留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能双响应油水分离材料的合成

张祺 薛鸿燕 王浩乾 胡渼堃 韩小茜 王农

张祺, 薛鸿燕, 王浩乾, 等. 智能双响应油水分离材料的合成[J]. 复合材料学报, 2024, 42(0): 1-7.
引用本文: 张祺, 薛鸿燕, 王浩乾, 等. 智能双响应油水分离材料的合成[J]. 复合材料学报, 2024, 42(0): 1-7.
ZHANG Qi, XUE Hongyan, WANG Haoqian, et al. Synthesis of smart dual-response oil-water separation material[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Qi, XUE Hongyan, WANG Haoqian, et al. Synthesis of smart dual-response oil-water separation material[J]. Acta Materiae Compositae Sinica.

智能双响应油水分离材料的合成

基金项目: 甘肃省重点研发计划项目(23YFGA0044),甘肃省中小企业创新基金项目资助(1407GCCA013)
详细信息
    通讯作者:

    韩小茜, 教授,主要从事高分子复合材料等领域的研究。 E-mail: hxqnv2011@163.com

    王农,教授,研究方向: 材料物理与化学。 E-mail: wangnong07@163.com

  • 中图分类号: TB381; TB332

Synthesis of smart dual-response oil-water separation material

Funds: Gansu Province Key Research and Development Program (23YFGA0044), Innovation Fund of Small and Medium-sized Enterprises of Gansu Province (1407GCCA013)
  • 摘要: 智能材料是一种具有感知、响应和适应环境能力的材料。随着科技的不断发展,智能材料在各个领域的应用越来越广泛,未来的发展前景十分广阔。本文合成了一种含有羧基及可聚合基团的偶氮苯化合物,以该偶氮苯化合物作为光响应单元,甲基丙烯酸二甲氨乙酯作为pH响应单元,采用可逆加成-断裂链转移(RAFT)聚合与甲基丙烯酸羟乙酯进行一步共聚,得到了光和pH智能双响应三元共聚物。聚合物涂层在不同条件的刺激下接触角最大变化可达120.2°,经过亲水-疏水的多次转换,接触角仍可以恢复到初始状态,具有优异的可逆刺激响应能力。将聚合物涂敷在无纺布上制成光/pH双响应油水分离膜,该膜在亲油疏水与亲水疏油之间发生可逆转变,实现选择性油水分离,单次分离效率分别达96.3%和95.8%。这种对光和pH的刺激响应性使其可用于复杂环境的液体传输和油水分离等领域,具有巨大的智能水油分离应用潜力。

     

  • 图  1  偶氮苯单体及聚合物的合成路线 (a,b: 中间体, c:单体, d: 聚合物)

    Figure  1.  Synthetic route of azobenzene monomer and polymer (a,b: intermediate, c: monomer, d: polymer)

    图  2  中间体a、b,单体c和聚合物d的傅里叶红外谱图

    Figure  2.  FT-IR of azobenzene intermediates a,b, monomer c and polymer d

    图  3  偶氮苯单体和聚合物的核磁共振氢谱图

    Figure  3.  1HNMR of azobenzene monomer and polymer

    图  4  偶氮苯单体的UV-Vis吸收光谱变化图

    Figure  4.  UV-Vis absorption spectra of azobenzene monomer

    图  5  无纺布的SEM图像(a);油水分离膜的SEM图像(b)

    Figure  5.  SEM image of blank non-woven fabric (a); SEM image of oil-water separation membrane (b)

    图  6  聚合物d的载玻片涂层在不同条件下的接触角变化: (a) 自然条件下; (b) 经pH=3缓冲溶液浸泡后; (c) 经pH=10缓冲溶液浸泡后; (d) 经365 nm光照射后; (e) 经445 nm光照射后; (f) 经pH=3缓冲溶液浸泡并用365 nm紫外光照射后

    Figure  6.  Contact angle variation of polymer d slide coatings under different conditions: (a) the natural state; (b) after immersion with pH=3 buffer solution; (c) after immersion in pH=10 buffer solution; (d) after exposure to 365 nm light; (e) after exposure to 445 nm light; (f) after immersion in pH=3 buffer solution and irradiation with 365 nm ultraviolet light

    图  7  聚合物d的载玻片涂层在不同pH和光照下的接触角的可逆变化情况

    Figure  7.  Contact angle reversible variation of polymer d slide coatings under different pH and light conditions

    图  8  聚合物d无纺布涂层的油水分离实验

    Figure  8.  Oil-water separation experiment of non-woven coating with intelligent response polymer d

  • [1] GUO H, QIN Q, HU M, et al. Treatment of refinery wastewater: Current status and prospects[J]. Journal of Environmental Chemical Engineering, 2024, 112508.
    [2] LARI K S, DAVIS G B, BASTOW T, et al. On quantifying global carbon emission from oil contaminated lands over centuries[J]. Science of The Total Environment, 2024, 907: 168039. doi: 10.1016/j.scitotenv.2023.168039
    [3] 吴应湘, 许晶禹. 油水分离技术[J]. 力学进展, 2015, 45: 179-216. doi: 10.6052/1000-0992-15-001

    WU Yingxiang, XU Jingyu. Oil-water separation technology[J]. Advances in Mechanics, 2015, 45: 179-216(in Chinese). doi: 10.6052/1000-0992-15-001
    [4] CHANG L, CAO Y, FAN G, et al. A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 2019, 9: 20226-20239. doi: 10.1039/C9RA02905B
    [5] 陈明功, 周鑫, 赵彬彬等. 油水分离技术的研究进展[J]. 现代化工, 2024, 44(1): 63-67.

    CHENG Minggong, ZHOU Xin, ZHAO Binbin et al. Research progress of oil-water separation technology[J]. Modern Chemical Industry, 2024, 44(1): 63-67(in Chinese).
    [6] MANSOUR M S, ABDEL-SHAFY H I, IBRAHIM A M. Petroleum wastewater: Environmental protection, treatment, and safe reuse: An overview[J]. Journal of Environmental Management, 2024, 351: 119827. doi: 10.1016/j.jenvman.2023.119827
    [7] 胡天佑, 唐瑾, 陈志莉. 石油工业含油废水处理进展[J]. 水处理技术, 2021, 47(06): 12-17.

    HU Tianyou, TANG Jin, CHEN Zhili. Progress in the treatment of oily wastewater from petroleum industry[J]. Water Treatment Technology, 2019, 47(06): 12-17. (in Chinese)
    [8] ADETUNJI A I, OLANIRAN A O, Treatment of industrial oily wastewater by advanced technologies: a review,[J]. Applied Water Science, 2021, 11(6): 98.
    [9] 徐诗琪, 周洲, 汤睿, 等. 高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用[J]. 复合材料学报, 2024, 41(3): 1347-1355.

    XU Shiqi ZHOU Zhou, TANG Rui, et al. Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1347-1355(in Chinese).
    [10] YANG H, ZHANG Y, HUANG C, et al. Antifouling multi-functional membrane for oil/dye wastewater treatment: Regeneration while treating mixed pollutants[J]. Separation and Purification Technology, 2024, 332: 125804. doi: 10.1016/j.seppur.2023.125804
    [11] LI B, QI B, GUO Z, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review[J]. Chemosphere, 2023, 138528.
    [12] ZHANG J, PENG K, XU Z, et al. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes[J]. Advances in Colloid and Interface Science, 2023, 319: 102971. doi: 10.1016/j.cis.2023.102971
    [13] 穆蒙, 宁学文, 罗新杰等. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(07): 882-894.

    MU Meng, NING Xuewen, LUO Xinjie et al. Preparation, properties and application of stimulus-responsive polymer microspheres[J]. Advances in Chemistry, 2019, 32(07): 882-894(in Chinese).
    [14] GONG J, XIANG B, SUN Y, et al. Janus smart materials with asymmetrical wettability for on-demand oil/water separation: a comprehensive review[J]. Journal of Materials Chemistry A, 2023, 11: 25093-25114. doi: 10.1039/D3TA04160C
    [15] QIU L, ZHENG J, YU X, et al. Hydrophobic photore-sponsive azobenzene-containing materials prepared by click reac-tion[J]. Surface Review and Letters, 2023, 2450055.
    [16] YU B, HOU K, FAN Z, et al, Design fiber-based membrane with interfacial wettability rapidly regulated behavior by pH for oily wastewater high-efficient treatment[J]. Progress in Organic Coatings, 2024, 189: 108326.
    [17] ZHONG Q, LU M, NIEUWENHUIS S, et al, Enhanced Stain Removal and Comfort Control Achieved by Cross-Linking Light and Thermo Dual-Responsive Copolymer onto Cotton Fabrics[J]. ACS Applied Materials & Interfaces, 2019, 11: 5414-5426.
    [18] CHEN W, HE H, ZHU H, et al, Thermo-Responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation[J]. Polymers, 2018, 10(6): 592.
    [19] SUN R, WU C, HOU B, et al. Magnetically Responsive Superhydrophobic Surface with Reversibly Switchable Wettability: Fabrication, Deformation, and Switching Performance[J]. ACS Applied Materials & Interfaces, 2023, 15(45): 53146-53158.
    [20] LIU X, ZHANG P, SONG H, et al. Unveiling a pH-Responsive Dual-Androgen-Blocking Magnetic Molecularly Imprinted Polymer for Enhanced Synergistic Therapy of Prostate Cancer[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4348-4360.
    [21] SURAPANENI S G, CHOUDHARI S N, AVHAD S V, et al. Permeable polymersomes from temperature and pH dual stimuli-responsive PVCL-b-PLL block copolymers for enhanced cell internalization and lysosome targeting[J]. Biomaterials Advances, 2023, 151: 213454. doi: 10.1016/j.bioadv.2023.213454
    [22] URBAN D, MARCUCCI N, WÖLFLE C H, et al. Polarization-driven reversible actuation in a photo-responsive polymer composite[J]. Nature Communications, 2023, 14(1): 6843. doi: 10.1038/s41467-023-42590-y
    [23] LI Y, XUE B, YANG J, et al, Azobenzene as a photoswitchable mechanophore[J]. Nature Chemistry, 2023, 1-10.
    [24] DU Q, ZHAO J, JIANG L, et al. Molecular design on dual stimuli-responsive azobenzene-containing ionic complexes toward self-healing materials under photoirradiation or humid condition at room temperature[J]. Applied Materials Today, 2023, 35: 101945. doi: 10.1016/j.apmt.2023.101945
    [25] LI B H, JIANG L, WANG Y, et al. Construction and Properties of New-Type Photo-Responsive Molecular Imprinting Materials[J]. Polymer Science, Series A, 2023, 64: 673-684.
    [26] 陈佳慧, 袁晨瑞, 吴泽宏等. 偶氮苯高分子光控可逆黏合剂的制备及性能[J]. 功能高分子学报, 2023, 36(03): 293-301.

    CHEN Jiahui, YUAN Chenrui, WU Zehong et al. Preparation and properties of photocontrolled reversible adhesives for azobenzene polymers[J]. Journal of Functional Polymers, 2019, 36(03): 293-301(in Chinese).
    [27] YANG Q, GE J, QIN M, et al, Controllable heat release of phase-change azobenzenes by optimizing molecular structures for low-temperature energy utilization[J]. Science China Materials, 2023, 66: 3609-3620.
    [28] MERRITT D C I, JACQUEMIN D, VACHER M. cis → trans photoisomerisation of azobenzene: a fresh theoretical look[J]. Physical Chemistry Chemical Physics, 2021, 23: 19155-19165. doi: 10.1039/D1CP01873F
    [29] YANG X, JIN H, TAO X, et al. Photo-switchable smart superhydrophobic surface with controllable superwettability[J]. Polymer Chemistry, 2021, 12(37): 5303-5309. doi: 10.1039/D1PY00984B
    [30] DU Z, REN B, CHANG X, et al. Aggregation and Rheology of an Azobenzene-Functionalized Hydrophobically Modified Ethoxylated Urethane in Aqueous Solution[J]. Macromolecules, 2016, 49(13): 4978-4988 doi: 10.1021/acs.macromol.6b00633
    [31] CHENG H B, ZHANG S, QI J, et al. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly[J]. Advanced Materials, 2021, 33: e2007290. doi: 10.1002/adma.202007290
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回