留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合膜材料在盐湖提锂中的研究进展和展望

韩继龙 曾祥杰 王奎虎 黄壹 孟庆芬 周理龙 李正杰 刘润静 甄崇礼

韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5): 2106-2120. doi: 10.13801/j.cnki.fhclxb.20210701.002
引用本文: 韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5): 2106-2120. doi: 10.13801/j.cnki.fhclxb.20210701.002
HAN Jilong, ZENG Xiangjie, WANG Kuihu, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2106-2120. doi: 10.13801/j.cnki.fhclxb.20210701.002
Citation: HAN Jilong, ZENG Xiangjie, WANG Kuihu, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2106-2120. doi: 10.13801/j.cnki.fhclxb.20210701.002

复合膜材料在盐湖提锂中的研究进展和展望

doi: 10.13801/j.cnki.fhclxb.20210701.002
基金项目: 青海省海西州科技局企业创新资金计划(2019-104)
详细信息
    通讯作者:

    黄壹,博士,教授,博士生导师,研究方向为MOFs膜材料 E-mail:Yi.Huang@cd.ac.uk

  • 中图分类号: TQ131

Research progress and prospect of membrane method in seawater/brine extraction of lithium

  • 摘要: 锂电池新能源产业的快速发展刺激了锂需求量呈指数级增长,带动了锂产业链的变革和技术升级。盐湖卤水中拥有丰富的锂资源,已逐渐取代锂辉石成为原料锂的最主要来源。综合比较卤水提锂采用的沉淀法、吸附法、煅烧浸取法、萃取法、膜分离法等各种工艺,膜分离方法具有常温下无相变、高效、节能、环保的特点,成为提锂工业最有前景的新技术。目前,具有锂分离效果的膜过程研究主要有膜-吸附、膜-溶剂萃取和膜-电渗析等,其中又以膜-电渗析技术较为成熟,在工业上已经成功应用于盐湖卤水提锂。但目前采用的有机聚合物膜存在的膜堵塞、有机物溶损、环境污染等问题,限制了膜-电渗析法在提锂产业的推广。无机陶瓷膜按孔径分为微滤、超滤和纳滤,分离过程主要基于“物理筛选”理论,并且无机陶瓷膜材料具有化学结构稳定、力学性能好、制备过程简单、耐高温、孔径均匀、孔径分布范围窄、寿命长等众多优点,因此新型无机膜材料开发引起了学界的广泛关注,成为膜法提锂研究的热点问题。

     

  • 图  1  柴达木盆地Li资源分布图 (1∶500000)

    Figure  1.  Distribution map of Li resources in Qaidam Basin (1∶500000)

    图  2  吸附法提锂流程图

    Figure  2.  Flow chart of lithium extraction by adsorption method

    图  3  煅烧法提锂流程图

    Figure  3.  Flow chart of lithium extraction by calcination method

    图  4  溶剂萃取法提锂流程图

    Figure  4.  Lithium extraction flow chart by solvent extraction

    图  5  聚氯乙烯-Li1.6Mn1.6O4 (PVC-Li1.6Mn1.6O4) 前体膜提锂机制图[34]

    Figure  5.  Lithium extraction mechanism diagram of polyvinyl chloride-Li1.6Mn1.6O4 (PVC-Li1.6Mn1.6O4) precursor membranes[34]

    图  6  f-(2MI2C4)GO(F-GM) 的制备路线和细节示意图[36]

    Figure  6.  Preparation route and detailed schematic diagram of f-(2MI2C4)GO (F-GM)[36]

    GO—Graphene oxide; DMSO—Dimethyl sulfoxide; DCC—N, N-Dicyclohexylcarbodiimide; DMAP—4-Dimethylamino pyridine; 2MI2C4—2-Methylol-12-crown-4; PVDF—Poly(vinylidene fluoride); DMAc—N, N-Dimethyl acetamide; PVP—Polyvinylpyr rolidone; f-GO—Functionalized GO; F-GMs—f-(2MI2C4)GO

    图  7  壳聚糖(CS)与2-(羟甲基)-12-冠4-醚 (2H12C4) 反应的示意图[38]

    Figure  7.  Schematic diagram of the reaction between chitosan (CS) and 2-(hydroxymethyl)-12-crown 4-ether (2H12C4) [38]

    ECH—Epichlorohydrin; DMF—N, N-Dimethylformamide; CE—Crown ether

    图  8  使用支撑液膜 (SLMs)提出的运输机制方案[43]

    Figure  8.  Scheme of using the transportation mechanism proposed by supported liquid membrane (SLMs)[43]

    HFDOD—Heptafluoro-dimethyl octanedione; TOPO—Tri-n-octylphosphine oxide

    图  9  聚合物包覆膜 (PIM) 萃取Li+过程示意图[45]

    Figure  9.  Schematic diagram of Li+ extraction process with polymer inclusion membrane (PIM)[45]

    TBP—Tributylphosphate

    图  10  膜提取过程中Li+和Li+络合物的浓度曲线[41]

    Figure  10.  Concentration curve of Li+ and Li+ complexes during membrane extraction [41]

    CP—Concentration polarization; F—Feeding stage; O—Organic phase; m—Membrane; b—Bulk phase; s—Stripping phase

    图  11  纳滤过程中溶质排斥机制示意图[53]

    Figure  11.  Schematic diagram of solute rejection mechanism in nanofiltration process[53]

    Δx—Membrane active layer thickness

    图  12  模拟卤水中分离锂的[MimAP][Tf2N]-聚酰胺/聚丙烯腈纳滤膜的初步制备[55]

    Figure  12.  Preliminary preparation of [MimAP][Tf2N]-polyamide/polyacrylonitrile nanofiltration membrane to simulate lithium separation in brine[55]

    IP—Interfacial polymerization; PAN—Polyacrylonitrile; PA—Polyamide

    图  13  双层正电纳滤膜制作过程示意图[56]

    Figure  13.  Schematic diagram of the production process of double-layer positive nanofiltration membrane[56]

    PES—Polyether sulfone; SWCNT—Single-walled carbon nanotubes; PA—Polyamide; EDC/NHS—N-(3-(dimethylamino)propyl)-N′-ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide; PEI-g-PA—Polyether sulfone-g-polyamide

    图  14  复合纳滤 (NF) 膜制造的示意图[57]

    Figure  14.  Schematic diagram of composite nanofiltration (NF) membrane manufacturing [57]

    图  15  夹层式液膜电渗析系统示意图[58]

    Figure  15.  Schematic diagram of sandwich liquid membrane electrodialysis system[58]

    CEM—Cation exchange membrane; TBP—Tributyl phosphate

    图  16  无机膜的分离原理

    Figure  16.  Separation principle of inorganic membranes

    图  17  磷酸钛铝锂 (LATP) 海水提锂原理图

    Figure  17.  Schematic diagram of lithium aluminum titanium phosphate (LATP) membrane method for lithium extraction from seawater

    图  18  锂离子的迁移通道示意图[70]

    Figure  18.  Schematic diagram of the migration channel of lithium ions[70]

    图  19  锂离子在Li0.33La0.56TiO3晶格中的渗流图[71]

    Figure  19.  Diagram of the percolation of lithium ions in the Li0.33La0.56TiO3 lattice[71]

    表  1  青海柴达木盆地主要盐湖锂资源品位及储量

    Table  1.   Grades and reserves of lithium resources in the main salt lakes of Qaidam Basin in Qinghai

    Deposit nameReserves (Ten thousand tons)Grade of intercrystalline brine/(g·L−1)
    Yiliping salt lake 178.39 2.20
    Xitai jinel salt lake 308.00 2.57
    Dongtai kinel salt lake 284.78 3.12
    Dachaidan salt lake 38.02 1.34
    Chaerhan salt lake 840.00 1.60
    Total 1583.19 Brine grade is between 1.60-3.12
    下载: 导出CSV
  • [1] 雪晶, 胡山鹰. 我国锂工业现状及前景分析[J]. 化工进展, 2011(4):97-102.

    XUE Jing, HU Shanying. Current situation and prospect analysis of lithium industry in China[J]. Chemical Industry Progress,2011(4):97-102(in Chinese).
    [2] LIU J, ZHAO K, YU M, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy[J]. Corrosion Science,2018,138:75-84.
    [3] HALLMANN L, ULMER P, KERN M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,82:355-370.
    [4] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science,2017,3:1063-1069. doi: 10.1021/acscentsci.7b00288
    [5] HU F, SONG T. Application of functionalized ether in lithium ion batteries[J]. RSC Advances,2017,7(85):54203-54212. doi: 10.1039/C7RA11023E
    [6] CHA H, LEE Y, KIM J, et al. Lithium-ion batteries: Flexible 3D interlocking lithium-ion batteries[J]. Advanced Energy Materials,2017,8(10):1801917.
    [7] NOWAK S, WINTER M. Elemental analysis of lithium ion batteries[J]. Journal of Analytical Atomic Spectrometry,2017,32(10):1833-1847. doi: 10.1039/C7JA00073A
    [8] 李法强. 世界锂资源提取技术述评与碳酸锂产业现状及发展趋势[J]. 世界有色金属, 2015(5):17-23.

    LI Faqiang. Review on extraction technology of lithium resources in the world and present situation and development trend of lithium carbonate industry[J]. World Nonferrous Metals,2015(5):17-23(in Chinese).
    [9] MARTIN G, RENTSCH L, HCK M, et al. Lithium market research-Global supply, future demand and price development[J]. Energy Storage Materials,2016,6:509519304.
    [10] GIL-ALANA L A , MONGE M. Lithium: Production and estimated consumption. Evidence of persistence[J]. Resources Policy, 2019, 60: 198-202.
    [11] 李康, 王建平. 中国锂资源开发利用现状及对策建议[J]. 资源与产业, 2016, 18(1):82-86.

    LI Kang, WANG Jianping. Development and utilization of lithium resources in China[J]. Resources & Industries,2016,18(1):82-86(in Chinese).
    [12] HE X, KAUR S, KOSTECKI R. Mining lithium from sea-water[J]. Joule,2020,4(7):1357-1358. doi: 10.1016/j.joule.2020.06.015
    [13] ZHANG F, YANG S, DU Y, et al. A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater[J]. Chemical Communications,2020,56:1-4. doi: 10.1039/D0CC90001J
    [14] XU P, HONG J, QIAN X, et al. Materials for lithium reco-very from salt lake brine[J]. Journal of Materials Science,2020,56:16-63.
    [15] 余疆江, 郑绵平, 伍倩. 富锂盐湖提锂工艺研究进展[J]. 化工进展, 2013, 32(1):13-21.

    YU Jiangjiang, ZHENG Mianping, WU Qian. Research progress of lithium extraction process from lithium-rich salt lake[J]. Chemical Industry Progress,2013,32(1):13-21(in Chinese).
    [16] ZHANG Y, HU Y, WANG L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering,2019,139:105868. doi: 10.1016/j.mineng.2019.105868
    [17] 乜贞, 伍倩, 卜令忠, 等. 国内外盐湖锂资源开发利用进展[J]. 中国盐业, 2015, 24(253):44-49.

    NIE Zhen, WU Qian, BU Lingzhong, et al. Development and utilization of lithium resources in salt lakes at home and abroad[J]. China Salt Industry,2015,24(253):44-49(in Chinese).
    [18] 杨荣金, 李彦武, 田海燕. 青海盐湖锂资源开发的环境影响分析及对策研究[J]. 环境与可持续发展, 2014, 39(2):91-94. doi: 10.3969/j.issn.1673-288X.2014.02.027

    YANG Rongjin, LI Yanwu, TIAN Haiyan. Environmental impact analysis and countermeasures of lithium resources development in Qinghai salt lake[J]. Environment and Sustainable Development,2014,39(2):91-94(in Chinese). doi: 10.3969/j.issn.1673-288X.2014.02.027
    [19] 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2017, 69(1):141-155.

    LIU Dongfan, SUN Shuying, YU Jianguo. Research and development of lithium extraction technology from salt lake brine[J]. CIESC Journal,2017,69(1):141-155(in Chinese).
    [20] SONG J F, NGHIEM L D, LI X M, et al. Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook[J]. Environmental Science Water Research & Technology,2017,3(4):593-597.
    [21] 乜贞, 卜令忠, 王云生, 等. 盐湖卤水资源锂镁分离的工艺技术[J]. 无机盐工业, 2013, 45(5):1-4. doi: 10.3969/j.issn.1006-4990.2013.05.001

    NIE Zhen, BU Lingzhong, WANG Yunsheng, et al. Industrial technology for separation of lithium from magnesium rich salt lake brines[J]. Inorganic Chemicals Industry,2013,45(5):1-4(in Chinese). doi: 10.3969/j.issn.1006-4990.2013.05.001
    [22] SUN Y, WANG Q, WANG Y, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology,2021,256:117807. doi: 10.1016/j.seppur.2020.117807
    [23] GUO X Y, SHAO F. Highly efficient separation of magnesium and lithium and high utilization of magnesium from salt lake brine by a reaction coupled-coup technology[J]. Industrial & Engineering Chemistry Research,2018,57(19):6618-6626.
    [24] 付烨, 钟辉. 沉淀法分离高镁锂比盐湖卤水的研究现状[J]. 矿产综合利用, 2010(2):30-33. doi: 10.3969/j.issn.1000-6532.2010.02.009

    FU Ye, ZHONG Hui. Research status of separation of salt lake brine with high Mg/Li ratio by precipitation method[J]. Comprehensive Utilization of Mineral Resources,2010(2):30-33(in Chinese). doi: 10.3969/j.issn.1000-6532.2010.02.009
    [25] XU X, CHEN Y M, WAN P Y, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science,2016,84:276-313. doi: 10.1016/j.pmatsci.2016.09.004
    [26] 毛新宇. 吸附法盐湖卤水提锂的技术探究[J]. 化工管理, 2015(24):96-97. doi: 10.3969/j.issn.1008-4800.2015.24.082

    MAO Xinyu. Study on the technology of lithium extraction from salt lake brine by adsorption method[J]. Chemical Industry Management,2015(24):96-97(in Chinese). doi: 10.3969/j.issn.1008-4800.2015.24.082
    [27] LI X W, CHAO Y H, CHEN L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal,2019,392:1-34.
    [28] LI X, CHEN L, CHAO Y, et al. Amorphous TiO2 rived large capacity lithium ion sieve for lithium recovery[J]. Chemi-cal Engineering & Technology,2020,43(9):1784-1791.
    [29] 王卫东, 曹茜. 国内盐湖卤水提取碳酸锂生产工艺及现状[J]. 盐湖研究, 2010, 18(4):52-61.

    WANG Weidong, CAO Qian. Production processand current situation of lithium carbonate extraction from salt lake brine in China[J]. Salt Lake Research,2010,18(4):52-61(in Chinese).
    [30] HANADA T, GOTO M. Synergistic deep eutectic solvents for lithium extraction[J]. ACS Sustainable Chemistry & Engineering,2021,9(5):2152-2160.
    [31] SHI D, CUI B, LI L J, et al. Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA[J]. Desalination,2020,479:114306. doi: 10.1016/j.desal.2019.114306
    [32] LU J, QIN Y, ZHANG Q, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J]. Applied Surface Science, 2018, 427: 931-941.
    [33] UMENO A, MIYAI Y, TAKAGI N, et al. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4281-4287.
    [34] ZHU G, WANG P, QI P, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chemical Engineering Journal,2014,235:340-348. doi: 10.1016/j.cej.2013.09.068
    [35] JI Z Y, YUAN J S, GUO X F, et al. A preliminary study on preparation of lithium ion-sieve flat sheet membrane[J]. Applied Mechanics & Materials,2012,161:144-147.
    [36] SUN D S, MENG M J, LU Y, et al. Porous nanocomposite membranes based on functional GO with selective function for lithium adsorption[J]. New Journal of Chemistry. 2018, 42(6): 4432-4442.
    [37] SUN D S, MENG M J, QIAO Y, et al. Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium [J]. Separation and Purification Technology, 2018, 194: 64-72.
    [38] CHENG Q, ZHANG Y Z, ZHENG X D, et al. High specific surface crown ether modified chitosan nanofiber membrane by low-temperature phase separation for efficient selective adsorption of lithium[J]. Separation and Purification Technology,2021,262(6):118312.
    [39] XING L, SONG J, LI Z, et al. Solvent stable nanoporous poly (ethylene-co-vinyl alcohol) barrier membranes for liquid-liquid extraction of lithium from a salt lake brine[J]. Journal of Membrane Science,2016,520:596-606. doi: 10.1016/j.memsci.2016.08.027
    [40] CUI L, JIANG K, WANG J, et al. Role of ionic liquids in the efficient transfer of lithium by cyanex 923 in solvent extraction system[J]. AIChE Journal,2019,65(15):16606.
    [41] SONG J, LI X M, ZHANG Y, et al. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid-liquid membrane extraction of lithium ions[J]. Journal of Membrane Science,2014,471:372-380. doi: 10.1016/j.memsci.2014.08.010
    [42] BASUDEV S. Separation and purification of lithium by solvent extraction and supported liquid membrane, analy-sis of their mechanism: A review[J]. Journal of Chemical Technology & Biotechnology,2016,91(10):2549-2562.
    [43] ZANTE G, BOLTOEVA M, MASMOUDI A, et al. Highly selective transport of lithium across a supported liquid membrane[J]. Journal of Fluorine Chemistry,2020,236:109593. doi: 10.1016/j.jfluchem.2020.109593
    [44] BANSAL B, CHEN X D, HOSSAIN M M. Transport of lithium through a supported liquid membrane of LIX54 and TOPO in kerosene[J]. Chemical Engineering and Processing,2005,44(12):1327-1336. doi: 10.1016/j.cep.2005.05.003
    [45] ZHANG C, MU Y, ZHAO S, et al. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane[J]. Desalination,2020,496:114710. doi: 10.1016/j.desal.2020.114710
    [46] ZANTE G, BOLTOEVA M, MASMOUDI A, et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science,2019,580:62-76. doi: 10.1016/j.memsci.2019.03.013
    [47] XU T. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science,2005,263(1/2):1-29. doi: 10.1016/j.memsci.2005.05.002
    [48] LIU X, CHEN X, HE L, et al. Study on extraction of lithium from salt lake brine by membrane electrolysis[J]. Desalination,2015,376:35-40. doi: 10.1016/j.desal.2015.08.013
    [49] BUNANI S, YOSHIZUKA K, NISHIHAMA S, et al. Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions [J]. Desalination, 2017, 424: 37-44.
    [50] BI Q, ZHANG Z, ZHAO C, et al. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration[J]. Water Science and Technology,2014,70(10):1690-1694. doi: 10.2166/wst.2014.426
    [51] SUN S, CAI L, NIE X, et al. Separation of magnesium and lithium from brine using a desal nanofiltration membrane[J]. Journal of Water Process Engineering,2015,7:210-217. doi: 10.1016/j.jwpe.2015.06.012
    [52] WEN X, MA P, ZHU C, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation & Purification Technology,2006,49(3):230-236.
    [53] ROY Y, WARSINGER D M, LIENHARD J H. Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration[J]. Desalination,2017,420:241-257. doi: 10.1016/j.desal.2017.07.020
    [54] LI X H, ZHANG C J, ZHANG S N, et al. Preparation and characterization of positively charged polyamide compo-site nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination,2015,369:26-36. doi: 10.1016/j.desal.2015.04.027
    [55] WU H, LIN Y, FENG W, et al. A novel nanofiltration membrane with[MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science,2020,603:117997. doi: 10.1016/j.memsci.2020.117997
    [56] YANG Z, FANG W, WANG Z, et al. Dual-skin layer nanofiltration membranes for highly selective Mg2+/Li+ separation[J]. Journal of Membrane Science,2020,620:118862.
    [57] XU P, WANG W, QIAN X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination,2019,449:57-68. doi: 10.1016/j.desal.2018.10.019
    [58] ZHAO Z, LIU G, JIA H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science,2019,596:117685.
    [59] 张海珍, 丁浩, 许振良. 面向盐湖卤水和海水的锂资源膜法提锂现状与进展[J]. 水处理技术, 2017, 43(12):1-7.

    ZHANG Haizhen, DING Hao, XU Zhenliang. Current status and progress of lithium extraction from salt lake brine and sea water by membrane[J]. Water Treatment Technology,2017,43(12):1-7(in Chinese).
    [60] 马培华, 邓小川, 温现民. 从盐湖卤水中分离镁和浓缩锂的方法: 中国, 2003101222383[P]. 2005-06-15.

    MA Peihua, DENG Xiaochuan, WEN Xianmin. Separation of magnesium and concentration of lithium from salt lake brine: CN, 2003101222383[P]. 2005-06-15(in Chinese)
    [61] LI X, MO Y, QING W, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science,2019,591:117317. doi: 10.1016/j.memsci.2019.117317
    [62] TSURU T. Nano/subnano-tuning of porous ceramic membranes for molecular separation[J]. Journal of Sol-Gel Science and Technology,2008,46(3):349-361. doi: 10.1007/s10971-008-1712-5
    [63] SALIMI M, PIROUZFAR V. Synthesis of a novel nano-ceramic membrane for hydrogen separation and purification[J]. Journal of the Australian Ceramic Society,2018,54:271-277. doi: 10.1007/s41779-017-0151-6
    [64] ZHANG G R, JIN W Q, XU N P. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications[J]. Engineering,2018,4(6):848-860. doi: 10.1016/j.eng.2017.05.001
    [65] JEONG Y, CHO K, KWON E E, et al. Evaluating the feasibi-lity of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors[J]. Chemical Engineering Journal,2017,328:567-573. doi: 10.1016/j.cej.2017.07.080
    [66] LI C, SUN W, LU Z, et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Research,2020,175:115674. doi: 10.1016/j.watres.2020.115674
    [67] MONCHAK M, HUPFER T, SENYSHYN A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor[J]. Inorganic Chemistry, 2016, 55(6): 2941-2945.
    [68] SAFANAMA D, ADAMS S. High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes[J]. Journal of Power Sources,2017,340:294-301. doi: 10.1016/j.jpowsour.2016.11.076
    [69] 杨晓婵. 日本原子能机构用导电LATP陶瓷作分离膜从海水中提取锂[J]. 现代材料动态, 2014(12):9-10.

    YANG Xiaochan. Extraction of lithium from seawater using conductive LATP ceramics as separation membrane by Japan atomic energy agency[J]. Modern Material Dyna-mics,2014(12):9-10(in Chinese).
    [70] PFALZGRAF D, MUTTER D, URBAN D F. Atomistic analysis of Li migration in Li1+xAlxTi2-x(PO4)3(LATP) solid electrolytes[J]. Solid State Ionics,2021,359:115521. doi: 10.1016/j.ssi.2020.115521
    [71] LI Z, LI C, LIU X W, et al. Continuous electrical pumping membrane process for seawater lithium mining[J]. Energy & Environmental Science,2021,14:3152-3159.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1660
  • HTML全文浏览量:  631
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-06-18
  • 录用日期:  2021-06-27
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回