Structural design and damage failure analysis of cone-cylinder integrated composite case
-
摘要: 锥柱一体化复合材料壳体作为新兴固体火箭发动机主体承载结构形式,相较于直筒结构固体火箭发动机壳体纤维缠绕结构形式复杂,且其在承受内压载荷下的损伤失效过程及失效模式不明晰。为此,本文构建了锥柱一体化复合材料壳体分析模型,开展了锥柱一体化缠绕异型结构件线型规划,失效模式、爆破位置、以及爆破压强预测方面研究。结果表明锥柱一体化复合材料壳体交接处存在应力突变现象,削弱了该处纤维缠绕层的承载能力,且主要呈现为环向纤维断裂失效模式。本文研究成果可以为锥柱一体化复合材料壳体的结构铺层设计与失效分析提供理论依据。Abstract: The cone-cylinder integrated composite case is an emerging bearing structure form of the solid rocket motor, the fiber wound structure is complex compared with the straight cylindrical structure, and the failure process and the ultimate failure mode when undertaking the internal pressure load are not clear. Therefore, a cone-cylinder integrated composite case simulation model was built to study the trajectory patterns, failure mode, fracture position, and burst pressure. A significant stress mutation exists at the transition region of the straight and the cone parts, which weakens the undertaking capacity of the composite case. All fiber fracture at this region of hoop layer exhibits fracture ultimately. The study results can apply a reference when designing and failure analysis for the cone-cylinder integrated composite case.
-
Key words:
- composite case /
- cone-cylinder integration /
- structure design /
- progressive damage /
- fiber wound
-
图 8 锥柱一体化复合材料壳体不同载荷下纤维方向应变和垂直纤维方向应变结果(横坐标表示从左极孔到右极孔的轴向坐标,纵坐标LE11和LE22分别表示沿纤维方向和垂直纤维方向应变)
Figure 8. Fiber directional and perpendicular fiber directional strain results of the cone-cylinder integrated composite case under different pressure loads (The horizontal axis represents the axis-directional coordinate from the left polar hole to the right polar hole, the vertical axis represents the fiber orientation and transverse fiber orientation strain)
图 9 锥柱一体化复合材料壳体不同载荷下渐进损伤演化结果(横坐标表示从左极孔到右极孔的轴向坐标,纵坐标SDV1和SDV3分别表示沿纤维方向和垂直纤维方向损伤因子)
Figure 9. Progressive damage results of the cone-cylinder integrated composite case under different pressure loads (The horizontal axis represents the axis-directional coordinate from the left polar hole to the right polar hole, the vertical axis SDV1 and SDV3 represents the fiber orientation and transverse fiber orientation damage factor)
表 1 不同k/m对应的线型切点数及实际转角
Table 1. Count of tangent points and actual rotation angle of the trajectories corresponding to different k/m
No. k/m Tangent point count/series Rotation angle of meridian/(°) Error/(°) 1 37/59 8/4 494.24 5.39 2 38/59 14/4 488.14 −0.71 3 39/59 3/3 482.03 −6.82 4 37/60 13/6 498.00 9.15 5 37/61 28/6 501.64 12.79 6 38/61 8/5 495.74 6.89 7 39/61 25/5 489.84 0.99 8 37/62 5/3 505.16 16.31 9 39/62 27/5 493.55 4.7 Notes:k is the distance between two adjacent points at the equator circle; m is the integer of equator circle splitting count by bandwidth. 表 2 复合材料力学性能参数
Table 2. Mechanical property parameters of composite materials
Type Parameters Value Strength/
MPaXT (0° tension) hoop layer 3556.00 XT (0° tension) helical layer 2600 Composite
materialXC (0° compression) 1354.00 YT (90° tension) 84.31 YC (90°compression) 190.00 S(shear) 60.67 Modulus/
GPaExt (0°Tension) 170.00 Exc (0°compression) 140.00 Eyt (90° tension) 8 Eyc (90° compression) 7.61 µxy 0.33 µyz 0.35 µxz 0.33 Gxy 4 Gyz 2.5 Gzx 4 EPDM E 0.9 μ 0.47 30 CrMnSiA E 196 μ 0.3 Notes:E is the modulus, μ is the Poisson's ratio, G is the shear modulus. 表 3 碳布补强层材料参数
Table 3. Material parameters of carbon cloth reinforcement layer
Modulus/GPa Poisson’s ratio Shear modulus/GPa Strength/MPa Ex Ey Ez µxy µyz µxz Gxy Gyz Gzx 1250 50 50 8 0.055 0.35 0.35 4.3 3.5 3.5 -
[1] 李莹新, 莫纪安, 王秀云, 等. 固体火箭发动机壳体复合材料研究进展[J]. 航天制造技术, 2020, (4): 65-69. doi: 10.3969/j.issn.1674-5108.2020.04.015LI Yingxin, MO Ji'an, WANG Xiuyun, et al. Progress of Composite for Solid Rocket Motor Case[J]. Aerospace Manufacturing Technology, 2020, (4): 65-69(in Chinese). doi: 10.3969/j.issn.1674-5108.2020.04.015 [2] Wagner H N R, C. Hühne, Niemann S. Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells – Development and Validation - ScienceDirect[J]. Composite Structures, 2017, 173(173): 281-303. [3] 李靖, 马虎, 周长省, 等. 基于ANSYS ACP的固体火箭发动机复合材料壳体强度分析[J]. 固体火箭技术, 2023, 46(3): 383-391. doi: 10.7673/j.issn.1006-2793.2023.03.008LI Jing, MA Hu, ZHOU Changsheng, et al. Strength analysis of SRM composite case based on ANSYS ACP[J]. Journal of Solid Rocket Technology, 2023, 46(3): 383-391(in Chinese). doi: 10.7673/j.issn.1006-2793.2023.03.008 [4] 祖磊, 牟星, 张骞, 等. 基于板壳理论的纤维缠绕壳体结构设计分析[J/OL][J]. 复合材料科学与工程, 2022, (12): 5-16.ZU Lei, MOU Xing, ZHANG Qian, et al. Structural analysis of fiber winding composite case based on plate and shell theory [J/OL][J]. Composites Science and Engineering, 2022, (12): 5-16(in Chinese). [5] 张行, 任明法, 王磊, 等. 纤维缠绕复合材料压力容器封头厚度的逐层预测方法[J]. 复合材料学报, 2024, 41(7): 3798-3805.ZHANG Hang, REN Mingfa, WANG Lei, et al. A method for predicting dome thickness layer by layer of filament wound composite pressure vessel[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3798-3805(in Chinese). [6] 金书明, 李德华, 杨明, 等. 某T1000级碳纤维缠绕复合材料壳体承压特性[J]. 复合材料学报, 2024, 42: 1-11.JlN Shuming, Ll Dehua, YANG Ming, et al. Pressure-sinkage characteristics of a T1000 carbon fiber wound composite case[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-11(in Chinese). [7] 喻琳峰, 任全彬, 张爱华, 等. 某大型固体发动机T800碳纤维壳体封头结构仿真分析和优化设计[J]. 固体火箭技术, 2023, 46(4): 611-620. doi: 10.7673/j.issn.1006-2793.2023.04.016YU Linfeng, REN Quanbin, ZHANG Aihua, et al. Simulation analysis and optimization design of domestic T800 carbon fiber composite case dome of a large-scale SRM[J]. Journal of Solid Rocket Technology, 2023, 46(4): 611-620(in Chinese). doi: 10.7673/j.issn.1006-2793.2023.04.016 [8] 祖磊, 许辉, 张骞, 等. 基于多岛遗传算法的复合材料缠绕壳体封头分区补强优化[J]. 复合材料学报, 2022, 39(7): 3616-3628.ZU Lei, XU Hui, ZHANG Qian, et al. Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3616-3628(in Chinese). [9] 冯彬彬, 袁金, 胡旭辉, 等. 大长径比固体火箭发动机壳体轻量化设计[J]. 复合材料科学与工程, 2021, (5): 43-48.FENG Binbin, YUAN Jin, HU Xuhui, et. al. Lightweight design of solid rocket motor casing with large aspect ratio[J]. Composites Science and Engineering, 2021, (5): 43-48(in Chinese). [10] 关云, 宋学宇, 贾有军, 等. 炭纤维复合材料壳体封头新型环向补强的数值模拟及试验[J]. 固体火箭技术, 2018, 41(3): 356-362+382.Guan Yun, SONG Xueyu, JlA Youjun, et al. Experimental and simulation investigation on a novel hoop reinforcement of carbon filament-wound composite case dome[J]. Journal of Solid Rocket Technology, 2018, 41(3): 356-362+382(in Chinese). [11] 董少静, 李凯, 丁文辉, 等. 基于声发射技术的T800碳纤维复合材料拉伸失效机制分析[J/OL]. 固体火箭技术, 1-11.DONG Shaojing, LI Kai, DING Wenhui, et al. Analysis of failure mechanism of unidirectional T800 CFRP under tension based on acoustic emission technology [J/OL]. Journal of Solid Rocket Technology, 1-11(in Chinese). [12] 张旭东, 段青枫, 曹东风, 等. 基于复合材料I型分层损伤机制的解耦内聚力方法[J/OL]. 复合材料学报, 2024, 1-15.ZHANG Xudong, DUAN Qingfeng, CAO Dongfeng, et al. Decoupling cohesion method based on mode Ⅰ delamination damage mechanism of composite materials [J/OL]. Acta Materiae Compositae Sinica, 2024, 1-15(in Chinese). [13] 喻琳峰, 任全彬, 张爱华, 等. 某大型固体发动机T800碳纤维壳体封头结构仿真分析和优化设计[J]. 固体火箭技术, 2023, 46(4): 611-620. doi: 10.7673/j.issn.1006-2793.2023.04.016YU Linfeng, REN Quanbin, ZHANG Aihua, et al. Simulation analysis and optimization design of domestic T800 carbon fiber composite case dome of a large-scale SRM[J]. Journal of Solid Rocket Technology, 2023, 46(4): 611-620(in Chinese). doi: 10.7673/j.issn.1006-2793.2023.04.016 [14] Song Lin, Liuqing Yang, Hui Xu, et al. Progressive damage analysis for multiscale modeling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures, 2020, 255(2021): 1-12. [15] Srivastava, Lokesh et al. Failure mode effect analysis for a better functional composite rocket motor casing[J]. Materials Today: Proceedings, 2022, 62(6): 4445-4454. [16] LIU H, ZU L, ZHANG Q, et al. Repeated loading damage analysis of thin-walled composite shell for lighter structural design[J]. Composite Structures, 2024, 340. [17] Weerts R A J, Cousigne O, Kunze K, et al. The influence of the internal pressure on the residual strength of composite-overwrapped pressure vessels subjected to external contact loading[J]. Composite structures, 2022, 296: 1-9. [18] A T V L, José Humberto S. Almeida Jr. b c, A A S, et al. FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern[J]. Thin-Walled Structures, 2022, 173: 1-15. [19] 郭凯特, 王春, 文立华, 等. 不等开口纤维增强树脂复合材料缠绕壳体非测地线线型设计[J]. 复合材料学报, 2019, 36(5): 1189-1199.GUO Kaite, WANG Chun, WEN Lihua, et al. Winding pattern design of fiber-reinforced resin polymer composites winding vessels with unequal polar openings based on non-geodesics[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1189-1199(in Chinese). [20] 祖磊, 穆建桥, 王继辉, 等. 基于非测地线纤维缠绕压力容器线型设计与优化[J]. 复合材料学报, 2016, 33(5): 1125-1131.ZU Lei, MU Jiangiao, WANG Jihui, et al. Pattern design and optimization of filament-winding pressure vessels based on non-geodesics[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1125-1131(in Chinese). [21] 祖磊, 肖康, 张骞, 等. 不等极孔纤维缠绕线型轨迹及工艺研究[J]. 复合材料科学与工程, 2021, (7): 48-54.ZU Lei, XlAO Kang, ZHANG Qian. et al. Research on filament winding line path and technology of unequal pole hole[J]. Composites Science and Engineering, 2021, (7): 48-54(in Chinese). [22] 夏婉莹, 李志虎, 秦玉林, 等. 基于失效理论的复合材料力学性能预测及试验验证[J]. 复合材料科学与工程, 2023, (9): 42-47.XIA Wanying, LI Zhihu, QIN Yulin, et al. Prediction and experimental verification of mechanical properties of composite materials based on failure theories[J]. Composites Science and Engineering, 2023, (9): 42-47(in Chinese). [23] 矫维成, 王荣国, 刘文博, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010, 27(5): 116-121.JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al, Dome thickness prediction of composite pressure vessels[J], Acta Materiae Compositae Sinica, 2010, 27(5): 116-121(in Chinese). [24] Li J, Zhou C. The effect of the stress equilibrium factor on the composite case of the solid rocket motor[J]. Journal of Physics: Conference Series, 2024, 2764(1): 1-11. [25] 祖磊, 范文俊, 张骞, 等. 基于非线性有限元理论的复合材料壳体缠绕参数优化设计[J]. 复合材料科学与工程, 2022, (10): 5-12+32.ZU Lei, FAN Wenjun, ZHANG Qian, et al. Optimization design of winding parameters of composite shell based on nonlinear finite element theory[J]. Composites Science and Engineering, 2022, (10): 5-12+32 (in Chinese). [26] 汪伟. 结构接触和断裂行为的有限质点法计算理论与软件研发[D]. 浙江大学, 2023.Wang Wei. Computational theory and software development for structural contact and fracture behaviors using the finite particle method [D]. Zhejiang University, 2023(in Chinese). [27] Ming Wang. On the Necessity and Sufficiency of the Patch Test for Convergence of Nonconforming Finite Elements[J]. SIAM Journal on Numerical Analysis, 2006, 39(2): 363-384.
计量
- 文章访问数: 48
- HTML全文浏览量: 35
- 被引次数: 0