Preparation and properties of artificial cold-bonded lightweight aggregate high-strength concrete
-
摘要: 以搅拌站混凝土废浆(Concrete slurry waste, CSW)为原料,利用冷粘结造粒技术结合碳化增强工艺,制备了一种性能优异的人工骨料(Artificial aggregate, AA),并发展了轻骨料高强混凝土(Lightweight aggregate high-strength concrete, LAHC),重点研究了AA的物理性能、力学性能和微观结构,以及LAHC的工作性能、力学性能和收缩性能。研究结果表明,以CSW为原料,利用冷粘结技术结合碳化增强工艺生产的AA,具备可行性;球形AA粒度分布主要在4.75~14 mm之间,松散堆积密度介于950~1100 kg/m3之间,1 h吸水率为9.96%~12.89%。单颗颗粒强度变化范围为13.68~15.64 MPa,筒压强度介于8.18~9.17 MPa;加压碳化3 d对于AA单颗颗粒强度和筒压强度提高约14%和12%,湿法碳化10 min提高约9%和8%,吸水率分别下降约23%和14%,湿法碳化表现出更高的效率优势;制备的人工LAHC 28 d抗压强度可达45.2 MPa,抗折强度4.7 MPa,密度1807.6 kg/m3,满足LAHC的要求;球形AA借助滚珠效应自身具备一定减水功能,预湿处理有助于缓解轻骨料混凝土收缩问题,对AA进行24 h的预湿处理,可以将其90 d的收缩率减少10.0%。研究成果为新一代的混凝土材料低碳化、可持续化提供参考。Abstract: In this study, an artificial aggregate (AA) with excellent performance was prepared from concrete waste slurry (CSW) as raw material using cold-bonding granulation technology combined with a carbonation reinforcement process, and lightweight aggregate high-strength concrete (LAHC) was developed, focusing on the physical properties, mechanical properties, and microstructure of the aggregate, as well as the workability, mechanical properties, and shrinkage properties of the LAHC. The study results demonstrate that using cold bonding technology combined with a carbonation enhancement process to produce AA from CSW as a raw material is feasible. The particle size distribution of the spherical artificial aggregate mainly ranges between 4.75 mm and 14 mm. The aggregates have loose bulk densities of 950-1100 kg/m³, water absorption rates of 9.96%-12.89% at 1 hour, individual pellet strengths of 13.68-15.64 MPa, and cylinder compressive strengths of 8.18-9.17 MPa; pressurized carbonization 3 d for AA individual pellet strength and cylinder compressive strength increase by approximately 14% and 12%, wet carbonization 10 min increases by approximately 9% and 8%, the water absorption rate decreases by approximately 23% and 14%, respectively, wet carbonization shows higher efficiency advantages; prepared artificial LAHC 28 d compressive strength up to 45.2 MPa, flexural strength 4.7 MPa, and the 28 d compressive strength of the prepared artificial LAHC can reach 45.2 MPa, flexural strength 4.7 MPa, density 1807.6 kg/m3, which meets the requirements of LAHC; the spherical AA itself has a certain water-reducing function, and pre-wetting treatment can help to alleviate the problem of shrinkage of the LAHC, and the pre-wetted AA in 24 h can reduce the shrinkage rate of the concrete in 90 d by 10.0%. The research results provide a reference for the new generation of sustainable concrete materials.
-
表 1 水泥、粉煤灰、硅灰和混凝土废浆料化学成分(wt%)
Table 1. Chemical composition of cement, fly ash, silica fume and concrete slurry waste (wt%)
Material SiO2 CaO Al2O3 Fe2O3 MgO SO3 TiO2 K2O Na2O LOI Cement 20.25 62.30 6.04 3.41 2.01 3.65 0.39 0.84 0.17 3.24 FA 76.24 2.84 14.24 2.34 0.81 0.91 0.48 1.72 – 4.76 SF 92.40 0.55 1.32 0.16 0.42 3.09 – 0.90 0.13 0.35 CSW 32.65 35.27 8.31 6.64 1.39 2.98 0.53 1.72 – 10.35 Notes: FA-Fly ash; SF-Silica fume; CSW-Concrete slurry waste; LOI-Loss on ignition. 表 2 混凝土配合比
Table 2. Mix proportion of concrete
NO. W/C/
(kg·m−3)Cement/
(kg·m−3)FA/
(kg·m−3)SF/
(kg·m−3)NCA/
(kg·m−3)AA/
(kg·m−3)S/
(kg·m−3)Water/
(kg·m−3)SP/
(kg·m−3)Pre-wetting
time/ hLAC1 0.29 350 100 50 0 828.52 470.25 145 5.75 0 LAC2 0.29 350 100 50 0 828.52 470.25 145 5.75 1 LAC3 0.29 350 100 50 0 828.52 470.25 145 5.75 24 LAC4 0.31 350 100 50 0 828.52 470.25 155 5.75 24 LAC5 0.33 350 100 50 0 828.52 470.25 165 5.75 24 L-NAC 0.33 350 100 50 569.42 414.26 470.25 165 5.75 24 NAC 0.33 350 100 50 1138.83 0 470.25 165 5.75 24 Notes: LAC-Lightweight aggregate concrete; LAC1, LAC2 and LAC3-Lightweight aggregate concrete with pre-wetting time of 0 h, 1 h and 24 h , respectively; LAC3, LAC4 and LAC5-Lightweight aggregate concrete with water-cement ratio of 0.29, 0.31 and 0.33, respectively; LAC5, L-NAC and NAC-Lightweight aggregate concrete with the replacement ratio of 100%, 50% and 0%, respectively; W/C-Water-cement ratio; NCA-Natural coarse aggregate; AA-Artificial aggregate; S-Sand; SP-Superplasticizer. -
[1] Behera M, Bhattacharyya S K, Minocha A K, et al. Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review[J]. Construction and Building Materials, 2014, 68: 501-516. doi: 10.1016/j.conbuildmat.2014.07.003 [2] Xiao J, Li W, Fan Y, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials, 2012, 31: 364-383. doi: 10.1016/j.conbuildmat.2011.12.074 [3] 王瑞敏, 王林秀. 中国建筑垃圾现状分析及发展前景[J]. 中国城市经济, 2011, 2011(5): 178-179.WANG Ruimin, WANG Linxiu. Current situation analysis and development prospect of construction waste in China[J]. China Urban Economy, 2011, 2011(5): 178-179(in Chinese). [4] Tang P, Brouwers H J H. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2 mm) and industrial powder wastes by cold-bonding pelletization[J]. Waste Management, 2017, 62: 125-138. doi: 10.1016/j.wasman.2017.02.028 [5] Tardos G I, Khan M I, Mort P R. Critical parameters and limiting conditions in binder granulation of fine powders[J]. Powder Technology, 1997, 94(3): 245-258. doi: 10.1016/S0032-5910(97)03321-4 [6] Ren P, Li B, Yu J G, et al. Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks[J]. Journal of Cleaner Production, 2020, 267: 122115. doi: 10.1016/j.jclepro.2020.122115 [7] Tajra F, Elrahman M A, Stephan D. The production and properties of cold-bonded aggregate and its applications in concrete: A review[J]. Construction and Building Materials, 2019, 225: 29-43. doi: 10.1016/j.conbuildmat.2019.07.219 [8] Shang X, Chang J, Yang J, et al. Life cycle sustainable assessment of natural vs artificial lightweight aggregates[J]. Journal of Cleaner Production, 2022, 367: 133064. doi: 10.1016/j.jclepro.2022.133064 [9] Boarder R F W, Owens P L, Khatib J M. 10 - The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete [M]//KHATIB J M. Sustainability of Construction Materials (Second Edition). Woodhead Publishing, 2016: 209-244. [10] Gesoğlu M, Güneyisi E, Öz H Ö. Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag[J]. Materials and Structures, 2012, 45(10): 1535-1546. doi: 10.1617/s11527-012-9855-9 [11] Tajra F, Elrahman M A, Chung S Y, et al. Performance assessment of core-shell structured lightweight aggregate produced by cold bonding pelletization process[J]. Construction and Building Materials, 2018, 179: 220-231. doi: 10.1016/j.conbuildmat.2018.05.237 [12] Tang P, Xuan D, Cheng H W, et al. Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA)[J]. Journal of Hazardous Materials, 2020, 381: 120951. doi: 10.1016/j.jhazmat.2019.120951 [13] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12-2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019 [S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [14] Haddadian A, Johnson Alengaram U, Ayough P, et al. Inherent characteristics of agro and industrial By-Products based lightweight concrete - A comprehensive review[J]. Construction and Building Materials, 2023, 397: 132298. doi: 10.1016/j.conbuildmat.2023.132298 [15] Kumar J D C, Arunakanthi E. The use of light weight aggregates for precast concrete structural members[J]. 2018, 13(10): 7779-7787. [16] Hamad A J. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review[J]. International Journal of Materials Science and Engineering, 2014, 2(2): 152-157. [17] Tajra F, Abd Elrahman M, Lehmann C, et al. Properties of lightweight concrete made with core-shell structured lightweight aggregate[J]. Construction and Building Materials, 2019, 205: 39-51. doi: 10.1016/j.conbuildmat.2019.01.194 [18] 张忠苗. 软土地基超长嵌岩桩的受力性状[J]. 岩土工程学报, 2001, (5): 552-556 doi: 10.3321/j.issn:1000-4548.2001.05.007ZHANG Zhongmiao. The endurance of super-long piles in soft, soil[J]. Chinese Journal of Geotechnical Engineering, 2001, (5): 552-556(in Chinese). doi: 10.3321/j.issn:1000-4548.2001.05.007 [19] Liu S, Shen P, Xuan D, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. doi: 10.1016/j.cemconcomp.2021.103988 [20] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.2-2010[S]. 北京: 中国标准出版社, 2010.Standardization Administration of the People’s Republic of China. Lightweight aggregates and its test methods-Part 2: Test methods for lightweight aggregates: GB/T 17431.2-2010 [S]. Beijing: Standards Press of China, 2010(in Chinese). [21] Li Y, Wu D, Zhang J, et al. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts[J]. Powder Technology, 2000, 113(1-2): 176-184. doi: 10.1016/S0032-5910(00)00231-X [22] Gesoğlu M, Güneyisi E, Mahmood S F, et al. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete[J]. Journal of Hazardous Materials, 2012, 235-236: 352-358. doi: 10.1016/j.jhazmat.2012.08.013 [23] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080-2016[S]. 北京: 中国建筑工业出版社, 2016.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for performance test methods of ordinary concrete mixtures: GB/T 50080-2016 [S]. Beijing: China Building Industry Press, 2016(in Chinese). [24] 中华人民共和国建设部. 普通混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.General Ministry of Housing and Urban-Rural Development of the People’ s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081 -2002[S]. Beijing: China Architecture and Building Press, 2003(in Chinese). [25] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国建筑工业出版社, 2009.Ministry of Housing, Urban and Rural Construction of the People’s Republic of China. Standard test method for longterm performance and durability of ordinary concrete: GB/T 50082-2009[S]. Beijing: China Construction Industry Press, 2009(in Chinese). [26] 中国国家标准化管理委员会. 轻集料及其试验方法, 第1部分: 轻集料试验方法: GB/T 17431.1-2010[S]. 北京: 中国标准出版社, 2010.Standardization Administration of the People’s Republic of China. Lightweight aggregates and its test methods-Part 1: Test methods for lightweight aggregates: GB/T 17431.1-2010[S]. Beijing: Standards Press of China, 2010(in Chinese). [27] 吴琼, 胡忠君, 王健仵, 等. 再生粗骨料碳化处理及其对再生混凝土性能的影响研究进展[J]. 建筑结构, 2023, 53(S2): 1347-1351WU Qiong, HU Zhongjun, WANG Jianwu, et al. Research progress of carbonization treatment of recycled coarse aggregate and its effect on properties of recycled concrete[J]. Building Structure, 2023, 53(S2): 1347-1351(in Chinese). [28] 姜义, 马梓涵, 申培亮, 等. 废弃混凝土碳化资源化技术研究进展[J]. 硅酸盐学报, 2023, 51(9): 2433-2445.JIANG Yi, MA Zihan, Shen Peiliang, et al. Research Progress on Carbonation Technologies For Valorizing Waste Concrete: A Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2433-2445(in Chinese). [29] Shi C, Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources, Conservation and Recycling, 2008, 52(8-9): 1087-1092. doi: 10.1016/j.resconrec.2008.05.002 [30] Liu S, Shen P, Xuan D, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. doi: 10.1016/j.cemconcomp.2021.103988 [31] 孙道胜, 李泽英, 刘开伟, 等. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033+11056. doi: 10.11896/cldb.20100227SUN Daosheng, LI Zeyin, LIU Kaiwei, et al. Influence of Shapes and Defects in Recycled Aggregate on Drying Shrinkage and Mechanical Properties of Recycled Aggregate Concrete[J]. Materials Reports, 2021, 35(11): 11027-11033+11056. doi: 10.11896/cldb.20100227 [32] Xiong G, Wang C, Zhou S, et al. Study on dispersion uniformity and performance improvement of steel fibre reinforced lightweight aggregate concrete by vibrational mixing[J]. Case Studies in Construction Materials, 2022, 16: e01093. doi: 10.1016/j.cscm.2022.e01093 [33] 魏亚, 郑小波, 郭为强. 干燥环境下内养护混凝土收缩、强度及开裂性能[J]. 建筑材料学报, 2016, 19(5): 902-908. doi: 10.3969/j.issn.1007-9629.2016.05.020WEI Ya, ZHENG Xiaobo, GUO Weiqiang. Shrinkage, Strength Development and Cracking of Internally Cured Concrete Exposed to Dry Conditions[J]. Journal of Building Materials, 2016, 19(5): 902-908(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.05.020 [34] 张登祥, 韦莹, 周佳. 自密实轻骨料混凝土约束收缩试验及抗裂性能研究[J]. 硅酸盐通报, 2019, 38(5): 1462-1467,1476.ZHANG Dengxiang, WEI Ying, ZHOU Jia. Experimental Study on Restrained Shrinkage and Crack Resistance of Self-compacting Lightweight Aggregate Concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1462-1467,1476(in Chinese). [35] 黄嘉钰, 刘元珍, 王朝旭, 等. 再生保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10): 4788-4800.HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4788-4800(in Chinese).
计量
- 文章访问数: 125
- HTML全文浏览量: 61
- 被引次数: 0