留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚海水海砂混凝土压-剪复合力学性能

陈宇良 包尔康 何钦 李佳成 叶培欢

陈宇良, 包尔康, 何钦, 等. 珊瑚海水海砂混凝土压-剪复合力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 陈宇良, 包尔康, 何钦, 等. 珊瑚海水海砂混凝土压-剪复合力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
CHEN Yuliang, BAO Erkang, HE Qin, et al. Compressive-shear composite mechanical properties of coral seawater sea sand concrete[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Yuliang, BAO Erkang, HE Qin, et al. Compressive-shear composite mechanical properties of coral seawater sea sand concrete[J]. Acta Materiae Compositae Sinica.

珊瑚海水海砂混凝土压-剪复合力学性能

基金项目: 国家自然科学基金(52368013; 51908141);广西自然科学基金项目(24GXNSFBA010364)
详细信息
    通讯作者:

    陈宇良,博士,副教授,硕士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构研究、海洋及近海混凝土结构等 E-mail: ylchen@gxust.edu.cn

  • 中图分类号: TU528

Compressive-shear composite mechanical properties of coral seawater sea sand concrete

Funds: National Natural Science Foundation of China (52368013; 51908141); Guangxi Natural Science Foundation Project (24GXNSFBA010364)
  • 摘要: 为研究珊瑚海水海砂混凝土(CSSC)在压剪复合作用下的力学性能,以压应力比为变化参数设计并制作21个珊瑚海水海砂混凝土试件进行压剪试验,观察了试件在压-剪复合作用下的破坏形态,深入分析了压应力比对CSSC剪切强度的影响,并提出了剪切强度计算公式和破坏准则。研究结果表明,随着压应力比k的增大,CSSC剪切强度近似呈幂函数状增大,试件脆性破坏特征逐渐减弱。当k以0.1为增量从0增加到0.5时,剪切强度分别提升了1.53、2.81、3.60、4.32、4.67倍。珊瑚海水海砂混凝土剪切强度主要由黏聚强度、骨料咬合强度和界面摩擦强度组成,其分别占剪切强度的10%~22%、19%~30%和50%~69%;随着压应力比的增大,黏聚强度先增加后减小,骨料咬合强度总体呈上升趋势,界面摩擦强度近似呈线性增加。根据试验数据提出CSSC剪切强度计算公式,计算值与试验值吻合较好;使用不同的破坏准则对试验数据进行分析,发现基于主应力空间的破坏准则与试验结果吻合最好。

     

  • 图  1  珊瑚骨料与海砂的表观形貌

    Figure  1.  Apparent morphology of coral aggregate and sea sand

    图  2  珊瑚骨料与海砂的粒径级配曲线

    Figure  2.  Particle size gradation of coral coarse aggregate and sea sand

    图  3  试验装置

    Figure  3.  Test equipment

    图  4  CSSC压-剪复合受力破坏形态

    Figure  4.  Failure pattern of CSSC under compression-shear loading

    图  5  CSSC压-剪试件剪切面破坏特征

    Figure  5.  Failure pattern of CSSC under compression-shear loading

    图  6  CSSC剪切应力-位移曲线

    Figure  6.  CSSC shear stress-displacement curves

    图  7  CSSC剪切强度与压应力比k的关系

    Figure  7.  Relationship between shear strength and compressive stress ratio k of CSSC

    图  8  CSSC剪切强度组成分析示意图

    Figure  8.  Analysis diagram of CSSC shear strength composition

    τc is cohesive strength; τi is aggregate bite strength; τf is the interfacial friction strength; τp is the shear strength

    图  9  CSSC剪切强度各组成部分-压应力比关系曲线

    Figure  9.  CSSC shear strength of each component-compression stress ratio curve

    图  10  CSSC剪切强度各组成部分占比

    Figure  10.  Proportion of each component of CSSC shear strength

    图  11  珊瑚混凝土剪切强度计算公式拟合

    Figure  11.  Coral concrete shear strength calculation formula fitting

    图  12  珊瑚混凝土剪切强度计算值与试验值对比

    Figure  12.  Comparison of calculated and experimental values of shear strength of coral concrete

    图  13  基于主应力的CSSC破坏准则

    Figure  13.  CSSC failure criterion based on principal stress

    图  14  基于八面体应力的CSSC破坏准则

    Figure  14.  CSSC failure criterion based on octahedral stress

    表  1  珊瑚骨料基本物理性能

    Table  1.   Basic physical properties of coral aggregate

    Property Bulk density/
    (kg·m−3)
    Apparent density/
    (kg·m−3)
    Water content
    (by mass) /%
    1 h water
    absorption (by mass) /%
    Cylinder pressure
    strength/MPa
    Value 879.9 1667 0.67 12.79 4.11
    下载: 导出CSV

    表  2  珊瑚海水海砂混凝土配合比

    Table  2.   Coral seawater sea sand concrete mix ratio

    Cement/
    (kg·m−3)
    Coral/
    (kg·m−3)
    Sea sand/
    (kg·m−3)
    Sea water/
    (kg·m−3)
    Additional sea
    water/(kg·m−3)
    Superplasticizer/
    (kg·m−3)
    fc/
    MPa
    535 655.8 760.1 214 75.1 1.4 30.42
    Note:fc is the compressive strength of CSSC cube.
    下载: 导出CSV

    表  3  CSSC压-剪作用特征点参数

    Table  3.   Characteristic point parameters of CSSC compression shear action

    k Peak shear stress τp/MPa Peak shear displacement sp/mm
    τp,1 τp,2 τp,3 τp,ave sp,1 sp,2 sp,3 sp,ave
    0 2.60 2.87 3.61 3.03 0.97 1.03 0.43 0.81
    0.1 9.06 6.78 7.19 7.68 1.04 1.80 2.03 1.62
    0.2 12.04 10.79 11.77 11.53 1.23 2.18 1.02 1.47
    0.3 16.06 14.01 11.77 13.95 1.18 1.11 1.46 1.25
    0.4 16.94 15.52 15.92 16.13 1.31 1.54 1.71 1.52
    0.5 19.87 15.29 16.38 17.18 1.93 1.88 2.09 1.97
    Notes: τp,1, τp,2, τp,3 are the shear strength of three specimens with the same compressive stress ratio, τp,ave is the average shear strength; sp,1, sp,2, sp,3 are the peak shear displacement of three specimens with the same compressive stress ratio, sp,ave is the average peak shear displacement.
    下载: 导出CSV
  • [1] Zhang J, Wang L, Yi J, et al. Experimental study on stress-strain relationship of high strength coral con-crete (HSCC)[J]. Journal of Building Engineering, 2024, 87: 109090. doi: 10.1016/j.jobe.2024.109090
    [2] Yang Z, Zhan X, Zhu H, et al. Mesoscopic investigation of the matrix pores and ITZ effects on the mechanical properties of seawater sea-sand coral aggregate concrete[J]. Journal of Building Engineering, 2024, 90: 109375. doi: 10.1016/j.jobe.2024.109375
    [3] Wang F, Sun Y, Xue X, et al. Mechanical properties of modified coral aggregate seawater sea-sand concrete: Experimental study and constitutive model[J]. Case Studies in Construction Materials, 2023, 18: e02095. doi: 10.1016/j.cscm.2023.e02095
    [4] 达波, 冯基恒, 倪雷, 等. 岛礁全珊瑚混凝土的力学性能及提升措施[J]. 哈尔滨工程大学学报, 2023, 44(2): 204-210.

    DA Bo, FENG Jiheng, NI Lei, et al. Mechanical properties and improvement measures of all coral aggregate concrete in island engineering[J]. Journal of Harbin Engineering University, 2023, 44(2): 204-210(in Chinese).
    [5] 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2022, 40: 1-11.

    CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 40: 1-11(in Chinese).
    [6] 吴彰钰, 余红发, 麻海燕, 等. C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J]. 东南大学学报(自然科学版), 2020, 50(3): 488-495. doi: 10.3969/j.issn.1001-0505.2020.03.011

    WU Zhangyu, YU Hongfa, MA Haiyan, et al. Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 488-495(in Chinese). doi: 10.3969/j.issn.1001-0505.2020.03.011
    [7] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703. doi: 10.11896/cldb.18070094

    YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experiment Study on Dynamic Impact Properties of Coral Aggregate Seawater Concrete[J]. Materials Reports, 2019, 33(16): 2697-2703(in Chinese). doi: 10.11896/cldb.18070094
    [8] Zhang H, Liu X, Ma L, et al. Effects of poly-propylene fibers and aggregate contents on the impact performance of coral aggregate concrete[J]. Journal of Building Engineering, 2024, 81: 108140. doi: 10.1016/j.jobe.2023.108140
    [9] 蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8): 1753-1764.

    CAI Xinguang, ZHAO Qing, CHEN Huisu. Research Progress in Coral Concrete[J]. J Chin Ceram Soc, 2021, 49(8): 1753-1764(in Chinese).
    [10] Su W, Liu J, Liu L, et al. Progresses of high-performance coral aggregate concrete (HPCAC): A review[J]. Cement and Concrete Composites, 2023: 105059.
    [11] 韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4): 881-886. doi: 10.3969/j.issn.1007-9629.2021.04.028

    HAN Yudong, WANG Zhenbo, LIU Weikang, et al. Comparative Study on Fracture Properties of Seawater Coral Aggregate Concrete with Different Strengths[J]. Journal of Building Materials, 2021, 24(4): 881-886(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.04.028
    [12] Wang Z, Li P, Han Y, et al. Dynamic compressive properties of seawater coral aggregate concrete (SCAC) reinforced with mono or hybrid fibers[J]. Construction and Building Materials, 2022, 340: 127801. doi: 10.1016/j.conbuildmat.2022.127801
    [13] Huang Y, He X, Sun H, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 192: 330-347. doi: 10.1016/j.conbuildmat.2018.10.111
    [14] 邓志恒, 李作华, 杨海峰, 等. 再生混凝土压-剪复合受力性能研究[J]. 建筑结构学报, 2019, 40(5): 174-180.

    DENG Zhiheng, LI Zuohua, YANG Haifeng, et al. Mechanic behavior of recycled aggregate concrete subjected to compression-shear loading[J]. Journal of Building Structures, 2019, 40(5): 174-180(in Chinese).
    [15] Liu B, Zhou J, Wen X, et al. Mechanical performance and failure criterion of coral concrete under combined compression-shear stresses[J]. Construction and Building Materials, 2021, 288: 123050. doi: 10.1016/j.conbuildmat.2021.123050
    [16] Yang H, Yang Q, Luo J, et al. Shear strength and failure criterion of geopolymer coral aggregate concrete under compression-shear loading[J]. Journal of Building Engineering, 2023, 76: 107241. doi: 10.1016/j.jobe.2023.107241
    [17] 陈宇良, 张绍松, 叶培欢, 等. 再生卵石混凝土剪切力学性能试验研究[J]. 建筑材料学报, 2023, 26(5): 457-464. doi: 10.3969/j.issn.1007-9629.2023.05.002

    CHEN Yuliang, ZHANG Shaosong, YE Peihuan, et al. Experimental Study on Shear Mechanical Properties of Recycled Pebble Aggregate Concrete[J]. Journal of Building Materials, 2023, 26(5): 457-464(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.05.002
    [18] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T12-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [19] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694-2020[S]. 中国计划出版社, 2020.

    China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694−2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [20] Yu Z, Huang Q, Xie X, et al. Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress[J]. Construction and Building Materials, 2018, 179: 198-206. doi: 10.1016/j.conbuildmat.2018.05.242
    [21] WASEEM S A, SINGH B. Shear transfer strength of normal and high-strength recycled aggregate concrete: an experimental investigation[J]. Construction and Building Materials, 2016, 125: 29-40 doi: 10.1016/j.conbuildmat.2016.08.022
    [22] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8): 1984-1994.

    YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1984-1994(in Chinese).
    [23] 王玉梅, 邓志恒, 肖建庄, 等. 再生混凝土压-剪应力下受力性能与破坏准则[J]. 建筑结构学报, 2020, 41(S1): 373-380.

    WANG Yumei, DENG Zhiheng, XIAO Jianzhuang, et al. Mechanical properties and failure criterion of recycled aggregate concrete under compressive-shear stress state[J]. Journal of Building Structures, 2020, 41(S1): 373-380(in Chinese).
    [24] 陈宇良, 李堂, 姜锐, 等. 碳纤维再生混凝土复合受剪力学性能试验[J]. 复合材料学报, 2023, 40(7): 4107-4116.

    CHEN Yuliang, LI Tang, JIANG Rui, et al. Composite shear mechanical properties of carbon fiber recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116(in Chinese).
    [25] Chen Y, Zhang S, Ye P, et al. Mechanical properties and damage constitutive of recycled aggregate concrete with polyvinyl alcohol fiber under compression and shear[J]. Case Studies in Construction Materials, 2022, 17: e01466. doi: 10.1016/j.cscm.2022.e01466
    [26] 陈宇良, 姜锐, 陈宗平, 等. 复合受剪钢纤维再生混凝土破坏机理及强度计算[J]. 工程力学, 2023, 40(3): 88-97+128. doi: 10.6052/j.issn.1000-4750.2021.08.0677

    CHEN Yuliang, JIANG Rui, CHEN Zongping, et al. Failure mechanism and strength calculation of composite shear steel fiber recycled concrete[J]. Engineering Mechanics, 2023, 40(3): 88-97+128(in Chinese). doi: 10.6052/j.issn.1000-4750.2021.08.0677
    [27] 杨海峰, 杨青梅, 柳岸然. 压剪作用下地聚物珊瑚混凝土的力学性能研究[J]. 广西大学学报(自然科学版), 2023, 48(6): 1293-1303.

    YANG Haifeng, YANG Qingmei, LIU Anran. Study on mechanical performance of geopolymer coral concrete under compression-shear loading[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(6): 1293-1303(in Chinese).
    [28] Wang Y, Deng Z, Xiao J, et al. Mechanical properties of recycled aggregate concrete under compression-shear stress state[J]. Construction and Building Materials, 2021, 271: 121894 doi: 10.1016/j.conbuildmat.2020.121894
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-06-20
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-07-23

目录

    /

    返回文章
    返回