留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工冷粘结轻骨料高强混凝土制备及性能

商效瑀 黄文逸 方泽宇 陈钰琦 张斌

商效瑀, 黄文逸, 方泽宇, 等. 人工冷粘结轻骨料高强混凝土制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 商效瑀, 黄文逸, 方泽宇, 等. 人工冷粘结轻骨料高强混凝土制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
SHANG Xiaoyu, HUANG Wenyi, FANG Zeyu, et al. Preparation and properties of artificial cold-bonded lightweight aggregate high-strength concrete[J]. Acta Materiae Compositae Sinica.
Citation: SHANG Xiaoyu, HUANG Wenyi, FANG Zeyu, et al. Preparation and properties of artificial cold-bonded lightweight aggregate high-strength concrete[J]. Acta Materiae Compositae Sinica.

人工冷粘结轻骨料高强混凝土制备及性能

基金项目: 吉林省发改委产业技术研究与开发专项项目(2021C038-6); 吉林省教育厅重大科技项目(JJKH20240155KJ)
详细信息
    通讯作者:

    商效瑀,博士,教授,硕士生导师,研究方向为低碳混凝土技术 、固体废弃物科学、绿色建筑技术与理论 E-mail:shangxiaoyu@neepu.edu.cn

  • 中图分类号: TU528.2

Preparation and properties of artificial cold-bonded lightweight aggregate high-strength concrete

Funds: Development and Reform Commission Funding of Jilin Province (2021C038-6); Major Program of Science and Technology Project of the Educational Commission of Jilin Province (JJKH20240155KJ)
  • 摘要: 以搅拌站混凝土废浆(Concrete slurry waste, CSW)为原料,利用冷粘结造粒技术结合碳化增强工艺,制备了一种性能优异的人工骨料(Artificial aggregate, AA),并发展了轻骨料高强混凝土(Lightweight aggregate high-strength concrete, LAHC),重点研究了AA的物理性能、力学性能和微观结构,以及LAHC的工作性能、力学性能和收缩性能。研究结果表明,以CSW为原料,利用冷粘结技术结合碳化增强工艺生产的AA,具备可行性;球形AA粒度分布主要在4.75~14 mm之间,松散堆积密度介于950~1100 kg/m3之间,1 h吸水率为9.96%~12.89%。单颗颗粒强度变化范围为13.68~15.64 MPa,筒压强度介于8.18~9.17 MPa;加压碳化3 d对于AA单颗颗粒强度和筒压强度提高约14%和12%,湿法碳化10 min提高约9%和8%,吸水率分别下降约23%和14%,湿法碳化表现出更高的效率优势;制备的人工LAHC 28 d抗压强度可达45.2 MPa,抗折强度4.7 MPa,密度1807.6 kg/m3,满足LAHC的要求;球形AA借助滚珠效应自身具备一定减水功能,预湿处理有助于缓解轻骨料混凝土收缩问题,对AA进行24 h的预湿处理,可以将其90 d的收缩率减少10.0%。研究成果为新一代的混凝土材料低碳化、可持续化提供参考。

     

  • 图  1  人工骨料制备流程

    Figure  1.  Artificial aggregate preparation process

    图  2  二次投料搅拌法

    Figure  2.  Secondary batch mixing method

    图  3  筒压强度和单颗颗粒强度测试示意图

    Figure  3.  Schematic diagram of cylinder compressive strength and individual pellet strength

    图  4  不同养护方式的人工冷粘结轻骨料的性能

    Figure  4.  Properties of artificial aggregates with different curing methods

    图  5  不同养护方式的人工骨料的SEM-EDS

    Figure  5.  SEM-EDS of artificial aggregate with different curing methods

    图  6  混凝土拌合物工作性能试验

    Figure  6.  Workability test for concrete mixture

    图  7  混凝土拌合物的工作性能

    Figure  7.  Workability of concrete mixture

    图  8  混凝土的干表观密度和抗压强度

    Figure  8.  Dry apparent density and compressive strength of concrete

    图  9  混凝土的抗折强度和折压比

    Figure  9.  Flexural strength and bend-press ratio of concrete

    图  10  混凝土的干燥收缩率

    Figure  10.  Drying shrinkage of concrete

    表  1  水泥、粉煤灰、硅灰和混凝土废浆料化学成分(wt%)

    Table  1.   Chemical composition of cement, fly ash, silica fume and concrete slurry waste (wt%)

    Material SiO2 CaO Al2O3 Fe2O3 MgO SO3 TiO2 K2O Na2O LOI
    Cement 20.25 62.30 6.04 3.41 2.01 3.65 0.39 0.84 0.17 3.24
    FA 76.24 2.84 14.24 2.34 0.81 0.91 0.48 1.72 4.76
    SF 92.40 0.55 1.32 0.16 0.42 3.09 0.90 0.13 0.35
    CSW 32.65 35.27 8.31 6.64 1.39 2.98 0.53 1.72 10.35
    Notes: FA-Fly ash; SF-Silica fume; CSW-Concrete slurry waste; LOI-Loss on ignition.
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportion of concrete

    NO. W/C/
    (kg·m−3)
    Cement/
    (kg·m−3)
    FA/
    (kg·m−3)
    SF/
    (kg·m−3)
    NCA/
    (kg·m−3)
    AA/
    (kg·m−3)
    S/
    (kg·m−3)
    Water/
    (kg·m−3)
    SP/
    (kg·m−3)
    Pre-wetting
    time/ h
    LAC1 0.29 350 100 50 0 828.52 470.25 145 5.75 0
    LAC2 0.29 350 100 50 0 828.52 470.25 145 5.75 1
    LAC3 0.29 350 100 50 0 828.52 470.25 145 5.75 24
    LAC4 0.31 350 100 50 0 828.52 470.25 155 5.75 24
    LAC5 0.33 350 100 50 0 828.52 470.25 165 5.75 24
    L-NAC 0.33 350 100 50 569.42 414.26 470.25 165 5.75 24
    NAC 0.33 350 100 50 1138.83 0 470.25 165 5.75 24
    Notes: LAC-Lightweight aggregate concrete; LAC1, LAC2 and LAC3-Lightweight aggregate concrete with pre-wetting time of 0 h, 1 h and 24 h , respectively; LAC3, LAC4 and LAC5-Lightweight aggregate concrete with water-cement ratio of 0.29, 0.31 and 0.33, respectively; LAC5, L-NAC and NAC-Lightweight aggregate concrete with the replacement ratio of 100%, 50% and 0%, respectively; W/C-Water-cement ratio; NCA-Natural coarse aggregate; AA-Artificial aggregate; S-Sand; SP-Superplasticizer.
    下载: 导出CSV
  • [1] Behera M, Bhattacharyya S K, Minocha A K, et al. Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review[J]. Construction and Building Materials, 2014, 68: 501-516. doi: 10.1016/j.conbuildmat.2014.07.003
    [2] Xiao J, Li W, Fan Y, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials, 2012, 31: 364-383. doi: 10.1016/j.conbuildmat.2011.12.074
    [3] 王瑞敏, 王林秀. 中国建筑垃圾现状分析及发展前景[J]. 中国城市经济, 2011, 2011(5): 178-179.

    WANG Ruimin, WANG Linxiu. Current situation analysis and development prospect of construction waste in China[J]. China Urban Economy, 2011, 2011(5): 178-179(in Chinese).
    [4] Tang P, Brouwers H J H. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2 mm) and industrial powder wastes by cold-bonding pelletization[J]. Waste Management, 2017, 62: 125-138. doi: 10.1016/j.wasman.2017.02.028
    [5] Tardos G I, Khan M I, Mort P R. Critical parameters and limiting conditions in binder granulation of fine powders[J]. Powder Technology, 1997, 94(3): 245-258. doi: 10.1016/S0032-5910(97)03321-4
    [6] Ren P, Li B, Yu J G, et al. Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks[J]. Journal of Cleaner Production, 2020, 267: 122115. doi: 10.1016/j.jclepro.2020.122115
    [7] Tajra F, Elrahman M A, Stephan D. The production and properties of cold-bonded aggregate and its applications in concrete: A review[J]. Construction and Building Materials, 2019, 225: 29-43. doi: 10.1016/j.conbuildmat.2019.07.219
    [8] Shang X, Chang J, Yang J, et al. Life cycle sustainable assessment of natural vs artificial lightweight aggregates[J]. Journal of Cleaner Production, 2022, 367: 133064. doi: 10.1016/j.jclepro.2022.133064
    [9] Boarder R F W, Owens P L, Khatib J M. 10 - The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete [M]//KHATIB J M. Sustainability of Construction Materials (Second Edition). Woodhead Publishing, 2016: 209-244.
    [10] Gesoğlu M, Güneyisi E, Öz H Ö. Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag[J]. Materials and Structures, 2012, 45(10): 1535-1546. doi: 10.1617/s11527-012-9855-9
    [11] Tajra F, Elrahman M A, Chung S Y, et al. Performance assessment of core-shell structured lightweight aggregate produced by cold bonding pelletization process[J]. Construction and Building Materials, 2018, 179: 220-231. doi: 10.1016/j.conbuildmat.2018.05.237
    [12] Tang P, Xuan D, Cheng H W, et al. Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA)[J]. Journal of Hazardous Materials, 2020, 381: 120951. doi: 10.1016/j.jhazmat.2019.120951
    [13] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12−2019 [S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [14] Haddadian A, Johnson Alengaram U, Ayough P, et al. Inherent characteristics of agro and industrial By-Products based lightweight concrete - A comprehensive review[J]. Construction and Building Materials, 2023, 397: 132298. doi: 10.1016/j.conbuildmat.2023.132298
    [15] Kumar J D C, Arunakanthi E. The use of light weight aggregates for precast concrete structural members[J]. 2018, 13(10): 7779-7787.
    [16] Hamad A J. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review[J]. International Journal of Materials Science and Engineering, 2014, 2(2): 152-157.
    [17] Tajra F, Abd Elrahman M, Lehmann C, et al. Properties of lightweight concrete made with core-shell structured lightweight aggregate[J]. Construction and Building Materials, 2019, 205: 39-51. doi: 10.1016/j.conbuildmat.2019.01.194
    [18] 张忠苗. 软土地基超长嵌岩桩的受力性状[J]. 岩土工程学报, 2001, (5): 552-556 doi: 10.3321/j.issn:1000-4548.2001.05.007

    ZHANG Zhongmiao. The endurance of super-long piles in soft, soil[J]. Chinese Journal of Geotechnical Engineering, 2001, (5): 552-556(in Chinese). doi: 10.3321/j.issn:1000-4548.2001.05.007
    [19] Liu S, Shen P, Xuan D, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. doi: 10.1016/j.cemconcomp.2021.103988
    [20] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.2-2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Lightweight aggregates and its test methods-Part 2: Test methods for lightweight aggregates: GB/T 17431.2-2010 [S]. Beijing: Standards Press of China, 2010(in Chinese).
    [21] Li Y, Wu D, Zhang J, et al. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts[J]. Powder Technology, 2000, 113(1-2): 176-184. doi: 10.1016/S0032-5910(00)00231-X
    [22] Gesoğlu M, Güneyisi E, Mahmood S F, et al. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete[J]. Journal of Hazardous Materials, 2012, 235-236: 352-358. doi: 10.1016/j.jhazmat.2012.08.013
    [23] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080-2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for performance test methods of ordinary concrete mixtures: GB/T 50080-2016 [S]. Beijing: China Building Industry Press, 2016(in Chinese).
    [24] 中华人民共和国建设部. 普通混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

    General Ministry of Housing and Urban-Rural Development of the People’ s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081 -2002[S]. Beijing: China Architecture and Building Press, 2003(in Chinese).
    [25] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing, Urban and Rural Construction of the People’s Republic of China. Standard test method for longterm performance and durability of ordinary concrete: GB/T 50082-2009[S]. Beijing: China Construction Industry Press, 2009(in Chinese).
    [26] 中国国家标准化管理委员会. 轻集料及其试验方法, 第1部分: 轻集料试验方法: GB/T 17431.1-2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Lightweight aggregates and its test methods-Part 1: Test methods for lightweight aggregates: GB/T 17431.1-2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [27] 吴琼, 胡忠君, 王健仵, 等. 再生粗骨料碳化处理及其对再生混凝土性能的影响研究进展[J]. 建筑结构, 2023, 53(S2): 1347-1351

    WU Qiong, HU Zhongjun, WANG Jianwu, et al. Research progress of carbonization treatment of recycled coarse aggregate and its effect on properties of recycled concrete[J]. Building Structure, 2023, 53(S2): 1347-1351(in Chinese).
    [28] 姜义, 马梓涵, 申培亮, 等. 废弃混凝土碳化资源化技术研究进展[J]. 硅酸盐学报, 2023, 51(9): 2433-2445.

    JIANG Yi, MA Zihan, Shen Peiliang, et al. Research Progress on Carbonation Technologies For Valorizing Waste Concrete: A Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2433-2445(in Chinese).
    [29] Shi C, Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources, Conservation and Recycling, 2008, 52(8-9): 1087-1092. doi: 10.1016/j.resconrec.2008.05.002
    [30] Liu S, Shen P, Xuan D, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. doi: 10.1016/j.cemconcomp.2021.103988
    [31] 孙道胜, 李泽英, 刘开伟, 等. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033+11056. doi: 10.11896/cldb.20100227

    SUN Daosheng, LI Zeyin, LIU Kaiwei, et al. Influence of Shapes and Defects in Recycled Aggregate on Drying Shrinkage and Mechanical Properties of Recycled Aggregate Concrete[J]. Materials Reports, 2021, 35(11): 11027-11033+11056. doi: 10.11896/cldb.20100227
    [32] Xiong G, Wang C, Zhou S, et al. Study on dispersion uniformity and performance improvement of steel fibre reinforced lightweight aggregate concrete by vibrational mixing[J]. Case Studies in Construction Materials, 2022, 16: e01093. doi: 10.1016/j.cscm.2022.e01093
    [33] 魏亚, 郑小波, 郭为强. 干燥环境下内养护混凝土收缩、强度及开裂性能[J]. 建筑材料学报, 2016, 19(5): 902-908. doi: 10.3969/j.issn.1007-9629.2016.05.020

    WEI Ya, ZHENG Xiaobo, GUO Weiqiang. Shrinkage, Strength Development and Cracking of Internally Cured Concrete Exposed to Dry Conditions[J]. Journal of Building Materials, 2016, 19(5): 902-908(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.05.020
    [34] 张登祥, 韦莹, 周佳. 自密实轻骨料混凝土约束收缩试验及抗裂性能研究[J]. 硅酸盐通报, 2019, 38(5): 1462-1467,1476.

    ZHANG Dengxiang, WEI Ying, ZHOU Jia. Experimental Study on Restrained Shrinkage and Crack Resistance of Self-compacting Lightweight Aggregate Concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1462-1467,1476(in Chinese).
    [35] 黄嘉钰, 刘元珍, 王朝旭, 等. 再生保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10): 4788-4800.

    HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4788-4800(in Chinese).
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-04-17
  • 录用日期:  2024-04-28
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回