Yu Z, Huang Q, Xie X, et al. Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress[J]. Construction and Building Materials, 2018, 179: 198-206. doi: 10.1016/j.conbuildmat.2018.05.242 [21] WASEEM S A, SINGH B. Shear transfer strength of normal and high-strength recycled aggregate concrete: an experimental investigation[J]. Construction and Building Materials, 2016, 125: 29-40 doi: 10.1016/j.conbuildmat.2016.08.022 [22] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8): 1984-1994.YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1984-1994(in Chinese). [23] 王玉梅, 邓志恒, 肖建庄, 等. 再生混凝土压-剪应力下受力性能与破坏准则[J]. 建筑结构学报, 2020, 41(S1): 373-380.WANG Yumei, DENG Zhiheng, XIAO Jianzhuang, et al. Mechanical properties and failure criterion of recycled aggregate concrete under compressive-shear stress state[J]. Journal of Building Structures, 2020, 41(S1): 373-380(in Chinese). [24] 陈宇良, 李堂, 姜锐, 等. 碳纤维再生混凝土复合受剪力学性能试验[J]. 复合材料学报, 2023, 40(7): 4107-4116.CHEN Yuliang, LI Tang, JIANG Rui, et al. Composite shear mechanical properties of carbon fiber recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116(in Chinese). [25] Chen Y, Zhang S, Ye P, et al. Mechanical properties and damage constitutive of recycled aggregate concrete with polyvinyl alcohol fiber under compression and shear[J]. Case Studies in Construction Materials, 2022, 17: e01466. doi: 10.1016/j.cscm.2022.e01466 [26] 陈宇良, 姜锐, 陈宗平, 等. 复合受剪钢纤维再生混凝土破坏机理及强度计算[J]. 工程力学, 2023, 40(3): 88-97+128. doi: 10.6052/j.issn.1000-4750.2021.08.0677CHEN Yuliang, JIANG Rui, CHEN Zongping, et al. Failure mechanism and strength calculation of composite shear steel fiber recycled concrete[J]. Engineering Mechanics, 2023, 40(3): 88-97+128(in Chinese). doi: 10.6052/j.issn.1000-4750.2021.08.0677 [27] 杨海峰, 杨青梅, 柳岸然. 压剪作用下地聚物珊瑚混凝土的力学性能研究[J]. 广西大学学报(自然科学版), 2023, 48(6): 1293-1303.YANG Haifeng, YANG Qingmei, LIU Anran. Study on mechanical performance of geopolymer coral concrete under compression-shear loading[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(6): 1293-1303(in Chinese). [28] Wang Y, Deng Z, Xiao J, et al. Mechanical properties of recycled aggregate concrete under compression-shear stress state[J]. Construction and Building Materials, 2021, 271: 121894 doi: 10.1016/j.conbuildmat.2020.121894
计量
- 文章访问数: 42
- HTML全文浏览量: 52
- 被引次数: 0