留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计

纪正江 董佳晨 梁良 程琳豪 闫雷雷 郑锡涛

纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J]. 复合材料学报, 2023, 42(0): 1-11.
引用本文: 纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J]. 复合材料学报, 2023, 42(0): 1-11.
JI Zhengjiang, DONG Jiachen, LIANG Liang, et al. Design of carbon fiber prepreg electromagnetic wave absorbing and load-bearing integrated laminated structure for aircraft skin[J]. Acta Materiae Compositae Sinica.
Citation: JI Zhengjiang, DONG Jiachen, LIANG Liang, et al. Design of carbon fiber prepreg electromagnetic wave absorbing and load-bearing integrated laminated structure for aircraft skin[J]. Acta Materiae Compositae Sinica.

面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计

基金项目: 中央高校基本科研业务费(D5000220029);航空科学基金(201909053001);陕西省重点实验室开放基金(AFMD-KFJJ-21212)
详细信息
    通讯作者:

    闫雷雷,博士,副教授,博士生导师,研究方向为多功能复合材料 E-mail: yanleilei@nwpu.edu.cn

  • 中图分类号: TB332

Design of carbon fiber prepreg electromagnetic wave absorbing and load-bearing integrated laminated structure for aircraft skin

Funds: Fundamental Research Funds for the Central Universities (D5000220029); Aeronautical Science Foundation of China (201909053001); Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices (AFMD-KFJJ-21212)
  • 摘要: 针对现有飞机复合材料蒙皮设计难以兼顾承载性能和吸波性能的问题,凭借碳纤维预浸料独特的力电特性,基于阻抗渐变原理设计了具有优异吸波性能的梯度碳纤维阵列,赋予结构吸波性能;利用碳纤维底板优异的承载性能,进行力学性能的增强设计。通过玻璃纤维层合结构(Glass Fiber Laminated Structure, GFLS)电磁和承载性能的双增强设计,构造了吸波/承载一体化层合结构(Integrated Laminated Structure, ILS)。电磁仿真和试验结果表明,结构实现了薄厚度下(<5 mm)宽频段(5-18 GHz)、大角度(0-70°)、高强度(平均吸收率>94%)的吸波效果。通过吸波机制研究发现了结构的谐振频率与碳纤维宽度成反比,碳纤维宽度逐层渐变的设计使结构在较宽频段范围内产生多个相近的强吸收频点,从而实现了宽频高强吸波。弯曲性能试验结果表明,一体化层合结构的比弯曲强度和比刚度相较同尺寸的玻璃纤维层合结构分别提升了86.8%和76.3%。本文通过在玻璃纤维预浸料铺层中引入碳纤维预浸料并进行结构构型设计,可实现结构吸波性能和承载性能的大幅增强,为飞机蒙皮的轻质隐身承载一体化设计提供了一种新的解决方案。

     

  • 图  1  一体化层合结构试样:(a) 制备流程;(b) 区域划分示意图

    Figure  1.  ILS specimens: (a) preparation process; (b) schematic diagram of part division

    图  2  样件:(a) 力学试验;(b) 电磁试验

    Figure  2.  Specimens of: (a) mechanical experiments; (b) EM experiments

    图  3  一体化层合结构示意图:(a) 周期结构;(b) 尺寸参数

    Figure  3.  Schematic diagram of ILS: (a) periodic structure; (b) size parameters

    图  4  碳纤维阵列不同尺寸参数对吸收率的影响分析:(a) l1;(b) dl;(c) h1;(d) dh

    Figure  4.  Absorptivity analyses with different size parameters of CF arrays (a) l1; (b) dl; (c) h1; (d) dh

    图  5  吸收率仿真曲线

    Figure  5.  The simulation curve of absorptivity

    图  6  不同入射角下一体化层合结构的吸收率云图

    Figure  6.  The absorptivity spectrum with different incident angle θ of ILS

    图  7  电磁波吸收率测试结果与仿真结果

    Figure  7.  Measured and simulated result of EM wave absorptivity

    图  8  电磁波吸收机制:(a) 截面示意图;(b) 不同碳纤维条宽度下的电场和能量损耗场分布

    Figure  8.  EM wave absorption mechanism: (a) diagram of cross sections; (b) the distribution of E-field and power loss in differentwidths of CF strips

    图  9  试验装置和失效模式照片:(a) 玻璃纤维层合结构;(b) 一体化层合结构

    Figure  9.  The photos of experimental setup and failure mode: (a) GFLS;(b) ILS

    图  10  准静态三点弯曲试验载荷位移曲线

    Figure  10.  Load-displacement curves of quasi-static three-point bending experiments

    表  1  铺层列表

    Table  1.   List of layers

    ILSGFLS
    Part 1GF:[90/0/90]GF:[90/0/90]
    Part 2GF:[(0/90)14/0]
    0° CF inserted
    into the holes of 0° GF
    GF:[(0/90)14/0]
    Part 3GF:[90/0/90]GF:[90/0/90]
    Part 4CF:[0/90/90/0]GF:[0/90/90/0]
    Summary39 layers39 layers
    下载: 导出CSV

    表  2  吸波性能最优参数(尺寸单位:mm)

    Table  2.   The optimal parameters of absorption property (size unit: mm)

    l1 h1 dl dh px py t1 t2
    5 1.5 3.0 0.3 49 7 0.75 4.175
    Notes:l1 and h1 represent the length and width of the shortest CF strip in ILS, respectively. dl and dh represent the length and width gradient of the CF strips, respectively. s and w represent the thickness and spacing of the CF strips, respectively. t1 and t2 represent the thickness of the CFRP back sheet and the GFRP structure, respectively. px and py represent the periodic length of the unit along the x and y directions, respectively.
    下载: 导出CSV

    表  3  各试验样件弯曲性能

    Table  3.   Flexural properties of each experimental specimen

    Sample number CB-1 CB-2 CB-3 B-1 B-2 B-3
    Density, g/cm3 1.404 1.544 1.404 1.684 1.544 1.544
    Stiffness, N/mm 313.51 321.65 315.48 194.33 199.84 196.78
    Specific stiffness, N/(g/cm2) 22.33 20.83 22.47 11.54 12.94 12.75
    Flexural strength, MPa 345.77 399.10 360.76 218.43 211.57 217.85
    Specific flexural strength, MPa/(g/cm3) 246.28 258.48 256.95 129.71 137.03 141.09
    下载: 导出CSV

    表  4  两结构弯曲性能平均值及其对比

    Table  4.   The average and comparation of flexural properties of the two structures

    ILS GFLS Improvement of ILS compared with GFLS
    Density, g/cm3 1.451 1.591 −8.8%
    Stiffness, N/mm 316.88 196.98 60.9%
    Specific stiffness, N/(g/cm2) 21.88 12.41 76.3%
    Flexural strength, MPa 368.54 215.95 70.7%
    Specific flexural strength, MPa/(g/cm3) 253.90 135.94 86.8%
    下载: 导出CSV
  • [1] 陶梅贞, 孙秦, 艾剑良, 等. 现代飞机结构综合设计[M]. 西安: 西北工业大学, 2014: 56-57.

    TAO M Z, SUN Q, AI J L, et al. Comprehensive design of modern aircraft structures[M]. Xi’an: Northwestern Polytechnical University, 2014: 56-57(in Chinese).
    [2] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013(in Chinese).
    [3] 张尉博, 张琦, 徐宏涛, 等. 高稳定碳纤维格栅夹层反射器结构设计及型面热变形优化[J]. 复合材料科学与工程, 2020, 05: 40-48. doi: 10.3969/j.issn.1003-0999.2020.05.006

    ZHANG W B, ZHANG Q, XU H T, et al. Structural design and surface thermal deformation optimization of high stability carbon fiber grille sandwich reflector[J]. Composite Materials Science and Engineering, 2020, 05: 40-48(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.05.006
    [4] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005

    WANG Y F, ZHU L, HAN L, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220512.005
    [5] 王彦丰, 张琳, 李益文, 等. 吸波涂层损伤对隐身性能的影响[J]. 空军工程大学学报(自然科学版), 2022, 23(3): 1-6.

    WANG Y F, ZHANG L, LI Y W, et a1. Effect of absorbing coatings damage on invisibility performance[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(3): 1-6(in Chinese).
    [6] 邢孟达, 马向雨, 宫元勋, 等. A型蒙皮复合蜂窝结构设计及其吸波性能[J]. 复合材料学报, 2022, 39(3): 1180-1185.

    XING M D, MA X Y, GONG Y X, et al. Design and wave absorbing properties of honeycomb with A-type skin[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1180-1185(in Chinese).
    [7] 礼嵩明, 吴思保, 王甲富, 等. 含超材料的新型蜂窝夹层结构吸波复合材料[J]. 航空材料学报, 2019, 39(3): 94-99.

    LI S M, WU S B, WANG J F, et al. New type honeycomb sandwich structure microwave absorbing composite containing metamaterial[J]. Journal of Aeronautical Materials, 2019, 39(3): 94-99(in Chinese).
    [8] 彭益菲, 刘文博. Cf/聚氨酯泡沫宽频吸波复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    PENG Y F, LIU W B. Preparation and properties of Cf/polyurethane foam broadband microwave absorbing composites[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [9] 赵宏杰, 宫元勋, 邢孟达, 等. 结构吸波材料多层阻抗渐变设计及应用[J]. 宇航材料工艺, 2015, 45(4): 19-22. doi: 10.3969/j.issn.1007-2330.2015.04.005

    ZHAO H J, GONG Y X, XING M D, et al. Design and application of multilayer graded impedance in structural radar absorbing materials[J]. Aerospace Materials and Technology, 2015, 45(4): 19-22(in Chinese). doi: 10.3969/j.issn.1007-2330.2015.04.005
    [10] 马觅洋, 张西军, 曾一兵. 多层结构设计在吸波材料中的应用[J]. 宇航材料工艺, 2017, 47(04): 8-13.

    MA M Y, ZHANG X J, ZENG Y B. Application of multilayer structure design in absorbing materials[J]. Aerospace Materials & Technology, 2017, 47(04): 8-13(in Chinese).
    [11] HEMA O. A, ASAAD M. A, YADGAR I. A, et al. New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for radar applications[J]. Optics Communications, 2022, 503: 127457. doi: 10.1016/j.optcom.2021.127457
    [12] SUN J B, LIU L Y, DONG G, et al. An extremely broad band metamaterial absorber based on destructive interference[J]. Optics Express, 2011, 19(22): 21155-21162. doi: 10.1364/OE.19.021155
    [13] 黄怿行, 方岱宁. 薄型宽频隐身承载超结构的材料-结构-功能一体化设计、制备与表征[D]. 广州: 华南理工大学, 2019.

    HUANG Y X, FANG D N. Material structure function integrated design, preparation, and characterization of thin broadband stealth and load-bearing super structures[D]. Guangzhou, South China University of Technology, 2019(in Chinese).
    [14] 杨超, 叶永盛, 叶喜葱等. 多层吸波体的设计、制备及其广角宽频吸收特性[J]. 复合材料学报, 2023, 40.

    YANG C, YE Y S, YE X C, et al. Design, fabrication and wide-angle broadband absorption characteristics of the multilayer microwave absorber[J]. Acta Materiae Compositae Sinica, 2023, 40(in Chinese).
    [15] ZHANG Z, LEI H S, YANG H Y, et al. Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics[J]. Composites Science and Technology, 2021, 216: 109064. doi: 10.1016/j.compscitech.2021.109064
    [16] LI C, CAO Q, ZHOU G, et al. Design and study of a new broadband RCS carbon-glass fiber hybrid metamaterial[J]. Composite Structures, 2022, 301: 1116207.
    [17] JIN D H, JANG M S, CHOI J H, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity[J]. Composite Structures, 2021, 273: 114279. doi: 10.1016/j.compstruct.2021.114279
    [18] HUANG Y, YUAN X, CHEN M, et al. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing[J]. Carbon, 2018, 144: 449-456.
    [19] 何先成, 钟翔屿, 李晔, 等. RTM工艺成型国产T700碳纤维复合材料湿热性能[J]. 高科技纤维与应用, 2016, 41(6): 48-52.

    HE X C, ZHONG X Y, L Y, et al. Hygrothermal properties of T700 carbon fiber composites fabricated by RTM[J]. Hi-Tech Fiber & Application, 2016, 41(6): 48-52.
    [20] 张海燕, 李根臣, 刘震宇, 等. 国产T700级碳纤维及复合材料性能表征[J]. 化工新型材料, 2020, 48(4): 238-240.

    ZHANG H Y, LI G C, LIU Z Y, et al. Performance characterization of domestic T700 grade carbon fibers and composites[J]. New Chemical Materials, 2020, 48(4): 238-240.
    [21] ZHOU Q, SHI T T, XUE B, et al. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial[J]. Composites Science and Technology, 2023, 232: 109877. doi: 10.1016/j.compscitech.2022.109877
    [22] ZHAN R, ZHANG J, GAO Q, et al. Microwave absorption performance of single-layer and multi-layer structures prepared by CNTs/Fe3O4 nonwoven materials[J]. Crystals, 2021, 11(8): 1000. doi: 10.3390/cryst11081000
    [23] ORAI A, MANDAL D, MANDAL K. Multi-layered nano-hollow spheres for efficient electromagnetic wave absorption[J]. Nanotechnology, 2021, 32(34): 345707. doi: 10.1088/1361-6528/ac020e
    [24] 陆晓欣, 赫晓东. 碳纤维增强树脂基复合材料表面阻抗调制与结构吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    LU X X, HE X D. Research on the surface impedance modulation and structural absorbing properties of carbon fiber reinforced plastic[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [25] PANG Y Q, LI Y F, WANG J F, et al. Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction[J]. Composites Science and Technology, 2018, 158: 19-25. doi: 10.1016/j.compscitech.2018.02.001
    [26] 鹿海军, 礼嵩明, 黄浩, 等. 宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究[J]. 复合材料学报, 2024, 41.

    LU H J, LI S M, HUANG H, et al. Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites[J]. Acta Materiae Compositae Sinica, 2024, 41(in Chinese).
    [27] YAN L L, HE Z H, JIANG W, et al. A novel scheme to enhance both electromagnetic wave transmission and compressive properties of PMI foam sandwich structures[J]. Composite Structures, 2021, 277: 114582. doi: 10.1016/j.compstruct.2021.114582
    [28] JIANG W, MA H, WANG JF, et al. Spoof surface plasmon polaritons realized by unidirectional carbon fibers arrays and applications in structure/function integrated sandwich structure[J]. Results Physics, 2020, 17: 103081. doi: 10.1016/j.rinp.2020.103081
    [29] DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100: 103506. doi: 10.1063/1.3692178
    [30] ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264[S]. West Conshohocken: ASTM International, 2022.
    [31] CHENG L H, SI Y, JI Z J, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510. doi: 10.1016/j.compstruct.2022.116510
    [32] 熊汉, 洪劲松. 电磁超材料在微波吸波体与天线中的应用研究[D]. 成都: 电子科技大学, 2014.

    XIONG H, HONG J S. Research on the application of electromagnetic metamaterials in microwave absorber and antenna[D]. Chengdu: School of Physical Electronics, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  512
  • HTML全文浏览量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2023-09-23
  • 录用日期:  2023-10-09
  • 网络出版日期:  2023-10-23

目录

    /

    返回文章
    返回